

ON A MOREAU ENVELOPE WIRELENGTH MODEL FOR ANALYTICAL GLOBAL PLACEMENT Peiyu Liao^{1,2} Hongduo Liu² Yibo Lin^{1,3} Bei Yu² Martin Wong² ¹Peking University 2 The Chinese University of Hong Kong 3 Institute of Electronic Design Automation, Peking University

Outline

- We first illustrate our motivation in the block that briefly describes different wirelength models.
- We derive the representations of proximal mapping of the non-smooth HPWL function.
- The water-filling algorithm is applied to solve the proximal mapping and Moreau envelope problem.

Gradient Property

Consider the horizontal part of W_e , the gradient of Moreau envelope function W_e^t is $\boldsymbol{g} = \nabla W_e^t(\boldsymbol{x})$ where

$$g_{i} = \begin{cases} \frac{1}{t}(x_{i} - \tau_{2}), \text{ if } x_{i} > \tau_{2}; \\ 0, & \text{ if } \tau_{1} \leq x_{i} \leq \tau_{2}; \\ \frac{1}{t}(x_{i} - \tau_{1}), \text{ otherwise} \end{cases}$$
(1)
is defined for any $i = 1, \cdots, n$, such that

Wirelength Models and Approximations

Table 1. Examples of different wirelength models. The first row shows models using ℓ_1 distance, while the second shows those using ℓ_2 distance.

$$\sum_{i=1}^{\infty} (x_i - \tau_2)^+ = \sum_{i=1}^{\infty} (\tau_1 - x_i)^+ = t,$$
(2)

if the solution τ_1, τ_2 to (2) satisfy $\tau_1 \leq \tau_2$, otherwise $\mathbf{g} = \nabla W_e^t(\mathbf{x})$ is determined by the average coordinate: $g_i = \frac{1}{t}x_i - \frac{1}{tn}\sum_{i=1}^n x_i$ for any index $i = 1, \dots, n$.

Water-Filling for Gradient Computation

Figure 1. The illustration of water-filling to solve τ_1 in Equation (2).

The water-filling algorithm is applied to solve equations (2) for τ_1 (similar

Moreau Envelope

For any t > 0, the **Moreau envelope** function h^t and the proximal mapping prox is defined by

$$h^{t}(\mathbf{x}) = \min_{\mathbf{u} \in \mathbb{R}^{n}} \left\{ h(\mathbf{u}) + \frac{1}{2t} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right\},$$

$$\operatorname{prox}_{th}(\mathbf{x}) = \arg\min_{\mathbf{u} \in \mathbb{R}^{n}} \left\{ h(\mathbf{u}) + \frac{1}{2t} \|\mathbf{u} - \mathbf{x}\|_{2}^{2} \right\}.$$

Convergence. h^t(x) approximates h(x): lim_{t→0+} h^t(x) = h(x).
 Differentiability. h^t(x) is differentiable: ∇_xh^t(x) = ¹/_t(x - prox_{th}(x)).

Intuition: Replace $h(\mathbf{x})$ with the net HPWL $W_e(\mathbf{x}) = \max_i x_i - \min_i x_i$ for an approximation of HPWL, as long as $\operatorname{prox}_{tW_e}(\mathbf{x})$ is cheap to compute.

Experimental Results

Conclusions

• We propose a novel HPWL-based differentiable wirelength model.

The derivation of proximal mapping will enlighten more promising

research on numerical optimization of global placement.

