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Abstract—Timing closure is crucial across the circuit design flow. Since
obtaining sign-off performance needs a time-consuming routing flow, all
the previous early-stage timing optimization works only focus on improving
early timing metrics, e.g., rough timing estimation using linear RC model
or pre-routing path-length. However, there is no consistency guarantee
between early-stage metrics and sign-off timing performance. To enable
explicit early-stage optimization on the sign-off timing metrics, we propose
a novel timing optimization framework, TSteiner. This paper demonstrates
the ability of the learning framework to perform robust and efficient
timing optimization in the early stage with comprehensive and convincing
experimental results on real-world designs.

I. INTRODUCTION

Modern design flow requires iteratively invoking design stages
like placement and routing (PnR) for sign-off timing closure, which
is considerably time-consuming. As a result, there arises an urgent
demand for improving sign-off timing performance directly in the early
stages to reduce the expensive PnR iterations.

The literature has explored numerous early-stage timing optimiza-
tion. For example, in global placement, strategies like net-weighting
and a differentiable timing objective have been proposed for timing
optimization [1], [2] However, both of them only focus on improving
pre-routing timing metrics, which may have a considerable gap to sign-
off timing performance. In global routing, studies have been proposed
to adjust the path lengths for delay optimization [3], [4] with strategies
like min-max resource sharing [5]. Besides, [6], [7] propose timing-
driven layer assignment algorithms to balance routing resources and
achieve better timing performance benefiting from the availability of
different metal layers. Timing optimization has also been considered
in the track assignment stage via nets weighting and nets detour [8],
[9]. However, all the aforementioned works are not directly targeted
at sign-off timing performance due to its high acquisition cost.

On the other hand, recent progress in machine learning (ML) has
permitted fast and precise sign-off timing evaluation. For the first time,
[10] proposes a two-stage framework with carefully selected features
(e.g., pin capacitance and net length) for sign-off net delay prediction
in the pre-routing stage. PERT traversals [11] are then applied to obtain
the global timing metrics, i.e., endpoint slack. For further promotion,
more detailed timing-relative features from a look-ahead RC network
are extracted in [12]. Moreover, to directly evaluate the global timing
metrics, [13] develops an end-to-end graph learning model inspired
by static timing analysis (STA). Overall, these studies demonstrate the
feasibility of predicting sign-off time performance with ML and open
new avenues for fast and accurate early-stage timing optimization.

In this paper, we focus on explicit sign-off timing optimization
at the pre-routing stage to reduce the turnaround time. As a neces-
sary step in the most widely-used routing framework, Steiner tree
construction decomposes each multi-pin net into a set of two-pin
nets via additional Steiner points before global routing to reduce the
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Fig. 1 Physical design flow with Steiner point refinement

problem complexity. In that case, an efficient and effective learning-
assist optimization framework, TSteiner, is proposed to improve
sign-off timing performance via Steiner point refinement. TSteiner
makes use of graph learning to build a timing evaluator that exploits
the relationship between sign-off timing metrics and Steiner point
positions. On top of the learning-assist timing evaluator, an adaptive
optimization framework is built to adjust Steiner point positions for
better sign-off timing performance iteratively. We integrate TSteiner in
the pre-routing stage of a state-of-the-art (SOTA) open-source design
flow (Fig. 1) and conduct experiments on real-world designs to prove
its efficacy. The major contributions of this paper are listed as follows,

• For the first time, we propose a concurrent learning-assist early-
stage timing optimization framework, TSteiner, via Steiner point
refinement.

• A customized graph learning framework is utilized to obtain
the sign-off timing optimization gradients to guide the Steiner
point refinement. Further, the proposed TSteiner framework is
fully automated with an adaptive stepsize scheme and the auto-
convergence scheme, which means it is not needed to manually
set the stepsize and the number of optimization iterations for
designs.

• Comprehensive experiments on real-world designs show that
TSteiner improves 11.2% and 7.1% on average (up to 45.8%
and 43.9%) for worst negative slack and total negative slack,
respectively, by integrating to the modern SOTA open-source
routing flow.

The rest of this paper is organized as follows. Section II introduces
timing closure, the background of Steiner points, and the problem
formulation. Section III presents algorithm details of the proposed
TSteiner framework. Section IV presents and analyzes the experimen-
tal results of TSteiner. Finally, Section V concludes this paper.

II. PRELIMINARIES

A. Timing Closure

Meeting the sign-off timing requirements is a critical problem in
the circuit design flow to guarantee functionality correctness. Timing
paths, including a startpoint and an endpoint, are extracted from the
netlist for timing analysis. The startpoint can be a primary input (PI)
or a register’s output pin, while the endpoint can be a primary output
(PO) or a register’s input pin. Timing closure requires that the delay
of each timing path must satisfy some constraints, i.e., be less than a
single clock cycle. Timing violation occurs if the slack se = re − ae

for a timing path endpoint e is negative, where re and ae denote e’s
required time and arrival time, respectively. Two important metrics to
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evaluate timing performance, worst negative slack (WNS) w(·) and
total negative slack (TNS) t(·), can be calculated as follows,

w(·) = min
e

se,

t(·) =
∑
e

{min{0, se}} .
(1)

Despite the fact that timing awareness has been extended to most
phases of the physical design flow, previous academic efforts have
mainly focused on improving early timing metrics (e.g., evaluation
from linear RC timing model and path lengths). This inspires us to
find an explicit way to optimize sign-off timing performance (WNS
and TNS) directly.

B. Routing and Steiner Tree

Routing is typically divided into two stages: global routing and
detailed routing. In the first stage, global routing conducts rough
routing on the coarse grid graph and offers guidance for the subsequent
stage. Then, detailed routing works on a fine grid graph to connect
all actual wires and minimize design rule violations following the
guidance from global routing. Since global routing serves as a guide
in the routing procedure, it may have a more significant impact on the
sign-off timing performance than detailed routing.

As mentioned before, Steiner tree construction is widely-used to de-
compose the multi-pin net into a set of two-pin nets before global rout-
ing. The most popular Steiner minimum tree construction algorithms
aim to minimize wirelength. Moreover, the Steiner point refinement is
introduced to update the generated Steiner point positions for specific
objectives, e.g., sign-off timing performance, while maintaining the
two-pin net connections.

C. Timing Optimization via Steiner point Refinement

Generally, there are strict geometric constraints for cells, e.g.,
non-overlapped, since cells are real objects. Unlike cells, Steiner
points work as auxiliary points in the post-placement stage; hence
there are no such strict geometric constraints and pre-defined sizes
for Steiner points. Furthermore, we surprisingly find that the sign-
off timing performance could be significantly affected even by a
random disturbance on Steiner point positions, as shown in Fig. 2.
Nevertheless, the impact of random moving is considerately unstable,
and its average performance is slight (with a ratio close to 1.0). These
findings demonstrate the potential of Steiner point refinement-driven
timing optimization and raise the demand for a better way to guide
the moving. Actually, there have been a few studies for Steiner tree-
based early-stage timing optimization [3], [4] that simply consider path
lengths as the objective. However, the most relevant timing metric to
path lengths, net delay, does not account for much of the overall timing
performance in the most widely-used technology node. Collectively,

the need for more effective early-stage timing-driven Steiner point
refinement algorithms is highlighted.

D. Graph Neural Networks

Graph neural networks (GNNs) have become an attractive frame-
work for mining graph data [14]. The most popular GNNs follow
an iterative message-passage scheme. Given a graph G = ⟨V,E⟩, a
hidden embedding h

(k)
u corresponding to each node u ∈ V is updated

according to information aggregated from u’s graph neighborhood
N(u) during each message-passing iteration in a GNN. The kth

updating process can be expressed as,

h
(k+1)
u = UPDATE(k)

(
h
(k)
u ,AGGREGATE(k)(h

(k)
v , ∀v ∈ N(u))

)
= UPDATE(k)

(
h
(k)
u ,m

(k)
N(u)

)
,

(2)
where UPDATE and AGGREGATE are differentiable functions

and mN(u) means the ”message” aggregated from u’s graph neigh-
borhood N(u). With K iterations, we can define node u’s embedding
zu as,

zu = hK
u , ∀u ∈ V. (3)

GNNs based on the message-passing framework have shown supe-
rior efficacy in learning graph structures. Recently, GNNs have gained
popularity in the electronic design automation (EDA) community [15]
because the circuits can be naturally represented as graphs.

E. Problem Formulation

Definition 1 (Timing-driven Steiner point refinement). Given an initial
Steiner tree set ST =

{
T 1, T 2, · · · , Tn

}
, T i = (V i

c , V
i
s , E

i), where
V i
c is the set of cell nodes, V i

s is the set of Steiner nodes and Ei

means the edges connecting V i
c and V i

s of the ith Steiner tree, our
task is to refine the position (Xs, Ys) of Vs =

{
V i
s , 1 ≤ i ≤ n

}
in

the pre-routing stage to obtain better sign-off timing performance.

III. ALGORITHM

Before diving into the algorithm details, we first briefly introduce the
overall flow of our concurrent timing-driven Steiner point refinement
framework, TSteiner, as illustrated in Fig. 4. The proposed framework
can be divided into two stages, sign-off timing gradient generation
(Section III-A) and concurrent Steiner point refinement (Section III-B).
The flow begins by generating the initial Steiner tree set ST through
modern Steiner tree construction algorithms [16], [17], which is
input to a learning-assist timing evaluator T for point-wise gradient
generation. Then a concurrent refinement process is conducted to
relocate the Steiner points for better sign-off timing performance.
Both two stages draw support from deep learning (DL) techniques.
Specifically, the gradient generation is inspired by DL’s forward and
backward propagation, while the concurrent Steiner point refinement
stage borrows ideas from the updating procedure of trainable weights.

The algorithm details are discussed in the following sections.

A. Sign-off Timing Optimization Gradient Generation

The foundation of our gradient generation framework is building the
relationship between sign-off timing performance and Steiner point
positions. Specifically, we utilize the trending GNN to construct an
accurate sign-off timing evaluation model with Steiner point position
information as input. The gradients for each Steiner point can then
be generated automatically with the model’s backward propagation
procedure. Specifically, the timing evaluation problem is formulated
as follows,
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Fig. 4 The overall flow of our proposed concurrent timing optimization
framework. The proposed framework includes two stages inspired by
the deep model training. Note that any movement of Steiner points is
constrained within the grid graph boundary, and the final positions are
rounded in the post-processing.

Definition 2. (Sign-off Timing Evaluation): Given a Steiner tree
solution ST , timing evaluation is to find an estimator T to evaluate
the sign-off timing metrics T(ST ), i.e., arrival time at each pin.

Unfortunately, all previous ML-driven pre-routing timing evalua-
tors [10], [12], [13] did not consider Steiner points. In this paper, we
design a customized model to integrate Steiner trees into the SOTA
pre-routing timing prediction framework [13].

Timing Evaluation Model Initialization Unlike [13], which builds
the graph solely from netlist connections, we construct an additional
graph from the Steiner trees. The two graphs are denoted as the
netlist graph and Steiner graph, respectively, as shown in Fig. 3.
Specifically, the netlist graph reflects connections between pins, which
is heterogeneous with two edge types: cell edge and net edge. Each
cell edge links one input pin of a cell with its output pin, while each

net edge connects a net’s drive pin to one of its sink pins. On the
other hand, the Steiner graph is node-heterogeneous with two types
of nodes, Steiner nodes and pin nodes, to distinguish Steiner points
from pins. As for edges, it is also heterogeneous with Steiner edges
and net edges.

Timing Evaluation Model Inference We propose a two-stage
message-passing scheme with the above two graphs to fuse information
from both Steiner trees and netlists. The scheme begins by aggregating
information from the Steiner graph, which can be further divided into
two steps: broadcast and reduce. In the broadcast step, information
flows from each net’s drive pin to sink pins along the Steiner edges, as
denoted by the purple lines in Fig. 3. During broadcasting, information
on the drive pin and associated Steiner points are aggregated to each
sink pin, which is then fused to update the sink pins’ features. Then
in the reduce step, the updated sink pins’ features flow backward to
the drive pin along the net edges to renew the drive pin’s feature, as
denoted by the green lines in Fig. 3. The steps above are repeated
until the Steiner tree information is fully fused. In practice, we set
three iterations.

After the message-passing on the Steiner graph, the Steiner point
position information, which we are interested in, has been aggregated
into the related pins’ features. The updated pin features are then
propagated on the netlist graph in topological order (denoted by the
blue edges in Fig. 3) to generate pin node embeddings, which can be
used for predicting pin-wise arrival time. Due to the page limitation,
readers can refer to the propagation model in [13] for details about
input features and the message-passing on the netlist graph.

Having the well-trained sign-off timing evaluator T, the sign-off
timing metrics (WNS and TNS) can be evaluated based on the
predicted endpoint arrival time, as introduced in Equation (1). Then
the timing penalty can be calculated with,

P (T(ST )) = λww(T(ST )) + λtt(T(ST )), (4)

where w(T(ST )) and t(T(ST )) denote the evaluated WNS and TNS.
λw and λt are the weights for WNS and TNS, respectively.

Timing Penalty Smoothing As the formal formulations of WNS and
TNS contain minimum or maximum operation, directly applying the



above penalty for backward propagation leads to a cut-off in some
timing paths. However, timing optimization should consider all of the
pins and paths globally. To overcome the above drawback, we smooth
the minimum and maximum operations in the computation of WNS
and TNS. To be more specific, we replace the maximum operation
with the Log-Sum-Exp function LSE as follows,

LSE(x1, x2, · · · , xn) = γ log

(
n∑

i=1

exp
xi

γ

)
, (5)

where γ is the parameter for the degree of smoothing, and a larger γ
indicates smoother results and lower accuracy. Similarly, the minimum
operation can be treated as the maximum operation of the inverse
values. Finally, the smoothed penalty function Pγ(T(ST )) can be
expressed as,

Pγ(T(ST )) = λwwγ(T(ST )) + λttγ(T(ST )). (6)

where wγ(·) and tγ(·) denote the smoothed version of w(·) and t(·),
respectively. With the smoothed penalty, the timing optimization gra-
dients w.r.t. Steiner points positions (∇XsP,∇YsP ) can be computed
automatically via backward propagation, which is then used in our
concurrent Steiner point refinement flow as described in Algorithm 1.
Since we only set the feature of Steiner nodes’ positions as ‘gradient
required’, no gradient will be calculated for other features, e.g., pin
node positions.

B. Concurrent Timing-driven Steiner Point Refinement Framework
Having sign-off timing gradients ∇

X
(t)
s

P w.r.t. the Steiner points’

X coordinates X
(t)
s in tth optimization iteration, a concurrent Steiner

point refinement algorithm will be applied to update X
(t)
s with the

stochastic optimization algorithm SO described as follows,

m
(t)
x = (1−β1) · ∇

X
(t)
s

P, v
(t)
x = (1− β2) · (∇

X
(t)
s

P ⊙∇
X

(t)
s

P ),

X
′(t)
s = X

(t)
s − θ ·

m
(t)
x√

v
(t)
x + ϵ

,
(7)

where θ is the stepsize to optimize Steiner point positions; β1, β2,
and ϵ are the hyper-parameters. The update process for Y (t)

s is similar
to Equation (7) and shares the same hyper-parameters.

To boost the performance of our method on designs with various
scales, we propose an adaptive stepsize scheme that automatically
generates customized stepsize θ fitting every design. Given the initial
Steiner trees set ST , our adaptive stepsize scheme Adaptive Theta can
be divided into three steps:

1) Obtain the initial timing gradient (∇XsP,∇YsP ) w.r.t. the given
Steiner point positions (Xs, Ys).

2) Apply a small move:

X ′
s = Xs + α∇XsP,

Y ′
s = Ys + α∇YsP,

(8)

where α is a hyper-parameter to control the scale of θ.
3) Obtain the updated timing gradient (∇X′

s
P,∇Y ′

s
P ).

The adaptive stepsize is then calculated as:

θ =
|(Xs, Ys)− (X ′

s, Y
′
s )|2

|(∇XsP,∇YsP )− (∇X′
s
P,∇Y ′

s
P )|2

. (9)

With the adaptive stepsize scheme, our concurrent Steiner point
refinement framework is described in Algorithm 1. The algorithm
begins by initializing variables and setting up the optimizer (Lines 1
to 5). Following is the main part of the algorithm that conducts
refinement recursively until convergence. In the tth iteration, the Steiner
point positions are updated using Equation (7) to obtain the temporary

Steiner trees S
′(t)
T (Line 7). S′(t)

T will be stored if it achieves better
(evaluated) sign-off timing performance (WNS or TNS). Otherwise,
S

(t)
T from the previous iteration will be restored (Line 13). The

optimization procedure stops when the sign-off timing metrics are
fully optimized (Line 19), or it reaches the maximum optimization
iterations N (Line 16).

Algorithm 1 Concurrent Steiner point refinement. The adaptive step
size scheme (Adaptive Theta) and stochastic optimizer (SO) are ap-
plied to optimize the Steiner point positions using Equation (7).

Input: ST : initial Steiner trees; T: pre-trained timing prediction
model; N : maximum optimization iterations; µ: converge ratio.

1: init wns ← w(T(ST )); best wns ← w(T(ST ));
2: init tns ← t(T(ST )); best tns ← t(T(ST ));
3: θ ← Adaptive Theta(ST );
4: t ← 0; S(0)

T ← ST ; X(0)
s ← Xs; Y (0)

s ← Ys;
5: Initialize the optimizer SO with θ;
6: repeat
7: S

′(t)
T ← SO(S

(t)
T , (∇

X
(t)
s

P,∇
Y

(t)
s

P ));

8: wns ← w(T(S
′(t)
T )); tns ← t(T(S

′(t)
T ));

9: if wns > best wns or tns > best tns then
10: best wns ← wns; best tns ← tns;
11: S

(t+1)
T ← S

′(t)
T ;

12: else
13: S

(t+1)
T ← S

(t)
T ;

14: end if
15: t ← t + 1;
16: if t ≥ N then
17: break;
18: end if

19: until
init wns− best wns

init wns
> µ or

init tns− best tns
init tns

> µ

20: return S
(t)
T (Resulting Steiner Trees)

IV. EXPERIMENT RESULTS

A. Experiment Setting

We develop our concurrent timing optimization framework with
DGL [18], PyTorch [19], and C++. The sign-off timing evaluation
model is trained and tested on a Linux machine with 16 Intel Xeon
Gold 6226R cores (2.90GHz), 1 GeForce RTX 3090 Ti graphics
card, and 24 GB of main memory. The initial Steiner trees are
generated by a widely-used Steiner minimum tree construction algo-
rithm, FLUTE [16], followed by the edge shifting technique [17] for
congestion alleviation. The subsequent routing flow is based on the
modern state-of-the-art open-source routers, CUGR [20] as the global
router and TritonRoute [21] as the detailed router. Both of them are
running with eight threads. Dr.CU [22] is not used here since it cannot
produce available timing analysis results with too many design rule
violations on real-world designs.

We prepare ten real-world open-source designs for evaluation. All
the designs are obtained from OpenCores [23], and synthesized with
the widely-used open-source 130nm process design kit (PDK) [24].
In addition, we apply the industry-leading commercial tool, Cadence
Innovus, to obtain the placement solution and sign-off timing reports†.
The circuit benchmarks are split into training and testing sets with the
benchmark statistics listed in TABLE I. The training and testing sets
are determined by design scale in order to make balance. The timing
evaluation model is trained on the training set with a learning rate of
5e− 4.

†Use the Tcl command ‘timeDesign -postRoute’ with OCV mode.



TABLE I Benchmark statistics. The ten benchmarks are randomly split
into the upper six benchmarks for training and the lower four for
testing. ‘# Endpoints’ represents the number of timing paths.

Benchmark # Nodes # Edges # Endpoints
Cell Steiner Net Cell

chacha 15700 5398 44468 41204 1972
cic_decimator 781 196 2112 1982 130

APU 2897 1154 8373 7918 427
des 14652 5487 43065 40432 2048

jpeg_encoder 55264 15982 170520 161743 4420
spm 238 63 645 516 129

aes_cipher 11532 7323 37085 35825 659
picorv32a 13622 4542 41030 38191 1879

usb_cdc_core 1642 625 4632 3999 626
des3 47410 20004 136257 125093 8872

Total Train 89532 28280 269183 253795 9126
Total Test 74206 32494 219004 203108 12036

In the concurrent timing optimization flow, we initialize λw as -
200.0 and λt as -2.0. To smooth the penalty function described in
Section III-A, we set γ as 10.0. α in adaptive stepsize generation is set
to 5.0, and converge rate µ in the concurrent Steiner point refinement
stage is set to 0.1. Starting from the 5th iteration, we increase λw and
λt by 1% in each following iteration since the Steiner points may have
already been optimized enough with 5 iterations. For each design, we
constrain the largest moving distance according to the width and length
of the global routing grid graph. All the reported metrics are obtained
from Cadence Innovus.

B. Concurrent Timing Optimization Performance

To evaluate the timing optimization performance with our proposed
framework, TSteiner, we integrate it into the modern SOTA open-
source routing flow, CUGR [20] and TritonRoute [21]. Experimental
results compared to the routing flow without integrating TSteiner are
illustrated in TABLE II. To begin with, as for the sign-off timing
performance, we list sign-off WNS, TNS, and the number of paths with
timing violations as ‘# Vios’. Note that the total number of timing paths
is listed in TABLE I as ‘# Endpoints’ for each design. As shown in
TABLE II, our proposed TSteiner framework can improve the sign-off
WNS, TNS, and # Vios by 11.2%, 7.1%, and 3.3%, respectively. At the
same time, the improvement on these three metrics can be up to 45.8%,
43.9%, and 16.4%, respectively, with only a small runtime overhead.
Besides the direct improvement in the sign-off timing performance, we
also estimate the impact of TSteiner on the detailed routing solution
quality. The routed wirelength ‘WL’, the number of vias ‘# Vias’, and
the number of design rule violations ‘# DRV’ are listed. On average,
our proposed framework improves the number of design rule violations
by 4.51% with 0.01% more vias and 0.01% shorter routed wirelength.
The significant improvement in the sign-off timing performance with
a comparable routing solution quality proves the efficacy of TSteiner.
Additionally, we illustrate the sign-off timing metrics ratio in Fig. 5
to prove TSteiner’s superiority compared to the random move, where
we conduct the random experiments 10-50 times and then calculate
the average expected value of all designs.

C. Sign-off Timing Prediction Performance

Our sign-off timing evaluation model is employed to predict the
arrival time on each pin. Furthermore, we extract the predicted arrival
time on the endpoints to compute the required timing metrics (WNS
and TNS). The sign-off timing prediction performance on the two tasks
is listed in TABLE III. Specifically, the R2 score is an important metric
to evaluate the coefficient of determination in statistics (the closer to

WNS TNS # Vios

0.9

1

1.1

1.2

ExpV-Random
[20] + [21]

TSteiner + [20] + [21]

Fig. 5 Sign-off timing metrics ratio comparison. ‘ExpV-Random’
represents the average expected value of sign-off timing metrics with
10-50 times random moves.

1, the better), and the formal formulation of R2 score with ground
truth {g1, g2, · · · , gn} and the predicted value {y1, y2, · · · , yn} is,

ḡ =
1

n

n∑
i=1

gi, R2 = 1−
∑

i (gi − yi)
2∑

i (gi − ḡ)2
. (10)

The results listed in TABLE III demonstrate that our proposed
timing evaluation model can accurately predict sign-off timing metrics.
Particularly, the R2 scores of the arrival time prediction on all pins are
0.9959 in the training cases and 0.9280 in the testing cases, indicating
that our timing evaluation framework well models the pin arrival
time. Since the calculations of worst negative slack and total negative
slack are based on the endpoints’ arrival time, we also list the R2

scores for endpoint-only prediction. The results show that the proposed
evaluation model consistently performs well on the endpoints.

D. Running Time

We analyze the runtime breakdown in this section since running
cost is always a critical issue across the physical design flow. This
paper applies the proposed TSteiner before the global routing stage.
Therefore, we split the running time into three parts, TSteiner, global
routing [20], and detailed routing [21]. As shown in TABLE IV, the
running time of [20] is longer since we extract needed features from
the Steiner tree construction stage in global routing. Furthermore, the
running time of detailed routing [21] is accelerated by 6.6% since
TSteiner can improve the routing quality so that less time will be
spent on fixing design rule violations.

V. CONCLUSION

Prior works on early-stage timing optimization always simplify
the problem to inaccurate early optimization due to the inability to
obtain precise sign-off timing performance. TSteiner, a deep learning-
assist concurrent early-stage sign-off timing optimization framework,
is proposed for the first time in this study via Steiner point refinement.
We confirm TSteiner’s efficacy and efficiency by integrating it into
the pre-routing stage and comparing it with the SOTA open-source
routing flow. The experimental results on real-world designs show
that TSteiner brings 11.2% and 7.1% on average and up to 45.8% and
43.9% improvement for WNS and TNS, respectively. Overall, TSteiner
can significantly improve the sign-off timing performance with only a
little runtime overhead and comparable routing solution quality. Lastly,
this study has raised the importance of Steiner point refinement for
timing closure and provides a novel solution for early-stage timing
optimization. In the future, TSteiner can be extended to more physical
stages since Steiner points exist not only in the pre-routing stage but
also in routing solutions.



TABLE II Experimental results on real-world open-source designs compared to the routing flow without integrating TSteiner. The sign-off timing
performance and detailed routing solution quality are reported. The best one is marked with boldface. All the listed metrics are obtained from
Innovus. The results show that TSteiner can significantly improve the sign-off timing performance with a comparable detailed routing solution
quality.

Benchmark
CUGR [20] + TritonRoute [21] TSteiner + CUGR [20] + TritonRoute [21]

WNS (ns) TNS (ns) # Vios WL(×106) # Vias # DRV WNS (ns) TNS (ns) # Vios WL(×106) # Vias # DRV

aes_cipher -11.246 -1516.9 512 984.971 109574 5 -8.38 -1434.2 504 984.527 109443 3
chacha -48.538 -26259.1 1378 1,257.427 126600 2 -46.68 -25375.7 1372 1,258.011 126898 2

cic_decimator -2.834 -169.981 72 16.466 5586 3 -2.724 -161.436 72 16.413 5593 3
picorv32a -17.762 -441.607 67 727.216 109293 38 -17.686 -434.443 56 727.472 109311 37

usb_cdc_core -5.914 -1365.2 347 49.351 12396 0 -5.823 -1343.1 346 49.117 12407 0
APU -2.265 -33.713 25 101.179 23031 3 -2.221 -33.598 25 101.454 23101 3
des -7.352 -405.427 341 682.828 115698 5 -3.987 -227.331 285 682.788 115599 5

jpeg_encoder -74.342 -64909.2 1967 2,969.654 439126 1 -70.629 -60789.1 2007 2,973.304 439561 1
des3 -7.048 -1890 1512 2,680.848 372583 48 -5.668 -1879.6 1509 2,684.367 372768 49
spm -0.817 -65.866 126 4.394 1553 2 -0.782 -63.846 126 4.399 1544 2

Average 1.000 1.000 1.000 1.0000 1.0000 1.0000 0.888 0.929 0.967 0.9999 1.0001 0.9549

TABLE III Sign-off Timing prediction performance on two tasks, where ‘arrival-all’ and ‘arrival-ends’ represent the arrival time prediction on
all pins and only endpoints, respectively.

Benchmark chacha cic_decimator APU des jpeg_encoder spm aes_cipher picorv32a usb_cdc_core des3 Avg. Train Avg. Test

arrival-all 0.9882 0.9980 0.9950 0.9989 0.9959 0.9991 0.9468 0.9401 0.9163 0.9087 0.9959 0.9280

arrival-ends 0.9979 0.9990 0.9977 0.9976 0.9936 0.9987 0.9459 0.9498 0.7015 0.9510 0.9974 0.8871

TABLE IV Runtime (s) breakdown

Benchmark
[20] + [21] TSteiner + [20] + [21]

Total [20] [21] Total TSteiner [20] [21]

aes_cipher 539.847 16.781 523.066 528.512 22.222 17.830 488.460

chacha 480.123 19.795 460.328 504.902 60.331 21.642 422.929

cic_decimator 133.794 0.592 133.202 143.821 20.174 0.529 123.118

picorv32a 406.286 12.622 393.664 472.972 104.957 13.109 354.906

usb_cdc_core 54.660 1.247 53.413 115.784 59.515 1.156 55.113

APU 95.120 2.299 92.821 120.993 33.563 2.479 84.951

des 243.901 10.725 233.176 280.599 54.075 11.423 215.101

jpeg_encoder 893.485 61.433 832.052 1098.426 215.533 62.916 819.977

des3 558.014 37.863 520.151 941.474 414.908 40.841 485.725

spm 11.848 0.307 11.541 17.493 7.195 0.279 10.019

Ratio Avg. 1.000 1.000 1.000 1.320 1.017 0.934
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