
Layout Decomposition via Boolean Satisfiability
Hongduo Liu1, Peiyu Liao1, Mengchuan Zou2, Bowen Pang2 Xijun Li2

Mingxuan Yuan2 Tsung-Yi Ho1, Bei Yu1
1The Chinese University of Hong Kong 2Huawei Noah’s Ark Lab

Abstract—Multiple patterning lithography (MPL) has been
introduced in the integrated circuits manufacturing industry to
enhance feature density as the technology node advances. A crucial
step of MPL is assigning layout features to different masks,
namely layout decomposition. Exact algorithms like integer linear
programming (ILP) can solve layout decomposition to optimality
but lacks scalability for very dense patterns. Approximation
algorithms (e.g., linear programming, semi-definite programming)
and heuristics (e.g., Exact-Cover) are capable of handling large
cases but can only get inferior solutions. In this paper, we propose
a new exact algorithm that tackles layout decomposition by solving
a series of boolean satisfiability instances. Our algorithm can
preserve optimality and achieve more than 4× speedup compared
to ILP. In addition, we provide an approximation algorithm by
reformulating the layout decomposition to a bilevel optimization
problem. Experiments show that our approximation algorithm can
attain higher solution quality compared to SDP and heuristics
within faster convergence.

I. INTRODUCTION

Multiple patterning lithography (MPL) is a technique to over-
come the lithographic limitations for manufacturing integrated
circuits (ICs), and it has been explored to enable chipmakers
to image designs at 20nm and below. MPL requires the de-
composition of one layout onto multiple masks for better man-
ufacturability. Specifically, the decomposition method should
avoid assigning two features within a given distance to the same
mask, which is considered a conflict or an assignment failure.
Moreover, a conflict may be fixed by splitting a pattern into two
sub-features with a stitch. As stitches can also introduce yield
loss, we want to minimize both conflict and stitch during layout
decomposition. Generally, the layout decomposition problem
can be seen as a graph coloring problem, and Fig. 1 shows
an example. Fig. 1(a) illustrates how a layout is transformed
into a graph, namely a decomposition graph. The left-most
and right-most features are divided into two sub-features by
a stitch. As we can see, the graph has two kinds of edges:
stitch edge and conflict edge. Stitch edges denoted by dashed
lines connect two sub-features that are divided from the same
layout pattern, and conflict edges denoted by real lines connect
two sub-features that should be assigned to different masks.
Fig. 1(b) depicts the decomposition results obtained by graph
coloring, where sub-features in the same color are assigned to
the same mask. The stitch edge between sub-feature d1 and d2
is activated, while the stitch edge between a1 and a2 is not.
Besides, the decomposition introduces no conflict because the
patterns connected by conflict edges belong to different masks.

This work is supported by The Research Grants Council of Hong Kong SAR
(No. CUHK14208021).

d2

b

a2

a1

c

d1

(a)

d2

b

a2

a1

c

d1

(b)

Figure 1 An example of transforming layout decomposition to
graph coloring. (a) The graph representation of a layout; (b)
Decomposition results can be obtained by graph coloring.

Double patterning layout decomposition (DPLD), which de-
composes a layout onto two masks, can be solved in poly-
nomial time [1]. Nevertheless, double patterning lithography
is inadequate to ensure resolution as the minimum feature
size keeps decreasing. A natural solution is to increase the
number of exposure from two to three. Thus, triple pattering
lithography layout decomposition (TPLD) is proposed to handle
extremely dense and complex layouts. TPLD has been proven
to be NP-hard [2], and this paper focuses on this scenario.
Generally, layout decomposition algorithms can be catego-
rized into mathematical programming and heuristic methods.
Mathematical programming approaches [2]–[4] like ILP, SDP,
and LP optimize an objective function subject to a set of
constraints. Among these approaches, ILP can guarantee the
optimality of the composition but suffers from unacceptable
runtime overhead when facing dense layouts. SDP and LP show
great scalability, but the solution quality is rather poor. Heuristic
methods [5]–[7] expose similar problems as these relaxation
methods. The drawbacks of existing methods motivate us to find
a more efficient exact algorithm and a tighter approximation
algorithm.

Reviewing the ILP formulation of layout decomposition
problems, we find that all the decision variables are binary.
Modern generic ILP solvers can handle general optimization
problems with discrete variables. However, they may not fully
exploit the boolean nature of decision variables and the special
structures of the constraints for our layout decomposition
problem, thus leaving the performance on the table. Instead of
formulating layout decomposition into an integer program, we
can see it as a sequence of satisfiable problems with optimality
bound translated to an SAT clause. As a result, we can take
advantage of the power of SAT solvers, which excel at handling
pure boolean formulations.

Recall that the objective of the layout decomposition problem
is to minimize both the conflict and stitch costs. To minimize
conflict costs, we may increase the use of stitches. On the other

hand, optimizing the number of stitches may incur a higher
conflict cost. These can be seen as two optimization problems
nested with each other. Therefore, we can also treat layout
decomposition as a bilevel optimization problem. The bilevel
formulation enables us to decouple conflict minimization and
stitch minimization, which are much easier to solve due to their
particular structures.

Our contributions are summarized as follows:
• We propose a new exact algorithm to handle layout

decomposition by solving a sequence of SAT problems.
The algorithm can leverage the boolean nature of the
decision variables in the cost optimization problem, thus
being more efficient to solve.

• We provide a deep analysis of our SAT-based layout
decomposer with an ILP-based decomposer. This analysis
explains why our SAT-based method runs faster than the
ILP-based method.

• We provide a new angle to see the layout decomposition
problem as a bilevel optimization problem instead of
a single-level one. Based on the bilevel reformulation,
we propose an effective algorithm to solve the bilevel
optimization problem in a hierarchical way.

• Experiments show that our new SAT-based exact algorithm
can preserve optimality and achieve significant runtime
speedup compared to ILP. Evaluations on dense layouts
demonstrate that our approximation algorithm can get
better decomposition results than SDP and heuristics in
less time.

II. PRELIMINARIES

A. ILP Formulation for Triple Pattering Lithography Layout
Decomposition

Given a layout composed of polygon features, we can con-
struct an undirected graph G = (V,CE ∪ SE), where each
node vi ∈ V represents a sub-feature (we also call a feature
without stitch as a sub-feature), each edge eij ∈ CE signalizes
the conflict relationship between sub-feature i and j, and each
edge eij ∈ SE signalizes the stitch relationship between sub-
feature i and j. Here V , CE, and SE are set of vertices, conflict
edges, and stitch edges, respectively. The layout decomposition
can be formulated as an integer linear program [8] as shown in
program (1), where all the decision variables are binary.

Constraint (1b) applies for all sub-features. We use two
binary variables xi1 and xi2 to encode the color of vertex i, and
the color of vertex i can be either 00, 01, or 10. Color 11 is not
allowed because we only consider triple patterning lithography.
Constraints (1c) - (1f) model the conflict relationship between
two features pm and pn. Cmn indicates whether there is a
conflict between them. If there exists a sub-feature ri ∈ pm
and a sub-feature rj ∈ pn connected by conflict edge eij are
assigned to the same color, then Cij = 1. Otherwise, Cij = 0.
Constraints (1g) - (1j) characterize the stitch relationship be-
tween two sub-features connected by stitch edge sij ∈ SE.
Suppose two sub-features from the same feature are assigned
to different colors, then the corresponding stitch variable sij
is activated. The objective function (1a) is a weighted sum of

min
∑

ri∈pm,rj∈pn,cij∈CE

Cmn + α
∑

sij∈SE

sij , (1a)

s.t. xi1 + xi2 ≤ 1, (1b)
xi1 + xi2 + xj1 + xj2 + Cmn ≥ 1, (1c)
xi1 − xi2 + xj1 − xj2 − Cmn ≤ 1, (1d)
− xi1 + xi2 − xj1 + xj2 − Cmn ≤ 1, (1e)
xi1 + xi2 + xj1 + xj2 − Cmn ≤ 3, (1f)
xi1 − xj1 + sij ≥ 0, (1g)
xi1 − xj1 − sij ≤ 0, (1h)
xi2 − xj2 + sij ≥ 0, (1i)
xi2 − xj2 − sij ≤ 0. (1j)

conflict cost
∑

Cmn and stitch cost
∑

sij , where α controls
the relative importance of the two costs. After the formulation
is constructed, we can use an ILP solver to get an optimal
coloring scheme.

B. Satisfiable Problems
A propositional logic formula is said to be in Conjunctive

Normal Form (CNF) if it is a conjunction (“and”) of disjunc-
tions (“ors”) of literals. A literal is either a boolean variable x or
its negation ¬x. For example, (p∨q)∧(¬q∨¬q) is a CNF, where
p, q,¬p¬q are all literals. The disjunctions (p∨q) and (¬q∨¬q)
are also called clauses. The satisfiability (SAT) problem is to
find a satisfying assignment to the boolean variables such that
the CNF formula yields true. In other words, each clause should
have at least one literal that is true under the assignment. If a
satisfying assignment exists, the problem is said to be satisfied.
Otherwise, the problem is unsatisfiable.

Boolean satisfiability is known to be NP-complete. No
algorithm can solve all SAT problems in polynomial time.
Despite this, scalable SAT solvers have been developed to
solve SAT instances with tens of thousands of variables and
millions of constraints effectively. One early breakthrough of
SAT solving is Davis–Putnam–Logemann–Loveland (DPLL)
[9], [10] algorithm. It assigns values to variables first and then
backtracks when a contradiction is detected. Another milestone
algorithm is the conflict-driven clausing learning (CDCL) al-
gorithm, which augments DPLL with conflict analysis, clause
learning, and backjumping. CDCL has been the core algorithm
of most modern SAT solvers.

C. Bilevel Optimization
A bilevel optimization problem reads

min
x∈X,y

F (x, y) (2a)

s.t. G(x, y) ≥ 0, (2b)
y ∈ S(x), (2c)

where S(x) is the set of optimal solutions of the x-
parameterized problem

min
y∈Y

f(x, y) (3a)

s.t. g(x, y) ≥ 0. (3b)

Bound2Clause

SAT solve

Init/update SAT solution

Add bound f(x) < k

SAT?

Initial CNF

N

Y

Output latest

SAT solution

Obj Evaluation f(x) = k

Figure 2 The flow of our SAT-based exact algorithm.

Problem 2 is called the upper-level (or the leader’s) problem,
and problem 3 is called the lower-level (or the follower’s)
problem, which is parameterized by x. Moreover, the variables
x ∈ Rnx are the upper-level variables and y ∈ Rny are lower-
level variables. F, f : Rnx × Rny → R are objective functions
and G : Rnx × Rny → Rp, g : Rnx × Rny → Rq are used to
describe the upper-level and lower-level constraints. The sets
X ⊆ Rnx and Y ⊆ Rny may denote additional constraints like
integrality.

A bilevel optimization problem can be solved through
single-level reduction. One classical solution is to replace
the lower-level optimization problem with its Karush-Kuhn-
Tucker (KKT) conditions if the lower-level problem is convex
and sufficiently regular [11]. Other methods include descent
methods [12], penalty function methods [13], genetic algo-
rithms [14], etc.

III. OPTIMAL LAYOUT DECOMPOSITION THROUGH SAT

This section shows how to translate layout decomposition
into instances of SAT problems based on the original ILP
formulation to exploit the binary nature of decision variables
better.

A. The Whole Flow

The whole flow of our SAT-based method is shown in Fig. 2.
To begin with, we translate all the constraints in problem 1 into
CNF clauses. Then, we will solve the SAT problem without
considering the objective function, and we can get an initial
satisfying assignment of all decision variables. Consequently,
we can get an upper bound of the objective value by evaluating
the objective function using the satisfiable solution. In the next
step, We need to introduce the optimality bound into SAT
solving to find a better solution. If x is the satisfying assignment
and f(x) = k is the evaluation result on objective function f(·),
the optimality bound f(x) < k should be added to the next SAT
instance. However, an SAT solver only accepts a CNF as input.
Thus, we need to convert the optimality bound into a CNF
clause. If the new SAT instance after adding optimality bound
is satisfiable, then we have found a better solution. Otherwise,
we have demonstrated that k is the optimal value, and the latest
satisfiable solution gives the optimal solution. Fig. 3 gives a
concrete example of our SAT-based decomposer. The initial
CNF gives a coloring solution that has two conflicts. After

solving some SAT instances, we can get a coloring scheme
without any conflict.

B. The Construction of Initial Clauses

The decision variables in problem 1 can only take value
from {0, 1}. Unlike constraints that admit unrestricted integer
variables, we can convert them to CNF clauses. The easiest one
to convert is a cardinality constraint with the right-hand side
equal to 1. More specifically, constraint x1+x2+ . . .+xk ≥ 1
is equal to a CNF clause (x1 ∨ x2 ∨ . . . xk). Constraint
x1 + x2 + . . . + xk ≥ 1 is satisfied iff at least one of the
variables is set to 1. Equivalently, (x1 ∨ x2 ∨ . . . xk) is true iff
at least one of the literal is true. Fortunately, all the constraints
posed in problem 1 belong to this kind of constraint after a
few trivial reformulations. For example, inequality (1b) can be
transformed into a CNF clause through the following steps:

• Let the ≤ be ≥ by multiplying −1 on both sides of the
inequality. We have −xi1 − xj1 ≥ −1.

• Replace xi1, xj1 by −(1 − xi1),−(1 − xj1) respectively.
We can get −(1 − xi1) − (1 − xj1) ≥ −1. Here x̄ is the
negation of x, and it is easy to see ¯̄x = x.

• Reorganize the terms we have xi1 + xj1 ≥ 1, which can
be represented by a CNF clause (xi1 ∨ xj1).

Similarly, other constraints can be transformed into a set of
CNF clauses. Then, problem 1 can be rewritten as

min
∑

ri∈pm,rj∈pn,cij∈CE

Cmn + α
∑

sij∈SE

sij , (4a)

s.t. (xi1 ∨ xi2), (4b)
∧ (xi1 ∨ xi2 ∨ xj1 ∨ xj2 ∨ Cmn), (4c)
∧ (xi1 ∨ xi2 ∨ xj1 ∨ xj2 ∨ Cmn), (4d)
∧ (xi1 ∨ xi2 ∨ xj1 ∨ xj2 ∨ Cmn), (4e)
∧ (xi1 ∨ xi2 ∨ xj1 ∨ xj2 ∨ Cmn), (4f)
∧ (xi1 ∨ xj1 ∨ sij), (4g)
∧ (xi1 ∨ xj1 ∨ sij), (4h)
∧ (xi2 ∨ xj2 ∨ sij), (4i)
∧ (xi2 ∨ xj2 ∨ sij). (4j)

We observe that the constraints’ nice properties enable us to
seamlessly translate them into CNF clauses without introducing
additional variables. Firstly, we can avoid tedious and time-
consuming transformations. Also, the size of the derived CNF
stays tractable. As the initial CNF is always satisfiable, we can
find an optimal solution through our algorithm, as shown in the
following theorem.

Theorem 1. The algorithm can always find an optimal solution.

Proof. Let all xi1, xi2 be false, and set all Cmn, sij be true,
the initial CNF is satisfied, which means we can at least find a
solution. Then, an optimal solution can be found by strength-
ening the optimality bound until the derived SAT problem is
unsatisfiable.

C. Optimality Bound to CNF Clause

In the previous subsection, we have shown how to translate
the initial constraints into CNF clauses. To allow the SAT solver

to be capable of optimization, we also need to translate the opti-
mality bound to a CNF clause. This is more subtle than what we
have done to the original constraints. In some literature, linear
constraints over binary variables are also called pseudo-boolean
(PB) constraints. They can be translated into clauses that an
SAT solver can handle. [15] proposes three different techniques
to finish the translation. Firstly, they convert each constraint
into a single-output circuit and then translate all the circuits
to clauses by a variation of the Tseitin transformation [16].
The circuit can be a BDD, a network of adders, or a network
of sorters. We can apply these techniques to our framework
without further modifications. Before the transformation, we
should make the coefficients of the objective function integral.
When α is set to 0.1, we can use an alternative objective
function 10

∑
Cmn +

∑
sij .

IV. APPROXIMATE LAYOUT DECOMPOSITION APPROACH

A. Reformulation

The layout decomposition problem can also be formulated
as a bilevel optimization problem. The upper-level optimization
problem is given by

min
C,s

∑
ri∈pm,rj∈pn,cij∈CE

Cmn + α
∑

sij∈SE

sij ,

s.t. constraint (1b) – constraint (1f),
s ∈ S(C),

where S(C) is the set of optimal solutions of the C-
parameterized problem

min
s

∑
sij∈SE

sij , (5a)

s.t. constraint (1b) – constraint (1j). (5b)

We want to minimize the weighted sum of conflict and stitch
costs in the upper-level optimization problem. s ∈ S(C)
indicates that for every assignment of conflict variables, the
stitch cost should be optimal.

B. Approximation Algorithm

One way to solve the bilevel optimization problem is through
single-level reduction. In the layout decomposition problem,
the reduced single-level problem is shown exactly as problem
1, which can preserve optimality. However, neither the ILP-
based and SAT-based algorithms can get an optimal solution
for very large and dense layouts in an acceptable time. We need
an approximation algorithm to obtain good results quickly for
these cases. Another approach to solving a bilevel optimization
problem is nested optimization, which solves the lower-level
optimization problem corresponding to every upper-level mem-
ber. Once the upper-level variables are fixed, we can solve the
lower-level optimization to optimality. Then, the assignments of
upper-level variables and the derived lower-level solution give
an upper bound to the bilevel optimization. Theoretically, it can
converge to the optimal solution by enumerating every feasi-
ble upper-level variable and solving the lower-level problem
accordingly.

One critical problem is generating good candidates for the
upper-level variables Cmn. This is not trivial. Firstly, some
assignments of the upper-level variables can make the upper-
level problem infeasible, i.e., there is no coloring scheme that
can satisfy all the upper-level constraints. Besides, if we need
multiple iterations to converge, we may need to solve the lower-
level problem many times, which can be time-consuming. For
these reasons, we get the assignments of upper-level variables
by solving the upper-level problem ignoring the lower-level
variables. In the layout decomposition problem, it can be seen
as only considering conflict minimization. Once all conflict
variables Cmn are fixed, we can perform stitch cost minimiza-
tion. To be more specific, the first optimization problem we
need to solve is

min
C

∑
ri∈pm,rj∈pn,cij∈CE

Cmn, (6a)

s.t. constraint (1b) – constraint (1f). (6b)

In our approximation algorithm, we also use the SAT-based
framework to solve upper- and lower-level problems. Once all
the Cmn have been fixed, the initial CNF for the lower-level
problem can be greatly simplified. For example, (4c) can be
rewritten as (xi1∨xi2∨xj1∨xj2) if Cmn = false is derived in
the first-stage optimization. If the assignment Cmn = true is
obtained, (4c) can be deleted from the CNF because the clause
has already been satisfied. The same rule can also be applied
to (4c)-(4e) to simplify the lower-level optimization problem.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The experiments are performed on a Linux machine with
eight 3.6GHz Intel Xeon CPUs and 16G DRAM. We rely
on the open-source framework OpenMPL for benchmark pars-
ing, stitch insertion, graph simplification, etc. Our SAT-based
optimization framework is mainly based on MiniSat+ [15],
a solver capable of translating pseudo-boolean constraints to
CNF clauses and SAT solving. We reorganized the codes
into a callable dynamic library to better integrate them into
OpenMPL. We only use one thread to see the runtime difference
of various decomposers.

We conduct experiments on the ISCAS and ISPD19 bench-
marks. The first six circuits of ISPD19 benchmarks are rel-
atively easy to handle and have been adopted in [8]. They
are used to show the performance of our exact algorithm. The
last three benchmarks are denser and are used to show the
effectiveness of our approximation algorithms. We also follow
the same rule to set minimum coloring distance, stitch weight,
and graph simplification level.

B. Evaluation of our SAT-based exact algorithm

The decomposition results by our exact algorithm on ISCAS
benchmarks are listed in TABLE I. It shows that our approach
can obtain optimal solutions as ILP but with faster convergence.
The decomposition results using our exact algorithm on the
first six ISPD19 benchmarks are listed in TABLE II. We can
see that our SAT-based decomposer can achieve more than 4×

2

1 4

3 (0,0)
(0,0)

(0,0) (1,0)

<latexit sha1_base64="a0iwkkTUDptlg8f9AlQrwFbf4lo=">AAACC3icbVDLSgMxFM34rPU16tJNaBEKQpnUoi4L3bisYB/QDkMmzbShmYdJRijD7N34K25cKOLWH3Dn35iZzkJbL4RzOOdebu5xI86ksqxvY219Y3Nru7RT3t3bPzg0j457MowFoV0S8lAMXCwpZwHtKqY4HUSCYt/ltO/O2pnff6BCsjC4U/OI2j6eBMxjBCstOWal7SSokZ5ncJFDo4BmCkec3kPkmFWrbuUFVwkqSBUU1XHMr9E4JLFPA0U4lnKIrEjZCRaKEU7T8iiWNMJkhid0qGmAfSrtJL8lhWdaGUMvFPoFCubq74kE+1LOfVd3+lhN5bKXif95w1h513bCgihWNCCLRV7MoQphFgwcM0GJ4nNNMBFM/xWSKRaYKB1fWYeAlk9eJb1GHV3W0W2z2qoVcZTAKaiAGkDgCrTADeiALiDgETyDV/BmPBkvxrvxsWhdM4qZE/CnjM8fE7SYdQ==</latexit>

C12 + C13 + C23 + C24 ≤ 1

<latexit sha1_base64="2Qwq0sfJBnbaNSDSIh8Byb005gI=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBEKQkliUTdCoRuXFewD2lAm00k7dDIJMxOhhOzc+CtuXCji1l9w5984SbPQ1gvDOZxzL3fu8SJGpbKsb2NldW19Y7O0Vd7e2d3bNw8OOzKMBSZtHLJQ9DwkCaOctBVVjPQiQVDgMdL1ps3M7z4QIWnI79UsIm6Axpz6FCOlpaF50hwmtpOeZ3CRg1NAPYU3ztCsWDUrL7hM7IJUQFGtofk1GIU4DghXmCEp+7YVKTdBQlHMSFoexJJECE/RmPQ15Sgg0k3yO1J4ppUR9EOhH1cwV39PJCiQchZ4ujNAaiIXvUz8z+vHyr92E8qjWBGO54v8mEEVwiwUOKKCYMVmmiAsqP4rxBMkEFY6urIOwV48eZl0nJp9WbPv6pVGtYijBI7BKagCG1yBBrgFLdAGGDyCZ/AK3own48V4Nz7mrStGMXME/pTx+QMQq5bN</latexit>

C12 + C13 + C23 + C24 = 2
<latexit sha1_base64="J8E67q/tSPvJrMil/Oq1XPWazsQ=">AAACB3icbVDLSsNAFJ34rPUVdSnIYBEKQklqUTdCoRuXFewD2hAm00k7dDIJMxOhhOzc+CtuXCji1l9w5984SbPQ1gvDOZxzL3fu8SJGpbKsb2NldW19Y7O0Vd7e2d3bNw8OuzKMBSYdHLJQ9D0kCaOcdBRVjPQjQVDgMdLzpq3M7z0QIWnI79UsIk6Axpz6FCOlJdc8abmJXU/PM7jIoV5AI4U3tmtWrJqVF1wmdkEqoKi2a34NRyGOA8IVZkjKgW1FykmQUBQzkpaHsSQRwlM0JgNNOQqIdJL8jhSeaWUE/VDoxxXM1d8TCQqknAWe7gyQmshFLxP/8wax8q+dhPIoVoTj+SI/ZlCFMAsFjqggWLGZJggLqv8K8QQJhJWOrqxDsBdPXibdes2+rNl3jUqzWsRRAsfgFFSBDa5AE9yCNugADB7BM3gFb8aT8WK8Gx/z1hWjmDkCf8r4/AEPJ5bM</latexit>

C12 + C13 + C23 + C24 = 1

<latexit sha1_base64="rUgJRP4s9R7/zvnJ0U6ARLtWKE0=">AAACC3icbVDLSsNAFJ34rPUVdelmaBEKQklqUZeFblxWsA9oQ5hMJ+3QySTOTIQSsnfjr7hxoYhbf8Cdf+MkzUJbLwzncM693LnHixiVyrK+jbX1jc2t7dJOeXdv/+DQPDruyTAWmHRxyEIx8JAkjHLSVVQxMogEQYHHSN+btTO//0CEpCG/U/OIOAGacOpTjJSWXLPSdhO7kZ5ncJFDo4BmCkeM3EPLNatW3coLrhK7IFVQVMc1v0bjEMcB4QozJOXQtiLlJEgoihlJy6NYkgjhGZqQoaYcBUQ6SX5LCs+0MoZ+KPTjCubq74kEBVLOA093BkhN5bKXif95w1j5105CeRQrwvFikR8zqEKYBQPHVBCs2FwThAXVf4V4igTCSsdX1iHYyyevkl6jbl/W7dtmtVUr4iiBU1ABNWCDK9ACN6ADugCDR/AMXsGb8WS8GO/Gx6J1zShmTsCfMj5/ABIwmHQ=</latexit>

C12 + C13 + C23 + C24 ≤ 0

<latexit sha1_base64="rMjdK6CHHYTRF7QaPsdE2tL015M=">AAADm3icjVJNS8NAEN0mftT6VfUiiLBYhHopSRD1JIUeFPGgYFuhKWWz3bSLm2zIbsQS8qP8K978N26aqK2p4pweb97MvBnGCRgV0jDeS5q+tLyyWl6rrG9sbm1Xd3Y7gkchJm3MGQ8fHSQIoz5pSyoZeQxCgjyHka7z1Erz3WcSCsr9BzkJSN9DI5+6FCOpqMFO6bVucyVI6+OXQWyaSQJtVQXnaStJTmy7Mi+2FoutXGzjIZcCpmVZ50ybtfvC1gxvffKtqaY48dvebJdfTC1oWDBT2LLoq7BbseN/T/in3b/nfN2zMqjWjIYxDVgEZg5qII+7QfXNHnIcecSXmCEheqYRyH6MQkkxI0nFjgQJEH5CI9JT0EceEf14+lsJPFbMELrKiMt9CafsbEWMPCEmnqOUHpJj8TOXkotyvUi6F/2Y+kEkiY+zQW7EoOQwfVQ4pCHBkk0UQDikyivEYxQiLNU7p0cwf65cBB2rYZ41zPvTWrOen6MMDsARqAMTnIMmuAZ3oA2wtq9dalfatX6ot/Qb/TaTaqW8Zg/Mhd7+AEyYJhs=</latexit>

(x11 ∨ x12)

(x21 ∨ x22)

· · ·
(x11 ∨ x12 ∨ x21 ∨ x22 ∨ C12)

(x11 ∨ x12 ∨ x21 ∨ x22 ∨ C12)

(x11 ∨ x12 ∨ x21 ∨ x22 ∨ C12)

(x11 ∨ x12 ∨ x21 ∨ x22 ∨ C12)

· · ·

<latexit sha1_base64="v0ThZCpqFPrh3E3Vm8bIqIt2TLM=">AAADhnicrVLLbsIwEDRJH5S+oD32YhVVggtKAi09InHpkUrlIRGEHOOAhRNHsVMJRfmTflVv/Zs6JJXK68aeRrOz4/FqnYBRIQ3jp6DpJ6dn58WL0uXV9c1tuXI3EDwKMeljzng4cpAgjPqkL6lkZBSEBHkOI0Nn2U37w08SCsr9D7kKyMRDc5+6FCOpqGml8FXrTmPTSqCtpNDmSpx6xSnbTPbRVmsv3VR0Hdp2qbZpYv2pM8cjGh4Imzke0fBA2MzxiIa7YaflqtEw1gV3gZmDKsirNy1/2zOOI4/4EjMkxNg0AjmJUSgpZiQp2ZEgAcJLNCdjBX3kETGJ12eUwCfFzKCrkrjcl3DN/p+IkSfEynOU0kNyIbZ7KbmvN46k+zqJqR9Ekvg4e8iNGJQcpjcJZzQkWLKVAgiHVGWFeIFChKW63JJagrn95V0wsBrmS8N8b1U7tXwdRfAAHkENmKANOuAN9EAfYE3X6pqlNfWi3tCf9XYm1Qr5zD3YKL3zC7MaHws=</latexit>

(C12 ∨ C13 ∨ C24 ∨ C34)

(C12 ∨ C13 ∨ C24 ∨ C34)

(C12 ∨ C13 ∨ C24 ∨ C34)

(C12 ∨ C13 ∨ C24 ∨ C34)

(C12 ∨ C13 ∨ C24 ∨ C34)

<latexit sha1_base64="5VriLakMZR1LGRYiZyT9r+IONCI=">AAACCHicbVDLSsNAFJ34rPUVdenCwSIUhJLUom6EQjcuK9gHtCFMppN26GQSZiZCCVm68VfcuFDErZ/gzr9xkmahrReGczjnXu7c40WMSmVZ38bK6tr6xmZpq7y9s7u3bx4cdmUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTVuZ33sgQtKQ36tZRJwAjTn1KUZKS6550nITu56eZ3CRQ72ARgpvoOWaFatm5QWXiV2QCiiq7Zpfw1GI44BwhRmScmBbkXISJBTFjKTlYSxJhPAUjclAU44CIp0kPySFZ1oZQT8U+nEFc/X3RIICKWeBpzsDpCZy0cvE/7xBrPxrJ6E8ihXheL7IjxlUIcxSgSMqCFZspgnCguq/QjxBAmGlsyvrEOzFk5dJt16zL2v2XaPSrBZxlMAxOAVVYIMr0AS3oA06AINH8AxewZvxZLwY78bHvHXFKGaOwJ8yPn8AbFiW9Q==</latexit>

C12 + C13 + C23 + C24 = 0

<latexit sha1_base64="GyWR7FJT8HMWnA0R+GU4K2NjTK4=">AAACDHicbVDLSgMxFM34rPVVdekmWISCWCa1qMtCNy4r2Ae0Q8mkmTY0kxmTjFCG+QA3/oobF4q49QPc+TdmprPQ1gvhHM49l5t73JAzpW3721pZXVvf2CxsFbd3dvf2SweHHRVEktA2CXggey5WlDNB25ppTnuhpNh3Oe2602ba7z5QqVgg7vQspI6Px4J5jGBtpGGp3BzGqJacpXCRQS2HegIHnN7Dc2RcdtXOCi4TlJMyyKs1LH0NRgGJfCo04VipPrJD7cRYakY4TYqDSNEQkyke076hAvtUOXF2TAJPjTKCXiDNExpm6u+JGPtKzXzXOH2sJ2qxl4r/9fqR9q6dmIkw0lSQ+SIv4lAHME0GjpikRPOZIZhIZv4KyQRLTLTJr2hCQIsnL5NOrYouq+i2Xm5U8jgK4BicgApA4Ao0wA1ogTYg4BE8g1fwZj1ZL9a79TG3rlj5zBH4U9bnD4ezmKw=</latexit>

C12 + C13 + C23 + C24 ≤ −1

Initial Clauses

Initial Clauses

Initial Clauses

SAT SAT
UNSAT

SAT

2

1 4

3

2

1 4

3

(0,0)

(0,0)
(0,1)

(1,0) 2

1 4

3

(0,1)

(0,0) (0,1)

(1,0)

(C12)

(C13)

(C24)

(C34)

<latexit sha1_base64="7cgy5HfQPg1envOvtwGA0zz7EFM=">AAACQnicbZC7TsMwGIWdcivhFmBksaiQylIlbRGMlbowFoleUBNFjuu0Vp2LbAepivJsLDwBGw/AwgBCrAw4bQZoeyRLR9/5f9k+XsyokKb5qpU2Nre2d8q7+t7+weGRcXzSE1HCMeniiEV84CFBGA1JV1LJyCDmBAUeI31v2s7z/iPhgkbhvZzFxAnQOKQ+xUgq5BoPVTtSeb6ett3UqmfZJbRtfQk31uJ6cy1u5Fh3jYpZM+eCq8YqTAUU6rjGiz2KcBKQUGKGhBhaZiydFHFJMSOZbieCxAhP0ZgMlQ1RQISTzivI4IUiI+hHXJ1Qwjn9u5GiQIhZ4KnJAMmJWM5yuC4bJtK/cVIaxokkIV5c5CcMygjmfcIR5QRLNlMGYU7VWyGeII6wVK3nJVjLX141vXrNatau7pqVVrWoowzOwDmoAgtcgxa4BR3QBRg8gTfwAT61Z+1d+9K+F6Mlrdg5Bf+k/fwCjc2u4w==</latexit>

Figure 3 A toy example of our SAT-based decomposer.

Table I Results on ISCAS benchmarks. “RT” indicates runtime.

Circuit ILP [8] SDP [2] EC [7] Ours
Cost RT (s) Cost RT (s) Cost RT (s) Cost RT (s)

C432 0.4 0.087 0.4 0.027 0.4 0.021 0.4 0.029
C499 0.0 0.081 0.0 0.028 0.0 0.025 0.0 0.030
C880 0.7 0.083 0.8 0.032 0.7 0.026 0.7 0.034
C1355 0.3 0.062 0.3 0.039 0.3 0.036 0.3 0.044
C1908 0.1 0.063 0.1 0.054 0.1 0.051 0.1 0.056
C2670 0.6 0.109 0.6 0.084 0.6 0.079 0.6 0.090
C3540 1.8 0.153 1.8 0.112 1.8 0.100 1.8 0.123
C5315 0.9 0.217 0.9 0.147 0.9 0.130 0.9 0.156
C6288 21.4 2.999 27.3 0.434 21.4 0.300 21.4 0.606
C7552 2.3 0.402 2.3 0.235 3.1 0.208 2.3 0.255
S1488 0.2 0.082 0.2 0.051 0.2 0.043 0.2 0.057
S38417 24.4 2.352 31.6 1.445 24.4 0.771 24.4 2.072
S35932 48.0 6.451 66.0 4.248 48.7 2.034 48.0 6.069
S38584 47.6 6.533 58.5 4.195 47.7 2.216 47.6 5.915
S15850 43.7 5.854 56.3 3.821 44.0 2.075 43.7 5.415
Avg. Ratio 1.00 1.79 1.11 0.85 1.02 0.67 1.00 1.00

speedup without sacrificing solution quality compared with the
ILP-based decomposer. When compared to SDP relaxation and
EC, our algorithm can achieve much better solution quality in
a comparable time.

C. Analysis of the runtime improvement

In this subsection, we provide an analysis of the remarkable
speedup of our SAT-based decomposer over traditional ILP-
based decomposer. There are three main reasons. The first one
is that the original constraints can be easily translated into
CNF clauses without tedious transformation and introducing
additional variables. Another reason is that the clause-learning-
based algorithm and efficient backtracking in modern SAT
solvers have enabled fast SAT solving for large-scale instances.

The last reason is related to the way they get optimal
solutions. In general, ILP-based and SAT-based decomposers
discover an optimal solution by finding a tighter and tighter
upper bound that eventually converges to the optimal value.
However, the condition they claim that an optimal solution has
been found is quite different. The ILP solver will only assert
optimality if the gap between the best and the current upper
bound equals zero. This best bound is obtained by taking the
minimum optimal objective values of all of the current leaf
nodes in the branch-and-bound tree. The current bound is the
objective value of the best-known feasible solution, which can
be obtained by heuristics or branching. It often happens that

0

100

200

0s 1s 27s

Gap = 71% Gap = 0

C
os

t

ILP SAT

Figure 4 A case study on convergence of ILP and SAT-based
decomposers.

the ILP solver has already found an optimal solution, but the
optimality gap is not zero. Therefore, the ILP solver still needs
to do branching and solve linear program relaxations until the
optimality gap reaches zero, which can take a long time. For the
SAT-based decomposer, we are confident that we have already
found an optimal solution if the SAT instance with a better
objective value is unsatisfiable. This can be done much more
effectively than solving many linear programs.

Fig. 4 shows the convergence of ILP and SAT-based decom-
posers on a decomposition graph from circuit test6_102.
The two dashed lines indicate the time an optimal solution
is found and the time the optimality is proven. The SAT-
based method can prove optimality only after a short period
by detecting an unsatisfiable instance. However, the ILP-based
method takes a long time (around 25s) to reduce the optimality
gap from 71% to 0, even though it only takes roughly 2s to
find an optimal solution.

D. Evaluation of our approximation algorithm

Our approximation algorithm aims at accelerating the de-
composition of dense layouts. To verify the effectiveness of
our proposed algorithm, we use another three dense layouts
from ISPD19 benchmarks, where the decomposition graphs
after simplification are still very large, and some are unsolvable
for ILP in one hour. The results marked by * in TABLE II
show the comparison between our approximation algorithm to
previous methods. The table indicates that our method can get
lower-cost solutions and converge faster than SDP and EC.

Table II Layout decomposition results on ISPD19 benchmarks. “RT” indicates runtime.

Circuit ILP [8] SDP [2] EC [7] Ours
Cost RT (s) Cost RT (s) Cost RT (s) Cost RT (s)

test1_100 242.9 56.24 297.7 2.61 390.5 9.51 242.9 5.73
test5_101 452.0 78.32 549.8 5.60 629.8 16.73 452.0 10.65
test6_102 153.4 188.56 191.7 35.58 344.1 59.21 153.4 69.79
test8_100 6005.9 82.13 6206.2 32.27 6245.6 34.39 6005.9 37.55
test9_100 9223.3 128.91 9532.4 52.72 9664.0 56.08 9223.3 60.50
test10_100 10449.5 244.93 10910.1 85.52 11130.6 128.96 10449.5 103.32
Avg. Ratio 1.00 4.43 1.13 0.67 1.40 1.19 1.00 1.00
test1_101* 71.8 2370.45 107.4 19.65 168.7 71.51 75.1 6.87
test2_100* 5236.7 12941.22 7259.4 187.31 9893.7 1404.07 5391.3 124.58
test2_102* 213.4 7810.46 526.7 304.76 593.9 2722.24 211.8 149.37
Avg. Ratio 0.98 167.07 1.75 2.13 2.30 13.30 1.00 1.00
* Our approximation algorithm is enabled. For ILP, we set the timeout to 3600s.

ILP SDP EC Ours
0

50

100

150

200
conflict
stitch

Figure 5 Cost breakdown of various
algorithms on test1_101.

100 200 300 400 500

-5

0

5

10

Vertices

lo
g(

ru
nt

im
e)

ILP
SDP
EC
Ours

Figure 6 Solving time of decomposition graphs with different
scales from circuit test2_100. We take the logarithm of
runtime because the range is too big.

We also provide a cost breakdown of different decomposition
algorithms, as shown in Fig. 5. It reveals that our approximation
algorithm can fulfill optimal conflict cost with a slightly higher
stitch cost than ILP. For circuit test2_102, our algorithm
can get a better solution than ILP because ILP cannot find
an optimal solution for some graphs in 3600s. To see the
scalability of our approximation algorithm, we plot the solving
time of decomposition graphs with different scales from circuit
test2_100, which is shown in Fig. 6. As the graphs get
larger, our approximation algorithm remains effective, while
the runtime of other methods can grow drastically.

VI. CONCLUSION

In this paper, we propose a new exact algorithm that tackles
layout decomposition by solving a series of boolean satisfiabil-
ity instances. Our algorithm can preserve optimality and achieve
significant speedup compared to ILP. Besides, we provide a new
angle to treat the layout decomposition as a bilevel optimization
problem. Based on the reformulation, we present a tighter
approximation algorithm by solving a two-stage optimization
problem. Experiments show that our approximation algorithm
converges faster than traditional SDP and heuristics but obtains
much lower decomposition costs.

REFERENCES

[1] X. Tang and M. Cho, “Optimal layout decomposition for double pattern-
ing technology,” in IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2011, pp. 9–13.

[2] B. Yu, K. Yuan, D. Ding, and D. Z. Pan, “Layout decomposition for triple
patterning lithography,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 34, no. 3, pp. 433–446,
2015.

[3] A. B. Kahng, C.-H. Park, X. Xu, and H. Yao, “Layout decomposition
approaches for double patterning lithography,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 29, no. 6, pp. 939–952, 2010.

[4] Y. Lin, X. Xu, B. Yu, R. Baldick, and D. Z. Pan, “Triple/quadruple pattern-
ing layout decomposition via linear programming and iterative rounding,”
Journal of Micro/Nanolithography, MEMS, and MOEMS (JM3), vol. 16,
no. 2, p. 023507, 2017.

[5] S.-Y. Fang, Y.-W. Chang, and W.-Y. Chen, “A novel layout decompo-
sition algorithm for triple patterning lithography,” in ACM/IEEE Design
Automation Conference (DAC), 2012, pp. 1185–1190.

[6] J. Kuang and E. F. Young, “An efficient layout decomposition approach
for triple patterning lithography,” in ACM/IEEE Design Automation
Conference (DAC). IEEE, 2013, pp. 1–6.

[7] I. H.-R. Jiang and H.-Y. Chang, “Multiple patterning layout decom-
position considering complex coloring rules and density balancing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), vol. 36, no. 12, pp. 2080–2092, 2017.

[8] W. Li, Y. Ma, Q. Sun, L. Zhang, Y. Lin, I. H.-R. Jiang, B. Yu, and D. Z.
Pan, “Openmpl: An open-source layout decomposer,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 40, no. 11, pp. 2331–2344, 2020.

[9] M. Davis and H. Putnam, “A computing procedure for quantification
theory,” Journal of the ACM, vol. 7, no. 3, pp. 201–215, 1960.

[10] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, no. 7, pp. 394–
397, 1962.

[11] J. F. Bard and J. E. Falk, “An explicit solution to the multi-level
programming problem,” Computers & Operations Research, vol. 9, no. 1,
pp. 77–100, 1982.

[12] L. Vicente, G. Savard, and J. Júdice, “Descent approaches for quadratic
bilevel programming,” Journal of Optimization theory and applications,
vol. 81, no. 2, pp. 379–399, 1994.

[13] Y. Ishizuka and E. Aiyoshi, “Double penalty method for bilevel optimiza-
tion problems,” Annals of Operations Research, vol. 34, no. 1, pp. 73–88,
1992.

[14] Y. Yin, “Genetic-algorithms-based approach for bilevel programming
models,” Journal of Transportation Engineering, vol. 126, no. 2, pp. 115–
120, 2000.

[15] N. Eén and N. Sörensson, “Translating pseudo-boolean constraints into
sat,” Journal on Satisfiability, Boolean Modeling and Computation, vol. 2,
no. 1-4, pp. 1–26, 2006.

[16] J. P. Warners, “A linear-time transformation of linear inequalities into
conjunctive normal form,” Information Processing Letters, vol. 68, no. 2,
pp. 63–69, 1998.

