

LAYOUT DECOMPOSITION VIA BOOLEAN SATISFIABILITY

Hongduo Liu¹, Peiyu Liao¹, Mengchuan Zou², Bowen Pang², Xijun Li², Mingxuan Yuan², Tsung-Yi Ho¹, Bei Yu¹ ¹The Chinese University of Hong Kong ²Huawei Noah's Ark Lab

Introduction

- Multiple Patterning is used to enhance mask printability.
- Layout decomposition assigns layouts onto different masks.
- A new SAT-based exact algorithm for layout decomposition.
- A new approximation method based on bilevel reformulation.

Background

(a)

Objective Bound to Clause

Consider the constraint $5x + 2y + 4z \le 5$.

Evaluation on Large Benchmarks

Table 2. Layout decomposition results on ISPD19 benchmarks. "RT" indicates runtime. For ILP, we set the timelimit to 3600s.

Circuit	ILP [3]		SDP [5]		EC [2]		Ours	
Circuit	Cost	RT (s)	Cost	RT (s)	Cost	RT (s)	Cost	RT (s)
test1_100	242.9	56.24	297.7	2.61	390.5	9.51	242.9	5.73
test5_101	452.0	78.32	549.8	5.60	629.8	16.73	452.0	10.65
test6_102	153.4	188.56	191.7	35.58	344.1	59.21	153.4	69.79
test8_100	6005.9	82.13	6206.2	32.27	6245.6	34.39	6005.9	37.55
test9_100	9223.3	128.91	9532.4	52.72	9664.0	56.08	9223.3	60.50
test10_100	10449.5	244.93	10910.1	85.52	11130.6	128.96	10449.5	103.32
Avg. Ratio	1.00	4.43	1.13	0.67	1.40	1.19	1.00	1.00
test1_101*	71.8	2370.45	107.4	19.65	168.7	71.51	75.1	6.87
test2_100*	5236.7	12941.22	7259.4	187.31	9893.7	1404.07	5391.3	124.58
test2_102*	213.4	7810.46	526.7	304.76	593.9	2722.24	211.8	149.37
Avg. Ratio	0.98	167.07	1.75	2.13	2.30	13.30	1.00	1.00

Our approximation algorithm is enabled.

Layout decomposition can be formulated as graph coloring.

Literature Review

- Approximation Algorithms: Semidefinite Programming [5], Linear Programming [4], Heuristic methods [1].
- Exact Algorithm: Integer Linear Programming [3].

 $\sum \qquad C_{mn} + \alpha \sum s_{ij},$ (1a) min $r_i \in p_m, r_j \in p_n, c_{ij} \in CE$ s.t. $x_{i1} + x_{i2} \leq 1$, $\forall i \in V$, (1b) $x_{i1} + x_{i2} + x_{j1} + x_{j2} + C_{mn} \ge 1,$ (1c) $\forall c_{ii} \in CE, r_i \in p_m, r_j \in p_n,$ $x_{i1} - x_{i2} + x_{j1} - x_{j2} - C_{mn} \le 1$ (1d) $\forall c_{ij} \in CE, r_i \in p_m, r_j \in p_n,$ $-x_{i1} + x_{i2} - x_{j1} + x_{j2} - C_{mn} \le 1,$ (1e) $\forall c_{ii} \in CE, r_i \in p_m, r_j \in p_n,$ $x_{i1} + x_{i2} + x_{j1} + x_{j2} - C_{mn} \le 3,$ (1f) $\forall c_{ij} \in CE, r_i \in p_m, r_j \in p_n,$ (1g) $x_{i1} - x_{j1} + s_{ij} \ge 0, \quad \forall e_{ij} \in SE,$ $x_{i1}-x_{j1}-s_{ij}\leq 0,\quad \forall e_{ij}\in SE,$ (1h) (1i) $x_{i2}-x_{j2}+s_{ij}\geq 0,\quad \forall e_{ij}\in SE,$ (1j) $x_{i2}-x_{j2}-s_{ij}\leq 0,\quad \forall e_{ij}\in SE,$ (1k) All decision variables are binary.

- Construct a Binary Decision Diagram. • Extract all paths to **false**.
- $x \xrightarrow{1} y \xrightarrow{1} false$ derives a clause $\neg x \lor \neg y$.

Bilevel Reformulation

The upper-level optimization problem is given by

$$\min_{C,s} \sum_{\substack{r_i \in p_m, r_j \in p_n, c_{ij} \in CE}} C_{mn} + \alpha \sum_{s_{ij} \in SE} s_{ij},$$

s.t. constraint (1b) – constraint (1f)

 $s \in S(C),$

where S(C) is the set of optimal solutions of the C-parameterized problem

$$\min_{s} \sum_{s_{ij} \in SE} s_{ij},$$

s.t. constraint (1b) – constraint (1j).

Runtime Improvement of SAT-based Decomposer

- The scale of SAT problems remains controllable as original ILP constraints are all cadinality constraints.
- Optimality is easier to prove.

The first dashed line indicates when an optimal solution is found, and the second indicates when the optimality is proven.

Approximation Algorithm Scalability

Motivation

- Boolean nature of decision variables in ILP formulation \Rightarrow **Boolean satisfiability** \Rightarrow Faster convergence.
- Conflict optimization and stitch minimization are two problems nested with each other \Rightarrow **Bilevel Reformulation** \Rightarrow Tighter Approximation.

Overall Flow

Construction of Initial CNF

The constraint $x_1 + x_2 + \ldots + x_k \ge 1$ is equal to a CNF clause $(x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_2 \lor x_3 \lor x_4 \lor x_4$..., x_k). $x_{i1} + x_{i2} \le 1$ can be transformed into a CNF clause through the following steps:

Lower level decision space

Approximation Algorithm

 Conflict Minimization without considering stitch cost. Stitch Minimization with fixed conflict variables.

Evaluation of Our Exact Algorithm

Table 1. Results on ISCAS benchmarks. "RT" indicates runtime.

Circuit	ILP [3]		SDP [5]		EC [2]		Ours	
	Cost	RT (s)	Cost	RT (s)	Cost	RT (s)	Cost	RT (s)
C432	0.4	0.087	0.4	0.027	0.4	0.021	0.4	0.029
C499	0.0	0.081	0.0	0.028	0.0	0.025	0.0	0.030
C880	0.7	0.083	0.8	0.032	0.7	0.026	0.7	0.034
C1355	0.3	0.062	0.3	0.039	0.3	0.036	0.3	0.044
C1908	0.1	0.063	0.1	0.054	0.1	0.051	0.1	0.056
C2670	0.6	0.109	0.6	0.084	0.6	0.079	0.6	0.090
C3540	1.8	0.153	1.8	0.112	1.8	0.100	1.8	0.123
C5315	0.9	0.217	0.9	0.147	0.9	0.130	0.9	0.156
C6288	21.4	2.999	27.3	0.434	21.4	0.300	21.4	0.606
C7552	2.3	0.402	2.3	0.235	3.1	0.208	2.3	0.255
S1488	0.2	0.082	0.2	0.051	0.2	0.043	0.2	0.057
S38417	24.4	2.352	31.6	1.445	24.4	0.771	24.4	2.072
S35932	48.0	6.451	66.0	4.248	48.7	2.034	48.0	6.069
S38584	47.6	6.533	58.5	4.195	47.7	2.216	47.6	5.915
S15850	43.7	5.854	56.3	3.821	44.0	2.075	43.7	5.415
Avg. Ratio	1.00	1.79	1.11	0.85	1.02	0.67	1.00	1.00

Conclusion

- The SAT-based exact algorithm can achieve faster convergence than ILP without losing optimality.
- Layout decomposition can be seen as a bilevel optimization problem. The proposed approximation is tighter and shows better scalability.

References

- [1] Shao-Yun Fang, Yao-Wen Chang, and Wei-Yu Chen. A novel layout decomposition algorithm for triple patterning lithography. pages 1185–1190, 2012.
- [2] Iris Hui-Ru Jiang and Hua-Yu Chang. Multiple patterning layout decomposition considering complex coloring rules and density balancing. 36(12):2080–2092, 2017.
- [3] Wei Li, Yuzhe Ma, Qi Sun, Lu Zhang, Yibo Lin, Iris Hui-Ru Jiang, Bei Yu, and David Z Pan. Openmpl: An open-source layout decomposer. 40(11):2331–2344, 2020.

• Let the \leq be \geq by multiplying -1 on both sides of the inequality. We have $-x_{i1} - x_{i1} \ge -1$.

• Replace x_{i1}, x_{i1} by $-(1 - \overline{x_{i1}}), -(1 - \overline{x_{i1}})$ respectively.

• Reorganize the terms we have $\overline{x_{i1}} + \overline{x_{i1}} \ge 1$, which can be represented by a CNF clause $(\overline{x_{i1}} \lor \overline{x_{i1}})$.

Our SAT-based layout decomposer obtains optimal solutions as ILP but converges faster.

[4] Yibo Lin, Xiaoqing Xu, Bei Yu, Ross Baldick, and David Z Pan. Triple/quadruple patterning layout decomposition via linear programming and iterative rounding. 16(2):023507, 2017. [5] Bei Yu, Kun Yuan, Duo Ding, and David Z Pan. Layout decomposition for triple patterning

lithography. 34(3):433–446, 2015.

