
Restructure-Tolerant Timing Prediction via Multimodal Fusion
Ziyi Wang1†, Siting Liu1†, Yuan Pu1, Song Chen2, Tsung-Yi Ho1, Bei Yu1

1Chinese University of Hong Kong 2 University of Science and Technology of China

Abstract—Fast and accurate pre-routing timing prediction is crucial
in the very-large-scale integration (VLSI) design flow. Existing machine
learning (ML)-assisted pre-routing timing evaluators neglect the impact
of timing optimization, which may render their approaches impractical in
real circuit design flows. To model the impact of timing optimization, we
propose an endpoint embedding framework that integrates netlist-layout
information via multimodal fusion. An end-to-end flow is further developed
for pre-routing restructure-tolerant prediction on global timing metrics.
Comprehensive experiments on large-scale RISC-V designs with advanced
7-nm technology node demonstrate the superiority of our model compared
to the SOTA pre-routing timing evaluators.

I. INTRODUCTION

The breakthrough in advanced technology nodes has sparked interest
in the circuit design flow since it dramatically increases the circuit
size and brings new challenges to meet the design requirements, e.g.,
timing constraints. As the two most important processes, placement
allocates positions to the gates, while routing is used to obtain the
precise interconnection between pins. Repetitive placement and routing
(PnR) are needed to meet the sign-off timing constraints, which is
time-consuming. As a result, timing prediction based on the placement
solution has drawn researchers’ attention to save the abundant routing
running time and provide quick feedback to optimize timing early.

Efficient and accurate pre-routing timing prediction is necessary
for timing-driven placement engines. In practice, the linear RC static
timing analysis (STA) model, Elmore’s model [1], is widely-used to
get quick timing evaluation with only placement results. However,
Elmore’s model is imprecise due to inaccurate wire estimation without
actual routing information.

Trending machine learning (ML) techniques have opened up new
opportunities for pre-routing timing evaluation [2]–[4]. In general,
these works follow a local-view fashion that relies on local net/cell
delay prediction. They can be classified into two categories, two-stage
or end-to-end. The two-stage approaches [2], [3] first predict local
net/cell delays and then apply PERT traversals [5] to evaluate the
global timing metrics, i.e., endpoint arrival time. On the other hand, the
end-to-end method [4] can directly predict the global timing metrics
in a single run. It generates and propagates net/cell embeddings in the
topological order and then predicts at the endpoints. Nevertheless, [4]
still relies on local net/cell delay prediction as auxiliary tasks. Overall,
these studies highlight the need for pre-routing timing prediction and
point out the success of ML-assisted methods.

Unfortunately, none of the above works considered timing opti-
mization, i.e., they did not run a timing optimizer in their data-
generating flow. Timing optimization is a necessary step in modern
design flows to meet timing constraints, which is composed of various
optimizing techniques. Many of these techniques, e.g., gate rewrite,
irrevocably restructure the netlist, posing a severe challenge to prior
local-view works. To be more specific, netlist restructuring causes a
mismatch between local input features and ground-truth features in
the restructured sub-regions, as shown in Fig. 1, which inevitably
leads to inaccurate prediction and performance degradation. It is found

This work is supported by The Research Grants Council of Hong Kong SAR
(No. CUHK14209420).

† Equal contributors

CLK

D Q

CLK

D Q

?
?

?
?

s

eC4C4

C1C1

C2C2

C3C3

label=？

(a) Input netlist

CLK

D Q

CLK

D Qe

s C5C5

C6C6

C7C7

C8C8
C9C9

(b) Optimized netlist

Fig. 1 Example of netlist reconstruction after timing optimization. The
sub-netlist within the dotted box is replaced to improve timing, which
prohibits labeling the net/cell delays inside the box. Furthermore, it
leads to a mismatch between input features used for prediction, e.g.,
information about C1-C4, and ground-truth features, e.g., information
about C5-C9.

that on average 40% nets and 21% cells are replaced during timing
optimization (details in TABLE I), indicating a significant influence
on prior local-view works. Moreover, the unreplaced nets/cells are
also greatly affected by timing optimization, as shown in TABLE I.
Comparing flows with or without timing optimization, we find that
timing optimization brings an average change of 59.6% to net delays
and 33.3% to cell delays. The changes are calculated upon unreplaced
nets/cells. The considerable impact on individual nets/cells further
prevents ML-driven methods from correctly predicting local timing
metrics when timing optimization is considered.

Based on the facts that timing endpoints are never replaced,
and most commonly-used timing optimization techniques rely on
global information and layout knowledge [6], we argue that a global
endpoint-wise view from both netlist and layout is urgently needed
for restructure-tolerant timing estimation, rather than the local-view
fashion of previous works. This study focuses on the pre-routing
prediction of sign-off global timing metrics, i.e., endpoint arrival time,
considering the impact of the modern timing optimizer. Specifically,
we propose a novel endpoint embedding framework that fuses layout
and netlist information. An end-to-end flow is further developed for
the restructure-tolerant global timing evaluation based on the learned
endpoint embeddings.

The major contributions of this paper are listed as follows,

• To the best of our knowledge, we are the first to provide an end-
to-end restructure-tolerant timing prediction flow.

• We develop an endpoint embedding framework that fuses layout-
netlist information considering the impact of timing optimization.

• A customized graph neural network is presented to extract and
aggregate endpoint-wise netlist information.

• A convolutional neural network with an endpoint-wise masking
technique is developed to efficiently extract the unique layout
information for each timing endpoint.

• We conduct experiments and ablation studies on large-scale
RISC-V designs in the advanced 7-nm node to confirm the
effectiveness of our proposed techniques.

The rest of the paper is organized as follows: Section II introduces

the problem definition and the background of timing optimization tech-
niques and learning models. Section III overviews our proposed end-
to-end endpoint embedding driven timing prediction flow. Section IV
describes extracting endpoint-wise netlist information. Section V in-
troduces the proposed endpoint-wise layout information extraction
technique. Section VI presents experimental results, followed by the
conclusion in Section VII.

II. PRELIMINARIES AND PROBLEM DEFINITION

A. Timing Optimization

The tape-out circuit should not only satisfy the geometric con-
straints, e.g., non-overlapping cells but also meet the timing con-
straints. Modern physical design flows apply a timing optimization
engine via a complex process to improve timing performance. As
listed in TABLE I, timing optimization significantly impacts both local
and global sign-off timing metrics. It is worth noting that though the
overall optimizing direction is towards improving the global timing
performance, i.e., total negative slacks of all the endpoints, its impact
on an individual net/cell is uncertain. For instance, the delay of some
nets might be hundreds of times larger than that generated by a flow
without optimization, while others might be reduced to near zero.
The uncertainty is caused by complicated global interplays between
nets/cells [7], which makes predicting local net/cell delays extremely
difficult considering the impact of timing optimization.

We divide timing optimization techniques into two classes:
structure-preserved or structure-destructed. The structure-preserved
techniques [8] improve timing while bringing no change to the netlist
structure. A representative technique is gate-sizing [9] that chooses a
better size for each gate from the cell library to optimize overall timing
performance. On the other hand, structure-destructed techniques [10],
e.g., Boolean restructuring, gate decomposition, etc., optimize timing
by modifying the netlist structure. Such changes do not alter the
circuit’s functionality but can use additional gates or rewire the
connections between existing gates to improve driving strength and
signal integrity [10].

Fig. 1 gives an example of netlist reconstruction during timing
optimization, where the multiple-input gates in the dotted box are
replaced by more efficient gates. As can be seen, modification of the
netlist structure brings considerable challenges to timing prediction.
To begin, it prevents labeling sign-off delays for nets/cells within the
replaced regions, e.g., C1-C4. As a result, prior local-view models
can only be trained on the unchanged regions in a semi-supervised
manner. Furthermore, it leads to feature mismatching in the replaced
regions. To be specific, the input features used for delay prediction in
the replaced sub-netlists, e.g., C1-C4’s information, are mismatched
with the ground-truth features, e.g., C5-C9’s information. The mis-
matched features cause inaccurate local delay prediction in restructured
regions, which further leads to an inconsistency between local delay
supervision and global timing metrics prediction. In other words, the
better the models fit on labeled (unreplaced) net/cell delays, the worse
they fit on replaced regions and eventually on endpoint arrival time.

Since most timing optimization techniques include gate insertion
or gate sizing, placement should reserve space for subsequent timing
optimization. In other words, the timing optimizer’s efficacy is tied
closely to global layout information [6].

B. Graph and Convolutional Neural Network

Graph neural network (GNN) [11]–[13] has emerged as an appealing
methodology for processing graph-structured data and mining graph
information in recent years. It follows an iterative message-passing
scheme to capture the structural information within nodes’ neighbor-
hoods. Let G = ⟨V,E⟩ denotes a graph, where V = {v1, v2, · · · , vn}

Endpoint-wise
Netlist Information

Extraction

Placed
Circuit

Endpoint Arrival Time
Regression

Output

MLP

Endpoint-wise
Layout Information

Extraction

CLK

D Q

CLK

D Q vnvn

Endpoint-wise
Netlist

Embeddings

Endpoint-wise
Layout

Embeddings

Endpoint Embeddings

Fig. 2 Overview of our proposed end-to-end endpoint embedding
framework, which generates endpoint-wise embeddings and conducts
prediction based on the embeddings. We apply a customized GNN
model to extract information from netlists and a CNN model with
a novel masking technique to extract information from layouts. The
extracted information is then fused to generate the final embedding
for each timing endpoint.

is the vertex set, and E ⊆ V×V is the edge set. Considering a K-layer
GNN, the propagation of the k-th layer is represented as

a(k)
v = AGGREGATE({h(k−1)

u : u ∈ N(v)}),
h(k)

v = COMBINE(a(k)
v ,h(k−1)

v),
(1)

where a
(k)
v and h

(k)
v denote the aggregated neighboring message and

the embedding of vertex v at the kth layer, respectively, and N(v)
represents the set of neighboring nodes of v. AGGREGATE is a
function that collects messages from a node’s neighborhood, while
COMBINE is used to integrate the node’s previous embedding with
the message from its neighborhood.

On the other hand, Convolutional neural network (CNN) is one of
the most important deep learning models for retrieving local-global
information of Euclidean data (grid-pattern data) [14]–[16]. It is built
by a stack of locally connected layers, such as the linear convolution
layers with non-linear activation operations, down-sampling pooling
layers, and fully connected layers.

C. Problem Definition

Problem 1 (Restructure-tolerant timing prediction). Given the pre-
routing layout and netlist of a design, our goal is to make an accurate
and efficient estimation of the sign-off global timing metrics, i.e.,
endpoint arrival time, with the impact of timing optimization taken
into account.

III. FLOW OVERVIEW

The considerable impact of timing optimization arouses the demand
for restructure-tolerant timing estimation. As previously stated, the
local supervision information is inconsistent with global timing metrics
considering feature mismatching. Consequently, the prior local-view
fashion may not fit the real-world scenario where timing optimization
is taken into account. Based on the observation that timing endpoints
are never replaced during timing optimization and the previous find-
ing [7] that it is easier to model timing optimization’s impact globally
than locally, we propose to take a global endpoint-wise view to build
the framework. Specifically, we present an endpoint embedding flow

that models the overall timing performance by combining information
from the following two aspects:

1) Netlist: The information from netlists is necessary since delay
computation is based on the connections between nets/cells. With
netlist information, we can model the essential timing condition.

2) Layout: The layout information plays a dominant role in deter-
mining the timing optimizer’s impact since most optimization
techniques need space to be applied [6].

The overview of our end-to-end framework is shown in Fig. 2, which
follows a multimodal fusion paradigm, i.e., combining information
from multiple modalities. For each timing endpoint, we encode its
netlist information into the netlist embedding vn with the help of
a customized GNN model. Meanwhile, a CNN model and a novel
masking technique are utilized to embed global layout information
into the endpoint-wise layout embedding vl. The final embedding for
the endpoint is given by a combination operation (e.g., concatenation)
of vn and vl. A multi-layer perceptron (MLP) regression model is then
applied to consume the generated endpoint embeddings for predicting
global timing metrics. We utilize the Mean Squared Error (MSE) as
the loss function to guide training:

L =
1

n

n∑
i=1

(yi − pi)
2, (2)

where yi and pi are the ground truth arrival time and predicted arrival
time for the ith endpoint, respectively.

The algorithm details are introduced in the following sections.

IV. NETLIST INFORMATION EXTRACTION

We first discuss how to extract timing information from netlists and
embed it into a single netlist embedding for each timing endpoint with
the help of GNN. To correctly reflect the essential timing condition
of an endpoint, the information within its whole fanin cone should
be embedded, which we refer to as a receptive field of this endpoint.
However, the depth of endpoints’ fanin cones can range from 2 to
more than 400, leading to a considerable variation in the receptive
field size from less than 10 pins to thousands of pins. The remarkable
variability makes learning endpoint-wise netlist embedding a difficult
task worth exploring.

A. Data Representation

Our data transformation follows the prior work [4] that treats each
pin as a node since the pin is the essential element in timing analysis.
Based on the fact that there are two types of timing arcs, we model
the netlist as a heterogeneous graph with two edge types: the net edge
and the cell edge. Each net edge represents the connection between a
net’s drive pin and one of its sink pins. On the other hand, each cell
edge connects one of a cell’s input pins and its output pin. Hereafter,
we refer to the output of cell edges as cell nodes and the sink of
net edges as net nodes. All edges are directed, and by removing the
cell edges of sequential elements (e.g., register), there are no cycles
in the graph. Consequently, the constructed graph can also be seen
as a directed acyclic graph (DAG). Fig. 3 gives an example of the
transformed graph for a given circuit.

As for features, we select the most relevant ones to timing: (1)
Net distance: the Manhattan distance between the positions of a net’s
drive pin and its sink pin, playing a dominant role in the net delay;
(2) Cell driving strength: extracted by the cell type name, determining
the output impedance of the driver. (3) Gate type: e.g., AND, XOR,
embedded as a one-hot vector. (4) Pin capacitance: extracted from the
timing library. To facilitate message aggregation, we assign the net
distance as the net feature to the net nodes. Similarly, we attach the
other three cell features to the cell nodes.

CLK

D Q

CLK

D Q e
CLK

D Q

e
CLK

D Q

Given Placed Circuit

e

e

Topological Levels Generation
& Message-Passing

vnvn

Endpoint-wise
Netlist

Embeddings

cell node
net node

net aggregation
cell aggregation

e endpoint

Fig. 3 The message passing scheme of our customized GNN, where
the dotted boxes show the graph’s topological levels. Two distinct
aggregation functions are designed for net edges and cell edges,
respectively. The information flows in the topological order, aggregated
at the endpoints to generate endpoint-wise netlist embeddings.

B. Customized Graph Neural Network

GNN techniques [17] have provided a paradigm for mining graph
information. Since netlists can be represented as graphs, applying GNN
for generating endpoint-wise netlist embedding is natural. Neverthe-
less, it still matters to make customization to correctly reflect the
timing condition. Motivated by the delay propagation procedure, our
GNN model propagates information in topological order, eventually
gathering at the timing endpoints.

Fig. 3 illustrates how to generate netlist embedding for each timing
endpoint with our designed GNN. The topological levels of the input
graph are first obtained before running the model. Then the message-
passing procedure starts from the Primary Inputs (PIs), propagating
level by level until all endpoints have been reached. To discriminate be-
tween the two timing arcs, we design two distinct message aggregators
Ac and An (Equation (3)) for cell nodes and net nodes, respectively.
For cell nodes, we consider a multiple-to-one relationship since each
cell node might be driven by multiple input pins. The embedding of
a cell node v is composed of two parts: messages from predecessors
and information about the corresponding cell (cell features). Based
on the fact that the delay at the output pin is only related to the
maximum delay of the input pins, we apply a maximum operator
to gather messages from the predecessors. On the other hand, the
message aggregating scheme along net edges represents a one-to-one
relationship since each net node has only one drive node. Similarly, the
embedding of a net node v consists of two parts: the received message
from the single drive node and the intra-net information (net features).
Since the cell node and net node alternate in the propagation flow, the
above two message aggregating schemes will take place alternatively.

Formally, the overall message aggregating scheme of a node v can
be stated as follows:

hv =

{
σ(fMLP

c1 (max {hu : u ∈ N(v)}) + fMLP
c2 (hc

v)) v ∈ Vc

σ(hd + fMLP
n (hn

v)) v ∈ Vn
(3)

where hv represents the message (embedding) of node v, Vc is the
set of cell nodes, and Vn denotes the set of net nodes. hc

v/hn
v is the

⊙⊙

Endpoint-wise
Layout

Embeddings

Endpoint-wise Mask Generation

H
4
H
4

W
4
W
4

Fully
Connected

Layer

Layout Features
32

WW

HH

64

W
2
W
2

H
2
H
2

W
4
W
4

H
4
H
4

32 1

Conv Max pooling

Layout Feature Fusion

e

e

MLML

MeMe

ML
eML
e

Fig. 4 Our endpoint-wise layout embedding generation flow with a
CNN model and a novel endpoint-wise masking technique.

cell/net features of node v, and N(v) and d denote the predecessor(s)
for node v. σ is an activation function, e.g., ReLU. fMLP

c1 , fMLP
c2 and

fMLP
n are MLPs.

V. LAYOUT INFORMATION EXTRACTION

Netlist information alone is far from competent to model the
complicated timing condition with timing optimization. To boost the
model performance, we embed additional information from the layout
to capture the impact of timing optimization, as shown in Fig. 4.

A. Optimization-related Layout Features

In general, the selected features are supposed to be closely correlated
with timing optimization. Our input features are chosen based on the
following observations: 1) most timing optimization techniques need
space to insert additional gates, and a denser layout tends to result in
a lower timing optimization impact; 2) the macro cell regions cannot
be used for timing optimization. As a result, three different features
are selected: cell density, rectangular uniform wire density (RUDY),
and macro cells region. To generalize the layout features from circuit
designs with diverse scales, we divide the overall layout into M ×
N bins (we set both M and N as 512). All three feature maps are
derived directly from placed chip layout. Then we stack and feed
them to our CNN model (as shown in Fig. 4), yielding fused global
layout information map ML ∈ R

M
4
×N

4 through several convolution
and pooling operations.

To illustrate how these three feature maps vary across different
circuit designs, Fig. 5 lists the cell density map, RUDY map, and
macro map for two designs. Fig. 5(a) shows the layout feature maps for
Or1200 CPU core while Fig. 5(b) illustrates the feature maps for the
Rocket SoC design. It is clear that the layout information for different
designs is distinguished.

B. Endpoint-wise Masking

The generated global layout information map ML reflects the
overall impact of timing optimization. However, it is identical for
all the endpoints. In other words, all the endpoints share the same
layout information. This does not make sense because the impact of
timing optimization varies greatly for different endpoints. For instance,
the optimizer tends to prioritize critical endpoints with negative slack,
resulting in a more significant impact on these endpoints than on non-
critical ones.

(a) Or1200.

(b) Rocket.

Fig. 5 Layout feature maps: cell density, RUDY, and macro cells region
(from left to right).

e

(a) Input graph

0

1

3

2

4

5

0

1

e

(b) Path-finding and mask
generation

(c) Output mask

Fig. 6 An example of our proposed masking technique applied to an
endpoint e, where purple, blue, and gray represent the endpoint, net
nodes and cell nodes, respectively. The number next to each node
in (b) indicates its topological level, and the purple lines depict the
longest path Pe for e. The dotted boxes illustrate the critical region
Re, which consists of net edge bounding boxes along Pe.

Based on the above observation, we propose a critical region-
based method to extract unique endpoint-wise layout information.
Specifically, the layout embedding of an endpoint e only aggregates
information from a small region most relevant to e, which is defined
as the critical region of e. Motivated by the fact that arrival time at
e is closely related to the longest path from PIs to e, we derive the
critical region from this longest path.

Fig. 6 gives an example of our proposed endpoint-wise masking
technique, which consists of two steps: path-finding and mask genera-
tion. While path-finding in undirected graphs is expensive, it is consid-
erably easier in DAGs, especially given that we have already obtained
the topological levels (Section IV). Our path-finding algorithm begins
by mapping each node to its corresponding topological level. Then
we reverse the graph and conduct a depth-first-search (DFS) starting
from each endpoint e to find its longest path. During DFS, assume
we are visiting node vi with topological level i, then we move to
the successor node pi−1

v with topological level i− 1 in the next step.
If there exist multiple candidates, one of them is randomly picked.
Note that a node’s topological level implies the distance from PIs to
it, hence the chosen successor node pi−1

v is on (one of) the longest
path(s) from PIs to vi. Finally, DFS stops when reaching a PI node,
and the visited nodes form the longest path from PIs to endpoint e.
Since the above procedure can be conducted in parallel for different
endpoints, it is super fast.

It is worth noting that most commonly-used timing optimization
techniques are only concerned with layout information outside the

TABLE I Statistics of the dataset, where the left columns depict information about the input design (before routing), and the right columns
illustrate the impact of timing optimization measured by the change ratio between sign-off timing metrics generated by flows with/without
timing optimization. #replaced denotes the percentage of input net/cell edges replaced during timing optimization. ∆delay is calculated upon
the unreplaced nets/cells. Furthermore, in the left columns, edp stands for endpoint, en and ec denote net edge and cell edge, respectively.

Benchmark

Input information Impact of timing optimization on sign-off metrics

#pin #edp #en #ec
slack variation net variation cell variation
∆wns ∆tns #replaced ∆delay #replaced ∆delay

train

jpeg 932842 40801 650878 607795 98.8% 99.8% 32.5% 50.8% 35.4% 40.6%
rocket 698347 52731 490499 432068 94.0% 94.8% 28.5% 70.0% 8.0% 24.2%

smallboom 694441 61764 488052 423344 87.4% 99.1% 40.9% 53.1% 15.6% 39.8%
steelcore 26598 1662 19439 17732 89.6% 98.3% 49.8% 51.8% 18.4% 29.4%

xgate 20842 684 14653 13010 94.8% 99.1% 31.3% 50.7% 16.9% 20.9%

test

arm9 44469 2500 33065 29287 82.5% 88.8% 46.7% 47.8% 24.0% 42.9%
chacha 35687 1986 25117 23083 86.5% 88.0% 47.1% 62.5% 38.8% 40.2%
hwacha 1357798 61313 985057 922085 91.7% 92.5% 45.1% 70.4% 22.0% 37.1%
or1200 1165114 172401 844443 658961 95.4% 97.3% 49.1% 61.4% 20.8% 28.6%

sha3 794720 60323 552021 485596 96.0% 97.4% 30.3% 77.6% 8.3% 28.8%

Avg train 474614 31528 332704 298790 92.9% 98.2% 36.6% 55.3% 18.9% 31.0%
test 679558 59705 487941 423802 90.4% 92.8% 43.7% 63.9% 22.8% 35.5%

cells. Therefore, we only consider the region covered by the net edges.
After obtaining the longest path Pe for each endpoint e, we construct
e’s critical region Re by taking the union region covered by the
bounding boxes of the two-pin net edges along Pe. To be specific,
the bounding box for a net edge {d, s} is defined as the following
rectangular region:

Bd,s = [min{xd, xs},max{xd, xs}]
× [min{yd, ys},max{yd, ys}],

(4)

where × denotes Cartesian Product, (xd, yd) and (xs, ys) are the
positions of drive pin d and sink pin s, respectively. Furthermore,
the critical region Re can be formulated as:

Re =
⋃

{d,s}∈En(Pe)

Bd,s, (5)

where Pe is e’s longest path and En(Pe) denotes the net edges along
Pe. The critical mask Me ∈ R

M
4
×N

4 is then constructed based on
Re as Me

ij = 1, ∀(i, j) ∈ Re. With the region mask Me and the
layout information map ML, the layout map ML

e for endpoint e can
be calculated as follows,

ML
e = Me ⊙ML, (6)

where ⊙ denotes Hadamard Product. Then a shared fully connected
layer (FCN) is used to convert the layout information map ML

e to a
low-dimensional layout embedding for e, as shown in Fig. 4.

VI. EXPERIMENTS

A. Experimental Setup

We develop the framework with DGL [18] and PyTorch [19]. The
neural networks are trained and evaluated on a Linux machine with
16 Intel Xeon Gold 6226R cores (2.90GHz), 1 GeForce RTX 3090
Ti graphics card, and 24 GB of main memory. Regarding the hyper-
parameters of our model in the experiments, we choose three layers
MLPs with a hidden layer dimension of 256 for the GNN part. As
for the CNN part, its input size is 3 × 512 × 512, and the network
architecture is illustrated in Fig. 4. Besides, the dimension of both
endpoint-wise netlist and layout embedding is set to 128, and the MLP
used for regression is with 3 layers and a hidden dimension of 512.
Our model is trained with a learning rate of 0.001 and batch size of
1024 for 200 epochs.

A dataset of 10 open-source designs is prepared, as listed in
TABLE I. We obtain the designs from Chipyard and Github open-
source projects. Almost all the designs are RISC-V supported except

chacha. We randomly divide the dataset into 5 cases for training and 5
cases for testing. As for the dataset generation flow, we apply Cadence
Genus with the edge-cut 7-nm ASAP7 PDK [20] for synthesis, and
Cadence Innovus for placement, timing optimization, and routing.

B. Overall Performance

We first compare our method with previous state-of-the-art (SOTA)
works [2]–[4] for pre-routing timing evaluation, which are driven by
local net/cell delay prediction. As previously stated, netlist restructur-
ing during timing optimization brings troubles to these works. Since
there is no way to label the restructured sub-netlists, we adapt the
baseline models to our task in a semi-supervised fashion that guides
the training with unchanged cells/nets/pins. The previous two-stage
methods [2], [3] are supervised by local net/cell delay, prior end-
to-end method [4] is supervised by net/cell delay, pin slew, and pin
arrival time, and our model is supervised by endpoint arrival time. All
the baseline models are well-trained on our training dataset using the
official settings in their papers. A layout-only version of our model
is implemented by removing the GNN part; similarly, a netlist-only
version is implemented by omitting the CNN part of our framework.
R2 score is used for evaluation, which is the most commonly used
metric for regression problems. The closer the R2 score to 1, the
better the model performs.

We summarize our findings from the results in TABLE II as follows:
• Our proposed framework vastly outperforms all the baseline

approaches on all the benchmarks for sign-off global timing
metrics prediction, achieving a performance gain of 25.2%-37.6%
on average.

• Previous methods’ performance on local net/cell delay prediction
is relatively low, demonstrating that it is hard to model the
influence of timing optimization locally with only pre-routing
information.

• Prediction performance on local net/cell delay is inconsistent with
that on global timing metrics, i.e., a higher R2 score on local
delay leads to a lower R2 score on endpoint arrival time. This
might be due to the aforementioned feature mismatching.

• Previous methods tend to perform badly when the netlist structure
is greatly modified by timing optimization, e.g., chacha.

• Our proposed global-view fashion, i.e., supervised only by global
timing information, outperforms prior local-view fashion when
timing optimization is taken into account.

• From the ablation study, we find that layout information alone
is useless. But together with netlist information, they can suc-

TABLE II Overall Comparison on the test benchmarks. The local delay prediction results of the baseline models are presented in the left
columns, which are calculated upon the unreplaced nets/cells. Note that [2], [3] incorporate driver cell delay and net delay while [4] predicts
them separately. The models’ performance on global timing metrics, i.e., endpoint arrival time, is listed in the right columns, where the best
results are highlighted in boldface. Our model outperforms the previous works on all the benchmarks, demonstrating its great superiority.

Benchmark
baselines’ net/cell delay prediction (R2 score) Endpoint arrival time prediction (R2 score)

DAC19 [2] DAC22-he [3] DAC22-guo [4] DAC19 [2] DAC22-he [3] DAC22-guo [4] our CNN-only our GNN-only our full

arm9 0.0101 -0.5187 -0.2960 / -1.8234 0.6655 0.7304 0.8279 -0.0011 0.8405 0.8852
chacha -0.1389 -0.1008 -0.0813 / -0.2737 0.4406 0.6146 -0.0253 -0.1152 0.7346 0.9027
hwacha 0.0519 -0.0323 -0.8003 / -0.8630 0.2752 0.5186 0.7090 -0.0173 0.8022 0.8623
or1200 -0.0395 -0.3051 -3.5679 / -0.0924 0.3226 0.4484 0.6776 -0.0019 0.7381 0.8081
sha3 0.3941 0.5554 -0.3713 / 0.1230 0.7784 0.7917 0.8464 -0.0058 0.8635 0.9035

avg 0.0555 -0.0803 -1.0234 / -0.5859 0.4965 0.6207 0.6071 -0.0283 0.7958 0.8724

TABLE III Runtime (s) comparison with an industry-leading commer-
cial tool where opt is for optimization, sta is for static timing analysis,
pre is for preprocessing, and infer is for inference. We can achieve an
over 4000× speedup on average.

design
commercial (20 threads) ours

opt route sta total pre infer total speedup

jpeg 7863 624922 227 633012 20.63 5.56 26.19 24170×
rocket 16239 19161 167 35567 18.53 2.02 20.55 1731×

smallboom 9051 53942 152 63145 19.72 4.81 24.53 2574×
steelcore 1294 747 20 2061 0.39 1.12 1.51 1365×

xgate 338 630 17 985 0.34 0.48 0.82 1201×
arm9 305 1825 16 2146 0.88 1.78 2.66 807×

chacha 1621 1794 23 3438 0.82 1.20 2.02 1702×
hwacha 43883 136946 241 181070 23.89 5.77 29.66 6105×
or1200 28641 40291 339 69271 112.20 6.52 118.72 583×

sha3 18785 16870 185 35840 24.95 2.58 27.53 1302×
avg. 12802 89713 139 102654 22.23 3.184 25.42 4154×

cessfully model the impact of timing optimization. This result
highlights the efficacy of multimodal fusion in restructure-tolerant
timing prediction.

C. Runtime Analysis

In this part, we show the speedup of our model compared to the
industry-leading commercial tool. The timing optimization and routing
procedure are extremely time-consuming in modern VLSI design flow
due to their high complexity. In contrast, machine learning models
have overwhelming superiority in efficiency. The results are listed in
TABLE III, where the preprocessing stage of our model includes graph
construction, topological level generation, and endpoint-wise critical
region generation. We find that our proposed flow runs 4154 times
faster on average than the commercial tool to evaluate the sign-off
global timing metrics at a small cost of around 13% R2 score loss.
Specifically, we can achieve a 24170× speedup on the complex case
jpeg.

VII. CONCLUSION

Prior studies have noted the importance of fast and accurate pre-
routing timing prediction in reducing design cycles. However, modern
ML-assisted works following a local-view fashion did not consider the
impact of timing optimization, leading to performance degradation in
real-world applications. This paper has presented a novel endpoint
embedding framework with multimodal fusion by utilizing both GNN
and CNN to extract netlist and layout information. An end-to-end
flow is further developed for pre-routing prediction on sign-off global
timing metrics, with the impact of a modern timing optimizer taken
into account. The experimental results on advanced 7-nm RISC-V
designs highlight the importance of multimodal fusion in modeling
the impact of timing optimization. Finally, we should keep a close

eye on multimodal fusion in the VLSI design flow for more thorough
information mining.

REFERENCES

[1] J. Rubinstein, P. Penfield, and M. Horowitz, “Signal delay in rc tree
networks,” IEEE TCAD, 1983.

[2] E. C. Barboza, N. Shukla, Y. Chen, and J. Hu, “Machine learning-based
pre-routing timing prediction with reduced pessimism,” in Proc. DAC,
2019.

[3] X. He, Z. Fu, Y. Wang, C. Chang Liu, and Y. Guo, “Accurate timing
prediction at placement stage with look-ahead rc network,” in Proc. DAC,
2022.

[4] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,” in
Proc. DAC, 2022.

[5] H. Chang and S. S. Sapatnekar, “Statistical timing analysis considering
spatial correlations using a single pert-like traversal,” in Proc. ICCAD,
2003.

[6] I. S. Bustany, D. Chinnery, J. R. Shinnerl, and V. Yutsis, “Ispd 2015
benchmarks with fence regions and routing blockages for detailed-routing-
driven placement,” in Proc. ISPD, 2015.

[7] W. Swartz and C. Sechen, “Timing driven placement for large standard
cell circuits,” in Proc. DAC, 1995.

[8] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical analysis and
optimization for VLSI: Timing and power. Springer, 2005, vol. 59.

[9] D. Sinha, N. V. Shenoy, and H. Zhou, “Statistical gate sizing for timing
yield optimization,” in Proc. ICCAD, 2005.

[10] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu, VLSI physical design:
from graph partitioning to timing closure. Springer Science & Business
Media, 2011.

[11] A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang,
Y.-J. Lee, E. Johnson, O. Pathak, A. Nazi et al., “A graph placement
methodology for fast chip design,” Nature, 2021.

[12] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High performance graph convolutional networks with applications in
testability analysis,” in Proc. DAC, 2019.

[13] Z. Wang, C. Bai, Z. He, G. Zhang, Q. Xu, T.-Y. Ho, B. Yu, and Y. Huang,
“Functionality matters in netlist representation learning,” in Proc. DAC,
2022.

[14] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Proc. CVPR, 2012.

[15] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” in Proc. CVPR, 2015.

[16] J. Fu, H. Zheng, and T. Mei, “Look closer to see better: Recurrent attention
convolutional neural network for fine-grained image recognition,” in
Proc. CVPR, 2017.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE Transactions on
Neural Networks and Learning Systems, 2020.

[18] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou,
Q. Huang, C. Ma et al., “Deep graph library: Towards efficient and
scalable deep learning on graphs,” arXiv preprint arXiv:1909.01315, 2019.

[19] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” 2017.

[20] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, 2016.

