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Abstract—The placement and routing (PnR) flow plays a critical role
in physical design. Poor routing congestion is a possible problem causing
severe routing detours, which can lead to deteriorated timing performance
or even routing failure. Deep-learning-based congestion prediction model is
designed to guide the global placement process in previous work. However,
the distribution shift problem in this method limits its performance. In
this paper, we mitigate the distribution shift problem with a look-ahead
mechanism inspired by optical flow prediction and an invariant feature
space learning technique. With the proposed method, we can achieve better
congestion prediction performance and less-congested placement results.

I. INTRODUCTION

Optimization of routing congestion is critical to placement [1]–[9].
To a large extent, it determines the routability of a placement solution.
The widely-adopted idea of congestion optimization is to spread the
cells in congested regions. Its key point lies in two perspectives:
accurate congestion estimation and effective spreading strategy.

The literature has extensively investigated congestion optimization
techniques in the above two perspectives [10]–[16]. Many prior studies
integrate global routing into placement iterations and inflate cells
according to the congestion map from global routing. Obtaining the
congestion map from global routing is accurate but time-consuming.

To avoid the large overhead of invoking global routing, deep-
learning-based approaches have been proposed to replace the time-
consuming routing engines in congestion prediction. These methods
predict the congestion hotspots according to placement features like
the rectangular uniform wire density (RUDY) [17]. As the congestion
prediction problem can be viewed as an image translation task in
computer vision, various models have been investigated, such as fully-
convolutional networks (FCNs) [18], generative adversarial networks
(GANs) [19], etc. The grid-cells and nets in placement can be
modeled with hypergraphs, and graph neural networks (GNNs) can
achieve accurate congestion prediction [20]. Neural architecture search
(NAS) enables automatic and flexible design of congestion prediction
models [21]. These studies utilize the features extracted at the end
of placement and build models to predict the congestion after routing.
The models can be integrated into placement engines and guide the cell
inflation. Recently, Liu et al. [22] further propose to directly integrate
the congestion penalty from a deep neural network (DNN) into the
objective of an analytical placer and leverage its gradient to guide
congestion optimization [22].

Despite the existing efforts, we observe that there exists a distribu-
tion shift problem in most of the previous learning-based congestion
prediction/optimization approaches. Modern analytical placement fol-
lows an iterative procedure to spread cells gradually. The distributions
of cells vary significantly at different iterations. Fig. 1(a) and Fig. 1(b)
plot the distributions of cells at the first iteration and the end of
placement. Due to the wirelength minimization in the placement
algorithm, the cells at the first iteration are concentrated in specific
regions. At the end of placement, the cells are uniformly distributed
because the algorithm puts more and more emphasis on density
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minimization as the placement progresses. Fig. 1(c) further shows the
KL divergence between each iteration and the last iteration, which
reveals the distribution shift of cell locations and placement features
during the placement process. As a result, models trained on the
features collected at the end of placement may not work well on
features from intermediate iterations in practice.

To mitigate the distribution shift problem in congestion prediction
and optimization, we propose LACO, a Look-Ahead Congestion
Optimization method. By predicting the future placement features,
LACO mitigates the distribution shift on the inputs of the congestion
prediction model. We exploit the novel cell flow to capture the motions
of cells and improve the prediction performance. In addition, LACO
also learns an invariant latent feature space in the DNN model, which
can get less performance deterioration under distribution shift.

The major contributions of this paper are summarized as follows.

• We mitigate the distribution shift problem in deep-learning-based
congestion optimization with a look-ahead mechanism that learns
cell flow and placement feature prediction. The proposed multi-
task learning scheme can provide less-shifted inputs for the
congestion prediction model and achieve better performance than
the model without the look-ahead mechanism.

• We further enhance the robustness of the proposed method by
learning an invariant feature space. This mechanism reduces the
distribution shift of the internal DNN feature maps under varying
inputs, improving the performance of the model.

• Abundant ablation studies demonstrate the effectiveness of our
method in improving congestion prediction and optimization. Our
experiments show the importance of mitigating the distribution
shift problem for deep-learning-based congestion optimization in
global placement.

The rest of our article is organized as follows. Section II introduces
the preliminaries. Section III shows the overview of the novel method.
Section IV presents various experimental results that can prove the
effectiveness of LACO. The conclusion is shown in Section V.

II. PRELIMINARIES

A. Analytical Placement

Most state-of-the-art placement algorithms fall into the category of
analytical placement [15], [23], [24], which typically consists of global
placement (GP), legalization (LG), and detailed placement (DP). This
paper focuses on GP, which is a time-consuming and dominant step.
Assigning a 2D coordinate to each circuit cell, GP algorithms usually
minimize the estimated wirelengths of the nets. To reduce the overlap-
ping of cells, placement algorithms can utilize density cost functions
to spread out the cells. For example, DREAMPlace [24] employs a
weighted-average wirelength model We(x,y) and an electrostatics-
based density model D(x,y) to optimize the cell locations (x,y).
The optimization objective of DREAMPlace is defined as,

min
x,y

∑
e∈E

We(x,y) + λD(x,y), (1)
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Fig. 1 Illustration of the distribution shift problem. (a) The cells at the first iteration of the placement. (b) The cells at the 600-th iteration of
the placement. (c) The curve of the KL divergence KL(pi∥p600), where pi is the distribution of RUDYs, PinRUDYs, or cell locations at the
i-th iteration. The data are obtained from DREAMPlace on the des_perf_1 testcase in ISPD 2015 benchmark.

where E is the set of nets and λ is the density penalty weight.
Analogizing the analytical placement problem to DNN training,
DREAMPlace achieves a significant speedup with the help of the DNN
training utilities.

B. Placement Features for Congestion Prediction

RUDY, PinRUDY, and MacroRegion are placement features that
can be utilized to predict congestion hotspots [22]. RUDY estimates
routing demand based on the nets. To obtain RUDY, we first get the
bounding box of each net,

xh
e = max

pe
xpe , x

l
e = min

pe
xpe , y

h
e = max

pe
ype , y

l
e = min

pe
ype , (2)

where pe denotes a pin in the net e. The location of pe is represented
by (xpe , ype).

In the region x ∈ [xl
e, x

h
e ], y ∈ [yl

e, y
h
e ], we simply define the RUDY

for net e as,

RUDYe(x,y) = (
1

xh
e − xl

e

+
1

yh
e − yl

e

). (3)

If x /∈ [xl
e, x

h
e ] or y /∈ [yl

e, y
h
e ], we have RUDYe(x,y) = 0. Finally,

RUDY can be defined as,

RUDY(x,y) =
∑
e∈E

RUDYe(x,y). (4)

PinRUDY is the pin density map inspired by RUDY. To compute
the PinRUDY, we need to split the layout into a N × M grid and
estimate the pin density of each grid-cell bk,l. The PinRUDY of a pin
is calculated with,

PinRUDYpe(k, l) = (
1

xh
e − xl

e

+
1

yh
e − yl

e

), (xpe , ype) ∈ bk,l. (5)

Finally, the PinRUDY of the grid-cell bk,l is defined as,

PinRUDY(k, l) =
∑

pe∈bk,l

PinRUDYpe(k, l). (6)

MacroRegion indicates whether a region is covered by a macro cell
or not, which is defined as,

MacroRegion(k, l) =

{
1, if bk,l is in a macro cell,
0, otherwise.

(7)

In practice, the RUDY map is also divided into M ×N grid-cells.
The RUDY of a grid-cell bk,l is calculated by summing up the RUDY
values of the cells in it. RUDY, PinRUDY, and MacroRegion form the
3 × M × N inputs of the congestion prediction model in the deep-
learning-based congestion optimization algorithm [22].

C. Deep-learning-based Congestion Optimization in Placement

The most recent strategy [22] for congestion optimization leverages
a DNN to predict the congestion hotspots given the RUDY, PinRUDY,

and MacroRegion at a placement iteration. It integrates the congestion
penalty explicitly into the placement objective, which becomes,

min
x,y

∑
e∈E

We(x,y) + λD(x,y) + ηL(x,y), (8)

where L(x,y) is the routing congestion penalty obtained from the
congestion prediction model. The weights λ and η control the trade-
off between wirelength, density, and congestion.

III. PROPOSED METHOD

A. Overview

Equation (8) presents the objective of the previous deep-learning-
based congestion optimization method. The proposed method also fol-
lows this optimization objective. Since the details of the wirelength and
density models are discussed in existing global placement algorithms,
we focus on the congestion penalty L(x,y) in this paper. In [22], the
congestion penalty is obtained from an FCN, whose inputs are RUDY,
PinRUDY, and MacroRegion. Thus, the congestion penalty at the i-th
placement iteration Li(x,y) can be defined as,

Li(x,y) =
1

MN
∥f(ri,pi,mi)∥22, (9)

where f(·) is congestion hotspots estimated by the FCN-based con-
gestion prediction model. The variables ri, pi, and mi represent
the RUDY, PinRUDY, and MacroRegion features at the i-th iteration,
respectively. Note that the features are determined by (x,y).

This paper presents a novel look-ahead mechanism, where a DNN
predicts the placement features after K iterations, ri+K , pi+K , and
mi+K , given previous placement features. To enhance the perfor-
mance of our look-ahead model, we estimate the novel cell flow ci+K

to capture the motions of cells, forming a multi-task learning scheme
that can improve the generalization ability.

Therefore, we estimate the congestion map according to the pre-
dicted placement features and cell flow, ri+K , pi+K , mi+K , and
ci+K . The new congestion penalty becomes,

Li(x,y) =
1

MN
∥f(ri+K ,pi+K ,mi+K , ci+K)∥22, (10)

We leverage a video prediction scheme for this task [25], [26].
The placement features at the i-th iteration, denoted by [ri,pi,mi],
can be regarded as a frame of video. The novel cell flow ci can be
regarded as the optical flow in the video that captures the motions of
points. Since it has been proved that learning with optical flow can
significantly improve the performance of video prediction [25], action
prediction [27], and so on, we expect to improve placement feature
prediction with the novel cell flow.

The information we need at the i-th iteration can be denoted
by Xi = [ri,pi,mi, ci]. Assuming we want to predict the
data at the i + K iteration, we can get C frames of inputs
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Fig. 2 Overview of LACO. The look-ahead model predicts future placement features. The cell flow captures the motions of cells. The predicted
placement features and cell flow are leveraged to estimate the congestion hotspots, whose gradient can guide the update of the cell locations.

{Xi−(C−1)K ,Xi−(C−2)K , . . . ,Xi}, and predict Xi+K with a DNN
represented by,

Xi+K = g(Xi−(C−1)K ,Xi−(C−2)K , . . . ,Xi). (11)

Finally, the novel congestion penalty can be summarized as,

Li(x,y) =
1

MN
∥f ◦g(Xi−(C−1)K ,Xi−(C−2)K , . . . ,Xi)∥22. (12)

The gradient from the congestion penalty, ( ∂Li(x,y)
∂x

, ∂Li(x,y)
∂y

) can be
calculated with the chain rule and utilized to update the cell locations.

Since looking ahead cannot completely eliminate the distribution
shift, we believe that learning an invariant latent feature space is
beneficial for enhancing the robustness of placement feature prediction
under varying inputs.

Therefore, we need to solve the following problems. (1) How to
represent the motions of cells. (2) How to predict future placement
features. (3) How to reduce the distribution variation of DNN feature
maps. Problems (1) and (2) contribute to the less-shifted inputs for
the congestion prediction model. Problem (3) is for the learning of
invariant latent feature space.

The overview of our algorithm is presented in Fig. 2. At each place-
ment iteration, we generate the RUDY, PinRUDY, and MacroRegion
features as [22]. In addition, we downsample the cell information
with a quasi-voxelization process and obtain the cell flows, which
will be discussed in Section III-B to solve problem (1). To predict
future placement features, C frames of data are inputted to a look-
ahead DNN model described in Section III-C, solving problem (2). In
Section III-D, we will introduce our technique to learn an invariant
latent feature space in the look-ahead model, solving problem (3).
Moreover, a congestion prediction DNN estimates the congestion
hotspots according to the predicted RUDY, PinRUDY, MacroRegion,
and cell flow. The gradients from the congestion penalty L(x,y) can
be utilized to update the cell locations (x,y), which will be discussed
in Section III-E.

B. Cell Flow

To predict the motions of cells, we need to represent the cells for
the motion estimation model. As shown in Fig. 1, the cells can be
viewed as points distributed within a certain range. Thus, point cloud
is a suitable representation of the cells. Each point has a 2D coordinate
representing its location and an additional feature vector containing its
information, such as the size and type.

Inspired by the optical flow in computer vision, we leverage the
novel cell flow to represent the motions of cells in the point cloud.
Assuming that a cell j has a location (xi,j , yi,j) at the i-th iteration of
global placement, the cell flow of this cell between the i-th and (i−K)-
th iteration is defined as c′i(xi,j , yi,j) = (xi,j−xi−K,j , yi,j−yi−K,j).

An intuitive way to look ahead is to predict the motion of every cell
during the placement. However, a circuit may contain more than one
million cells, which imposes a heavy burden not only on the runtime
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Fig. 3 Illustration of quasi-voxelization and cell flow. (a) The mo-
tions of cells and the downsampled cell flow under different quasi-
voxelization scheme. (b) The cell flow at the 150-th iteration under the
weighted-sum scheme. Different colors represent different directions.

but also on the training of the prediction model. Thus, we downsample
the cell flow with a quasi-voxelization process to reduce computation.

Inspired by point cloud applications [28] in computer vision, we
design three quasi-voxelization methods to downsample the cell flows.
To get a consistent feature size with RUDY, we also divide the layout
to an M × N grid in cell flow computation. For the grid-cell bk,l,
we use ci(k, l) to denote the downsampled cell flow, which can be
computed with one of the following schemes:

1) Sampling: It uses the cell flow of the largest cell. Representing
the size of cell j with sj , we can define the cell flow as,

ci(k, l) = sĵc
′
i(xĵ , yĵ), ĵ = argmax

j
sj , (xi,j , yi,j) ∈ bk,l.

(13)
2) Averaging: It uses the average cell flow of the cells in bk,l,

ci(k, l) =
1

Nk,l

∑
(xi,j ,yi,j)∈bk,l

c′i(xi,j , yi,j), (14)

where Nk,l is the number of cells in the grid-cell bk,l.
3) Weighted-sum: It uses the weighted sum of the cell flows,

ci(k, l) =
∑

(xi,j ,yi,j)∈bk,l

sj
Nk,l

× c′i(xi,j , yi,j). (15)

Fig. 3(a) shows the difference between the schemes. In weighted-sum,
we consider the motions and sizes of all cells, which preserves more
information than others. Thus, weighted-sum is the default scheme.
After quasi-voxelization, we can get an 2 × M × N downsampled
cell flow, which aggregates the horizontal and vertical motions. As
an example, Fig. 3(b) presents the cell flow at the 150 iteration on
des_perf_1, where the motions are represented by colors.
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Fig. 5 Visual illustration of the look-ahead mechanism. We only
show the RUDY maps and congestion hotspots for simplification. The
dashed line represents the flow without a look-ahead mechanism.

C. Look-ahead Model

The task of predicting future placement features is similar to the
video prediction task in computer vision, where the model takes
several frames as the input and outputs future frames. Although there
exist complex models for video tasks [29], SimVP [26] proves that
convolutional neural network (CNN) can achieve state-of-the-art video
prediction performance with a simple structure and a small number
of parameters, which reduces the runtime of the prediction model.
Therefore, the proposed look-ahead model is adapted from SimVP.

As shown in Fig. 4, the look-ahead model contains the encoder,
middle net, and decoder. The encoder consists of multiple blocks
of convolution, group normalization, and leaky ReLU layers. The
decoder is similar to the encoder but replaces the convolution layers
with deconvolution layers. The middle net includes multiple Inception
modules designed in [26], each of which consists of a bottleneck con-
volution layer with 1×1 kernel followed by parallel group convolution
layers. The branch to a VAE-like structure aims to learn an invariant
latent feature space, which will be introduced in Section III-D. The
loss of the look-ahead model includes three functions. The prediction
loss is ∥Xi+K−Xi+K∥22. The KL divergence loss and reconstruction
loss are from the VAE-like structure. To reduce the runtime, the look-
ahead model uses a lower resolution and interpolates its outputs to
match the input size of the congetsion prediction model. Inspired by
residual neural networks, we input Xi to the congestion model as a
shortcut to capture more information. These techniques speed up the
look-ahead prediction without performance degradation and make it
easier to train the DNN.

Fig. 5 shows a simple illustration of the look-ahead mechanism. By
looking ahead to a future iteration, we can obtain a RUDY map that
better indicates the final placement features.

D. Learning Invariant Feature Space

Inspired by variational autoencoder (VAE) [30], we map the DNN
feature map from the encoder in our look-ahead model to a standard
Gaussian distribution with several convolution layers and reconstruct
the DNN feature map with deconvolution layers. The encoded features
of the VAE-like structure are decoupled to a mean vector µ and a
variance matrix Σ. To learn a standard Gaussian latent space, we
minimize the KL divergence between the encoded features and a
standard Gaussian distribution,

KL(N(µ,Σ)∥N(0, I)) =
1

2

(
− log(|Σ|)−Nk + tr(Σ) + µTµ

)
,

(16)
where Nk is the dimensionality of the distribution. We also minimize
the reconstruction loss, which is defined as the mean squared error
(MSE) between the input and output of the VAE-like structure. In the
training of our look-ahead model, the loss function is the weighted sum
of the prediction loss, KL divergence loss, and reconstruction loss.
After training, the VAE-like structure can be ignored in congestion
prediction. Thus, it does not incur runtime overhead.

E. Congestion Optimization in Global Placement

To verify the effectiveness of our method, we follow the previous
deep-learning-based congestion optimization algorithm [22] to design
our congestion prediction model, which consists of five convolution
and two deconvolution layers. The gradient of the congestion penalty
can be propagated from the congestion prediction to the cell locations.
The gradients ∇Xi+K

Li(x,y) and ∇XiXi+K are computed by the
auto-gradient feature of DNN toolboxes. To update the cell locations,
∇xXi can be computed by summing up the following gradients:

1) ∇xri. According to the definition of RUDY in Equation (4), it
can be computed with,

∇xri =
∑
e∈E

∇xRUDYe(x,y), (17a)

∇xi,jRUDYe(x,y) =

{
− 1

(xh
e−xl

e)
2 , in [xl

e, x
h
e ]× [yl

e, y
h
e ],

0, in other locations.
(17b)

2) ∇xpi can be derived like ∇xri because RUDY and PinRUDY
have similar definitions.

3) ∇xmi = 0 because the macro cells are fixed.
4) ∇xci differs in three quasi-voxelization schemes. In the sampling

scheme (Equation (13)), the gradient is sĵ for a selected cell and
0 for others. For the points in the grid-cell bk,l, the gradient is

1
Nk,l

in the averaging scheme (Equation (14)), while the gradient
is sj

Nk,l
in the weighted-sum scheme (Equation (15)).

The gradient ∇yXi can be derived similarly. Finally, the gradients
from the congestion penalty ∇xL(x,y) and ∇yL(x,y) can be
computed with the chain rule.

IV. EXPERIMENTS

A. Experimental Setup

All DNN models in this paper are developed in Python with PyTorch
and trained on NVIDIA TITAN Xp GPU. We implement the operators
for RUDY, PinRUDY, MacroRegion, and cell flow with C++ and
CUDA, which can be integrated into PyTorch programs. We conduct
experiments on ISPD 2015 benchmark [31] following the settings of
[22]. To provide a fair comparison, we integrate all methods in our
experiments to the recently improved DREAMPlace. LACO uses 4
frames of data as the inputs, then predicts the placement features and
cell flow after 50 iterations. It uses 512 × 512 grids for congestion
prediction and a 64 × 64 resolution for the look-ahead model. We



generate 100 placement solutions for each design using DREAMPlace
with different parameters. The ground truths of congestion hotspots
are obtained from Cadence Innovus v17.1 based on the placement
solutions. We use an end-to-end model trained on the first 8 designs
in TABLE I to evaluate LACO on other designs. For the test on the
first 8 designs, we randomly select 800 placement solutions from other
designs as the training set.

B. Comparison with Previous Methods

We evaluate the results of placement with information obtained from
Innovus. The worst congestion score (WCS) and wirelength (WL) after
global routing are used as the metrics. WCS is defined as the maximum
ratio of overflow routing tracks (#OF ) to available tracks (#AV ),

WCSH = max
x,y

#OFH

#AVH
, WCSV = max

x,y

#OFV

#AVV
, (18)

where WCSH and WCSV refer to the WCS on the horizontal and
vertical directions, respectively.

TABLE I compares DREAMPlace [24], DREAM-Cong [22], and
our method LACO. DREAM-Cong brings a little improvement in
WCS. Due to better congestion estimation, LACO achieves 8.0% and
6.4% improvement in WCSH and WCSV , respectively, compared to
the baseline. Its WL is comparable to DREAMPlace and better than
DREAM-Cong.

C. Ablation Study

In this section, we show the effectiveness of LACO with a series of
ablation studies. We apply the proposed mechanisms to the original
DREAM-Cong one by one to show their effects. The following
schemes are compared:

1) DREAM-Cong: It uses congestion prediction only.
2) Look-ahead-only: It estimates the congestion with the predicted

placement features [ri+K ,pi+K ,mi+K ].
3) Cell-flow: It estimates the congestion with the predicted place-

ment features and cell flows [ri+K ,pi+K ,mi+K , ci+K ].
4) Cell-flow+KL: In addition to Cell-flow, it uses the VAE-like

structure to learn an invariant latent feature space. It is the final
version of LACO that is used in Section IV-B.

To compare these schemes on congestion prediction, we use the
NRMS and SSIM metrics that are used in [32]. Normalized root mean-
square error (NRMS) is defined as,

NRMS(Y ,Y ) =
∥Y − Y ∥2

(Ymax − Ymin)
√
NY

, (19)

where Y is the ground truth, Y is the predicted congestion, and
NY is number of grid-cells. Structural similarity (SSIM) measures the
similarity of two images in terms of statistics. In congestion prediction,
the similarity can be defined as,

SSIM(Y ,Y ) =
(2µY µY + C1)(2σY ,Y + C2)

(µ2
Y + µ2

Y
+ C1)(σ2

Y + σ2
Y

+ C2)
, (20)

where µY and µY are the mean values, σ2
Y and σ2

Y
are the variances.

The correlation coefficient between the ground truth and congestion
prediction is σY ,Y . C1 and C2 are two constants.

We use the first 8 designs to train these models and compare their
performance on congestion prediction. Fig. 6 compares the schemes on
NRMS and SSIM. Look-ahead-only improves the NRMS and SSIM
significantly. Cell-flow and Cell-flow+KL bring further improvement.
Finally, Cell-flow+KL achieves 34.8% and 28.7% improvement in
NRMS and SSIM, respectively. This experiment shows the effec-
tiveness of LACO on congestion prediction. A better estimation of
congestion hotspots can provide an more accurate congestion panelty
on the cell locations.
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Fig. 6 Scheme comparison on (a) NRMS ↓; (b) SSIM ↑.
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Look-ahead Backward (9.2%)

Look-ahead (10.1%)

Cell Flow (0.2%)

Congestion Prediction Backward (13.9%)

Congestion Prediction (17.4%)

Placement Features (38.0%)

Wirelength and Density (11.2%)

Fig. 8 Runtime breakdown of LACO, based on DREAMPlace.

To show the effects of cell flow and invariant latent feature space, we
also compare the following schemes with Cell-flow and Cell-flow+KL:

1) No-flow-KL: It removes everything about cell flow in Cell-
flow+KL.

2) Less-flow-KL: It keeps most features of Cell-flow+KL, but do
not input the cell flow into the congestion prediction model.

As shown in Fig. 7, Less-flow-KL has comparable performance with
Cell-flow+KL but has slightly worse SSIM. However, totally removing
the cell flow leads to obvious deterioration on both NRMS and SSIM.
Cell-flow does not employ the VAE-like structure and also has worse
performance than Cell-flow+KL.

We test the three quasi-voxelization schemes in congestion pre-
diction. The average scheme has the worst performance, obtaining
28.8% larger NRMS than the weighted-sum scheme. The sampling
scheme has 2.1% larger NRMS than weighted-sum. Thus, we use the
weighted-sum scheme by default.

D. Runtime

Fig. 8 shows the average runtime breakdown of LACO on the
testcases. The novel look-ahead mechanism does not induce much
runtime overhead. Most time is spent on placement feature gathering
and congestion prediction, which is not brought by the look-ahead
model. Since computing the cell flow only needs to consider the cells,
it consumes much less time than placement feature gathering, which
needs to traverse all nets.

V. CONCLUSION



TABLE I Comparison Between LACO and Previous Methods on ISPD 2015 Benchmark

Benchmark #Cells #Nets DREAMPlace DREAM-Cong LACO
WCSH WCSV WL(105µm) WCSH WCSV WL(105µm) WCSH WCSV WL(105µm)

des perf 1 113k 113k 0.47 0.40 13.88 0.47 0.40 13.82 0.40 0.40 13.87
des perf a 109k 110k 2.25 1.67 22.21 1.89 1.60 22.33 1.69 1.30 22.27
des perf b 113k 113k 0.07 0.27 16.70 0.13 0.27 16.71 0.07 0.20 16.57
edit dist a 130k 131k 4.05 4.14 53.54 4.30 4.07 53.62 3.50 3.14 53.40

fft 1 35k 33k 0.59 0.40 4.96 0.43 0.47 4.95 0.46 0.40 4.91
fft 2 35k 33k 0.40 0.78 5.86 0.36 0.67 5.88 0.27 0.61 5.84
fft a 34k 32k 0.55 0.56 10.56 0.83 0.77 10.53 0.50 0.56 10.52
fft b 34k 32k 3.50 2.33 12.13 3.50 2.67 12.16 3.33 2.33 12.12

matrix mult 1 160k 159k 0.71 0.53 25.85 0.88 0.58 28.95 0.68 0.44 25.83
matrix mult 2 160k 159k 0.65 0.42 25.71 0.78 0.84 29.99 0.61 0.45 25.71
matrix mult a 154k 154k 0.47 0.40 36.99 0.44 0.37 37.02 0.47 0.37 36.78
matrix mult b 151k 152k 8.69 2.65 35.08 8.69 2.65 35.29 8.69 2.65 35.07
matrix mult c 151k 152k 0.53 0.40 35.42 0.50 0.27 35.97 0.47 0.30 35.42
pci bridge32 a 30k 30k 2.06 0.84 6.12 1.83 0.87 6.14 1.89 0.95 6.13
pci bridge32 b 29k 29k 0.03 0.23 9.77 0.14 0.31 10.57 0.10 0.20 9.65
superblue11 a 954k 936k 1.10 25.00 392.78 1.15 23.00 396.98 1.10 25.00 392.93
superblue12 1293k 1293k 3.00 3.00 414.10 2.73 2.57 414.12 2.45 2.57 413.95
superblue14 634k 620k 1.10 4.17 277.32 1.06 4.67 277.69 1.00 3.50 277.97

superblue16 a 698k 697k 0.91 10.75 309.04 1.00 10.00 310.17 1.00 9.75 309.03
superblue19 522k 512k 1.70 3.67 201.34 1.30 4.33 202.36 1.57 3.50 201.27

Average - - 1.64 3.13 95.47 1.62 3.07 96.22 1.51 2.93 95.46
Ratio - - 1.00 1.00 1.00 0.99 0.98 1.01 0.92 0.94 1.00

In this paper, we propose a look-ahead congestion optimization
method to mitigate the distribution shift problem for deep-learning-
based congestion optimization in global placement. By predicting
the future placement features, we achieve a significant improvement
in congestion prediction. With the quasi-voxelization and cell flow
prediction mechanism, we enhance the performance by capturing
the motions of cells. The VAE-like structure also contributes to the
congestion prediction with less distribution shift. Integrating the pro-
posed mechanisms to global placement contributes to a maximum of
34.8% improvement in congestion prediction and 8.0% improvement
in congestion optimization than previous methods.
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