
LRSDP: Low-Rank SDP for Triple Patterning Lithography
Layout Decomposition

Yu Zhang1,2†, Yifan Chen1†, Zhonglin Xie1, Hong Xu2, Zaiwen Wen1, Yibo Lin1,3∗, Bei Yu2∗

1Peking University, Beijing, China 2Chinese University of Hong Kong, Hong Kong, China
3Institute of Electronic Design Automation, Peking University, Wuxi, China

Abstract—Multiple patterning lithography (MPL) has been widely
adopted in advanced technology nodes to enhance lithography resolution.
As layout decomposition for triple patterning lithography (TPL) and
beyond is NP-hard, existing approaches formulate mathematical program-
ming problems and leverage general-purpose solvers such as integer linear
programming (ILP) and semidefinite programming (SDP) to trade off
quality against runtime. With the aggressive increase in design complexity,
existing approaches can no longer scale to solve complicated designs with
high solution quality. In this paper, we propose a dedicated low-rank SDP
algorithm for MPL decomposition with augmented Lagrangian relaxation
and Riemannian optimization. Experimental results demonstrate that
our method is 186×, 25×, and 12× faster than the state-of-the-art
decomposition approaches with highly competitive solution quality.

I. INTRODUCTION

Multiple patterning lithography (MPL) is widely adopted in ad-
vanced technology nodes. It imposes a layout decomposition step in
the design flow that layout features close to each other are assigned to
different masks to prevent coloring conflicts. Fig. 1 shows an example
where a decomposition graph is constructed by regarding features as
vertices and connecting features within a certain distance. Different
colors denote different masks. If two vertices of a conflict edge are
assigned to the same color, then a conflict occurs. We can resolve
conflicts by assigning different parts of one feature into different
colors, which is known as stitch insertion. The objective of layout
decomposition is to minimize the number of conflicts and stitches, as
conflicts lead to printing failure and stitches can cause yield loss [1].

Most existing MPL decomposition studies follow a two-step proce-
dure after constructing the decomposition graph. They first break and
simplify the graph into small subgraphs and then apply decomposition
algorithms on subgraphs. The decomposition algorithms are based
on ILP [2], SDP [3], exact cover [4], or other graph heuristics [5].
Among these methods, ILP can provide exact solutions at the cost
of exponential runtime complexity, while SDP and exact cover can
provide high-quality approximation with affordable runtime.

However, these methods usually assume the subgraphs after the
simplification step are small, i.e., fewer than 100 vertices [2]. When
the design complexity increases, the sizes of subgraphs also boost. We
observe that 2.2% large graphs (> 1000 vertices) take 94.5% of the
runtime, while 87.9% small graphs (< 100 vertices) only take 0.1%
of the overall runtime for a state-of-the-art layout decomposer with a
general-purpose SDP solver [6], as shown in Fig. 1(c)- 1(d). Therefore,
new decomposition algorithms are urgently desired to improve the
efficiency for large designs.

To achieve efficient yet high-quality decomposition, we propose a
scalable SDP solving algorithm leveraging the low-rank property [7]
and exploiting the problem structure. The major contributions of this
paper are summarized as follows.

This work is partially supported by The Research Grants Council of
Hong Kong SAR (No. CUHK14209420, CUHK14208021), National Science
Fundation of China (No. 62141404), and The 111 Project (No. B18001).

†Equal contributors
∗Corresponding authors

a

b

cd
(a)

d2

a
d1

b
c2

c1
(b)

87.9%

9.9%
2.2%

Small
Medium
Large

(c)

5.4%
93.5%

Small
Medium
Large

(d)

Fig. 1 (a) Input features. (b) The final decomposed layout with three
colors, where the conflict edges are marked as black edges and stitch
edges are marked as blue dashed edges. (c) The proportion of small,
medium, and large subgraphs after graph simplification. (d) The time
ratio spent on solving the TPL decomposition for these subgraphs.

• We propose LRSDP, a scalable low-rank SDP solver for the MPL
decomposition problem on large graphs. Specifically, we leverage
the decomposition-based augmented Lagrangian method (ALM)
to solve the large-scale SDP problem from MPL.

• We propose to exploit the problem structure by restricting the
searching space on a smooth manifold (unit sphere). Particularly,
the Riemannian gradient descent method with Barzilai–Borwein
steps (RGBB) is adopted here to search for the optimal solution
with high efficiency.

• Experimental results demonstrate that compared with the state-of-
the-art algorithms, including ILP [2], exact cover [4], SDP [3], our
LRSDP method can achieve 186×, 25×, and 12× speedup with
better solution quality than exact cover and SDP on ISPD2019
contest benchmarks. LRSDP is even scalable to large designs that
cannot be solved by the other algorithms.

II. PRELIMINARIES

In this section, we first introduce the program formulation and the
SDP relaxation of TPL decomposition. Then, we explain the algorithm
for solving general SDP and low-rank property of the decomposition
problem.

A. Problem Formulation

Definition 1. (Decomposition Graph): Given a layout represented
by a set of polygonal shapes, the decomposition graph (DG) is an
undirected graph with a single set of vertices V , and two sets of
edges, conflict edges (CE) and stitch edges (SE), respectively. V
has one or more vertices for each polygonal shape, and each vertex is
associated with a polygonal shape. An edge is in CE if and only if the
two polygonal shapes are within minimum coloring distance mins. An



edge is in SE if and only if there is a stitch between the two vertices
which are associated with the same polygonal shape.

Problem 1. (Triple Patterning Layout Decomposition): Given a layout
which is specified by features in polygonal shapes, a decomposition
graph is constructed. The goal of TPL is to assign vertexes in the
decomposition graph to three masks (colors) with following cost
minimized,

cost = #conflict + α#stitch,

where α is set to 0.1 [8].

B. SDP-Based Layout Decomposition

In TPL decomposition, there are three possible colors. We set a
unit vector vi for every vertex i (i = 1, · · · , n). Naturally, if eij is a
conflict edge, we want vertices vi and vj to be far apart. If eij is a
stitch edge, we hope vertices vi and vj to be the same. Bearing this
in mind, we associate all the vertices with three different unit vectors:
(1, 0), (− 1

2
,
√
3
2
), (− 1

2
,−

√
3

2
), so we have the following property:

v⊤
i vj =

{
1, vi = vj ,

− 1
2
, vi ̸= vj .

Based on the above property, we can formulate the triple patterning
layout decomposition as the following vector program [3]:

min
2

3

∑
eij∈CE

(v⊤
i vj +

1

2
) +

2α

3

∑
eij∈SE

(1− v⊤
i vj), (1)

s.t. vi ∈ {(1, 0), (−1

2
,

√
3

2
), (−1

2
,−

√
3

2
)}, (1a)

where the left part is the cost of all conflicts and the right part
represents the cost of all stitches.

The vector program (1) is NP-hard due to the discrete constraint
(1a). The problem can be further relaxed as the following semidefinite
program [3]:

min
X∈Rn×n

⟨C,X⟩ (2)

s.t. xii = 1, ∀i ∈ V (2a)

xij ≥ −1

2
, ∀eij ∈ CE (2b)

X ≥ 0, (2c)

where ⟨C,X⟩ = tr(C⊤X) represents the Euclidean inner product
between two matrices C and X , i.e.,

∑
i

∑
j cijxij . Here xij is the

entry at the i-th row and the j-the column of matrix X , and cij is the
entry at the i-th row and the j-the column of matrix C:

cij =


1, ∀eij ∈ CE,
−α, ∀eij ∈ SE,
0, otherwise.

Without discrete constraint (1a), program (2) is not NP-hard now
and can be solved in polynomial time [3]. What’s more, constraint (2c)
indicates that the symmetric matrix X should be positive semidefinite.
Therefore, we can always find a matrix R such that X = R⊤R.

C. Interior-Point Method to Solve SDP

Interior-point methods are widely-adopted to solve SDP [6], [8]. The
basic idea of primal-dual interior-point methods is to find a feasibly
optimal point that satisfies the KKT conditions of the semidefinite
programs, along with Newton’s method to solve the subproblem at
each iteration [9]. In practice, these methods are capable of solving
small- to medium-sized problems precisely, but not scalable due to

=

Fig. 2 Low-rank decomposition

their inherent high demand for storage and computation. Particularly,
the time complexity of the interior-point methods is cubic in the
number of variables, i.e., O(n3) [9], thereby prompting research for
alternative approaches.

D. Low-Rank Property of TPL Decomposition

It has been recognized that the solution to the SDP generated
by the relaxation of combinatorial optimization tasks is often low-
rank. Hence, a class of low-rank decomposition-based methods has
been adopted in dealing with such SDP problems [7], [10]. Here we
illustrate this property with a simple TPL decomposition problem in
Fig. 1(b). After solving the SDP in (2), we can get a matrix X as:

X =



1 −0.49 0.21 −0.5 −0.5 0.21
1 −0.5 −0.5 −0.5 −0.5

1 0.43 0.15 −0.5
1 0.95 0.15

· · · 1 0.43
1

 .

Observe that X is essentially a rank-deficient semidefinite matrix,
so we can further decompose it as X = R⊤R, where R ∈ Rp×n(p <
n). Then we have:

R =

 0.26 0.72 −0.39 −0.95 −0.95 −0.39
−0.96 0.70 −0.32 0.26 0.26 −0.32

0 0 −0.87 −0.16 0.16 0.87

 .

The low-rank factorization process is illustrated in Fig. 2. In
particular, the benefits of the low-rank factorization are three-fold:

• The semidefinite constraint (2c) can be naturally omitted as it is
implied by the factorization;

• This low-rank factorization leads to many fewer variables in the
problem of interest, as X is explicitly represented by the matrix
R of dimension p×n (typically with p ≪ n), thereby decreasing
the computational complexity;

• Although Formula (2) becomes nonlinear and nonconvex after
low-rank factorization, the global optimality of the solution to
this factorized surrogate can still be ensured by simply choosing
p ≥

√
2m, where m is the number of constraints [7].

With these benefits, we thereby perform low-rank factorization to
our SDP program (2), which will be discussed in detail in Sec-
tion III-A.

III. ALGORITHMS

In this section, we will present our basic algorithms, which take
full advantage of the specific problem structure and thus reduce
the numerical difficulty in solving the TPL decomposition problem.
First, we will reformulate the TPL decomposition problem with low-
rank factorization and recast the Euclidean optimization problem to
a Riemannian optimization problem on a smooth manifold. Then, we
will introduce a decomposed augmented lagrangian method (ALM)
for TPL decomposition, followed by a Riemannian gradient descent
method with Barzilai-Borwein steps (RGBB) to solve the subproblem
at each iteration. Finally, we will give a convergence analysis for the
decomposed ALM.



A. Low-Rank Factorization

Canonical semidefinite programs involve optimizing a matrix-valued
variable X (a symmetric n×n matrix), where the number of variables
grows quadratically, so it quickly becomes unaffordable for SDP
solvers employing exact methods to deal with large-scale layouts.
Motivated by the low-rank property of solutions to such SDP problems,
we factorize X as X = R⊤R, where R ∈ Rp×n, then the original
semidefinite programs in (2) becomes:

min
R∈Rp×n

⟨C,R⊤R⟩ (3)

s.t. ∥ri∥2 = 1, ∀i ∈ V (3a)

r⊤
i rj ≥ −1

2
, ∀eij ∈ CE, (3b)

where ri is the i-th column vector of R and ∥·∥2 denotes the L2-norm
of vectors.

B. Smooth Semidefinite Programs

In order to fully utilize the TPL decomposition problem structure,
we further restrict the optimization of variable R from Rp×n to a
smooth manifold. Specifically, the constraint (3a) can be naturally
satisfied by forcing R in a smooth manifold: M = {R ∈ Rp×n|R =
[r1, · · · , rn], ∥ri∥2 = 1}, which is exactly a unit sphere (see M in
Fig. 3(b)). In other words, we consider the constraint (3a) as a manifold
and optimize the variable of interest on this manifold. Compared
to Euclidean space optimization, the reasons for constraining the
optimization of R on a smooth manifold M are summarized as
follows:

• The satisfiability of constraint Equation (3a) is naturally guaran-
teed as the solutions are always on the smooth manifold M;

• The structure information of a smooth manifold can be fully
utilized to reduce searching space as we essentially search for
the optimal solution on a unit sphere, thereby solving large-scale
TPL decomposition problems efficiently.

Now, the only difficult constraint in Formula (3) is the inequality
constraint (3b). Here we introduce an auxiliary variable W ∈ Rn×n to
remove the inequality constraint, so the factorized SDP is reformulated
as:

min
R∈M

⟨C,R⊤R⟩+ h(W ) (4)

s.t. P ⊙R⊤R = W , (4a)

where ⊙ denotes element-wise product, h is a characteristic function,
and P encodes the information of conflict edges:

h(W ) =

{
0, wij ≥ − 1

2
, ∀eij ∈ CE,

+∞, otherwise,

pij =

{
1, ∀eij ∈ CE,
0, ∀eij /∈ CE.

Here wij is the entry at the i-th row and the j-th column of matrix
W , and pij is the entry at the i-th row and the j-th column of matrix
P .

C. Augmented Lagrangian Method

After transforming the inequality constraints (3b) to equality con-
straints (4a), the augmented Lagrangian method (ALM) is adopted here
to solve the nonlinear and non-convex programming problem for TPL
decomposition. The basic idea behind ALM is the idea of penalization,
i.e., the method optimizes an augmented objective which includes
an additional term that penalizes infeasible points. In particular, the

Algorithm 1: The LRSDP algorithm

Input: Initialize start point R0 ∈ M, ALM step size α, ρ > 1,
penalty parameter σ0 > 0;

1 Set k = 0, yk = 0;
2 while not yet converged do
3 Obtain Rk+1 by solving (6);
4 Update W k+1 via Equation (7);
5 Update Lagrangian multipliers yk+1 based on

Equation (6a), and σk+1 by Equation (6b) ;
6 Set k = k + 1.
7 end

augmented Lagrangian function associated with Formula (4) is denoted
by:

Lσ(R,W ,y, σ) = ⟨C,R⊤R⟩+ h(W )−

⟨y,P ⊙R⊤R−W ⟩+ σ

2
∥P ⊙R⊤R−W ∥2F .

(5)

Here y ∈ Rn×n, and σ > 0 is a parameter for ALM. In contrast to
the canonical Lagrangian method, the augmented Lagrangian function
differs merely in the penalization term involving σ. This term measures
the infeasibility of R with respect to constraint (4a) and is scaled by
the penalty parameter σ. Then, based on Equation (5), the k-th iteration
of the ALM is given as follows:

(Rk+1,W k+1) = argmin
R∈M,W∈Rn×n

Lσk (R,W ,yk, σk), (6)

yk+1 = yk − ασk(P ⊙ (Rk+1)⊤Rk+1 −W k+1), (6a)

σk+1 =

{
σk, uk+1 < uk,

ρσk, otherwise,
(6b)

where α is the ALM step size, ρ > 1, and uk = ∥P ⊙ (Rk)⊤Rk −
W k∥2F implies the infeasibility of Rk. The rationale here for the
update rule of σk+1 is that if uk+1 < uk, we know that the Lagrangian
framework moves towards reducing the infeasibility so that there is
no need to increase the penalty parameter. If, on the other hand,
uk+1 ≥ uk, then (6b) scales σk by ρ to force the update of Lagrangian
multipliers to the target level.

Based on the above update functions, the major challenge is to
determine optimal (Rk+1,W k+1) from Equation (6) as yk+1 and
σk+1 can be explicitly updated by Equation (6a) and Equation (6b),
respectively. To begin with, considering minimizing the function
Lσk (R,W ,yk, σk) with respect to a fixed R, the optimal solution
of W follows:

W = ΠS(P ⊙R⊤R− yk/σk), (7)

where ΠS(A) is the projection of A on set S = {W ∈ Rn×n|wij ≥
− 1

2
, ∀eij ∈ CE}. Therefore, given R, we can always find the

optimal W by Equation (7). Now, the only problem is to obtain the
optimal solution R of Lσk (R,W ,yk, σk), which plays a critical
role in the overall efficiency of the LRSDP algorithm. Here we
apply a Riemannian gradient descent method with Barzilai-Borwein
steps (RGBB) to optimize R, which will be discussed with details
in Section III-D. Given an approximate solution Rk+1, the overall
algorithm is summarized in Algorithm 1.

D. Riemannian Optimization Method with Barzilai–Borwein Steps

We now discuss how we obtain the optimal solution R
via Riemannian optimization. In particular, the main computa-
tional work of ALM lies in solving the optimization subproblem:



(a)

Retraction

(b)

Fig. 3 (a) The gradient descent method with BB steps. (b) The
Riemannian optimization method with BB steps.

argmin
R∈M

Lσk (R,W ,yk, σk). First, as W can be explicitly repre-

sented by R, we plug the optimal solution of W (7) into this
subproblem:

Φk(R) := inf
W∈Rn×n

Lσk (R,W ,yk, σk) (8)

=⟨C,R⊤R⟩+ h(ΠS(P ⊙R⊤R− yk/σk))

− ∥yk∥22
2σk

+
σk

2
∥P ⊙R⊤R− yk/σk

−ΠS(P ⊙R⊤R− yk/σk)∥2F .

Then, the optimal Rk+1 can be computed as: Rk+1 =
argmin
R∈M

Φk(R). In order to further simplify Equation (8), we leverage

orthogonal decomposition that correlates the projection ΠS(A) with
its orthogonal complement ΠS⊥(A), i.e., A = ΠS(A) + ΠS⊥(A).
In particular, denote T (R) = ΠS⊥(P ⊙R⊤R− yk/σk), we have:

T (R) = P ⊙R⊤R− yk/σk −ΠS(P ⊙R⊤R− yk/σk) (9)

Ignoring the constant term, the minimization of R in Equation (8)
can be rewritten as:

min
R∈M

Φk(R) =⟨C,R⊤R⟩+ h(P ⊙R⊤R− yk/σk − T (R)) (10)

+
σk

2
∥T (R)∥2F .

The subproblem in Equation (10) is virtually an unconstrained
Riemannian manifold optimization problem. Observing that Φk(R)
is continuously differentiable but may not be twice continuously
differential, we thus apply a Riemannian gradient descent method
with Barzilai–Borwein steps (RGBB) [11] to solve Equation (10) to a
high-precision. The key idea of RGBB method lies in the explicit
use of first-order information (gradient) of the objective function
on one side, and, on the other side, in the implicit use of second-
order information embedded in the step length through a rough
approximation of the Hessian of the objective function. This is crucial
in the solution of layout decomposition problems where computing
the Hessian represents a heavy burden, owing to the large problem
dimension.

Traditionally, given the problem min
x∈Rn

f(x), where f is a smooth
cost function in the Euclidean case, the simplest gradient-type method
is the Newton method based on the steepest descent direction:

xk+1 = xk − αk∇f(xk), (11)

where step length αk = H−1 (H is the Hessian matrix of f(xk)).
However, this ideal step length is usually unnecessarily expensive to
compute for a general nonlinear cost function f , such as Φk(R) in
our problem. Therefore, a more practical strategy is to identify a step
length that achieves an adequate reduction in f with minimal cost.

The Barzilai–Borwein (BB) method [11] provides an alternative
strategy for the clever choice of step length. Although it does not
guarantee the steepest decrease of the objective function at each step,
it yields impressive good practical performance. The basic idea of the
BB method is to approximate the computationally expensive Hessian
by solving, for k ≥ 1, the least-square problem

min
t

∥skt− yk∥2, (12)

with sk := xk − xk−1 and yk := ∇f(xk)−∇f(xk−1). Obviously,
Equation (12) has the unique solution t =

s⊤k yk

s⊤
k
sk

, which inexactly

approximates the Hessian matrix of f(xk). When s⊤
k yk > 0, the BB

step-length is

αBB
k =

s⊤
k sk

s⊤
k yk

. (13)

Then the gradient descent in Equation (11) becomes xk+1 = xk −
αBB
k ∇f(xk). In essence, the BB method is a Quasi-Newton approach

where the second-order information (Hessian matrix) is implicitly
embedded in the step length αBB

k+1 through a cheap approximation
in Equation (13). The gradient descent with BB method in Euclidean
space is illustrated in Fig. 3(a).

As in the Euclidean case, the idea of the RGBB method in our
problem is to approximate the Riemannian Hessian of Φk(R) at a
certain point. In particular, at the k-th step, the Hessian is a linear
map from TRk−1

M to TRk
M, where TRk

M is the tangent space at
point Rk. Similarly, we would like to use BB step size to approximate
the Hessian in Riemannian optimization.

To begin with, instead of the subtraction xk −xk−1, we now con-
sider the vector (−αk−1gk−1) belonging to TRk−1

M and transport
it to TRk

M, yielding

sk := −αk−1TRk−1→Rk
(gk−1). (14)

Then, to obtain yk, we need to subtract two gradients lying in two
different tangent spaces. To be coherent with the manifold structure
and to work on tangent space TRk

M, this difference should be made
after gk−1 is transported to TRk

M so that

yk := gk − TRk−1→Rk
(gk−1). (15)

Subsequently, the least-squares approximation with respect to
TRk

M yields t =
⟨sk,yk⟩Rk
⟨sk,sk⟩Rk

. Therefore, the Riemannian BB step
length has the form:

αBB
k =

⟨sk, sk⟩Rk

⟨sk,yk⟩Rk

, (16)

provided that ⟨sk,yk⟩Rk
> 0. With BB step size, we can now update

Rk+1 with the retraction from Rk +αBB
k gk to the smooth manifold

M, i.e., Rk+1 = CRk (α
BB
k gk). The RGBB at k-th step is illustrated

in Fig. 3(b), from which we can see that the main difference between
Euclidean and Riemannian optimization is the retraction process. In
practice, we implement a nonmonotone line search strategy [12] to
guarantee the global convergence to stationary points. Now, the whole
LRSDP framework is shown in Fig. 4.

E. Convergence Analysis of ALM

In this section, we consider the convergence of ALM in solving the
factorized semidefinite program in (4). In nonlinear programming, the
optimum (R,W ) necessarily satisfies the KKT conditions. Specif-



LRSDP
ALM

Initialization

Solve Subproblem

Update Multiplier

No
Converged ?

RGBB

Update Parameters

Line Search

Update R 

Step Size 

Converged ?
NoYes

Yes

Fig. 4 The algorithm flow of LRSDP.

ically, we say (R,W ) satisfies the KKT conditions if there exist
Lagrange multipliers y ∈ Rn×n such that

P ⊙R⊤R = W , (17)

0 ∈ ∂h(W ),

0 ∈ 2R(∇f(R⊤R)− P ∗y) +NRM,

where f(R⊤R) = ⟨C,R⊤R⟩ and NRM represents the normal cone
of M at R. In order to discuss the framework convergence, we use
the following two stopping criteria in solving the subproblem in (10):

∥gradΦk(R
k+1)∥F ≤ ϵk, (18)

Φk(R
k+1)− inf

R∈M
Φk(R) ≤ ϵk. (19)

First, under the condition (18), we have the following conclusion
for identifying the KKT condition satisfaction.

Theorem 1. Assume that the sequence {Rk,W k} obtained by RGBB
satisfies the condition (18) and let R∗ and W ∗ be limit points of
{Rk} and {W k}. Suppose limk→∞ϵk = 0 and σk+1 = σk. Then,
(R∗,W ∗) satisfies the KKT conditions (17) for the optimization
problem.

Then, with condition (19), we establish the global convergence of
the augmented Lagrangian method as:

Theorem 2. Let X∗ and W ∗ be limit point of {Xk} and {W k}.
Assume that {ϵk} is bounded. Then, we have h(W ∗) < ∞. For any
X ∈ D and W ∈ Rn×n satisfying h(W ) < ∞, we would have

∥P ⊙X −W ∥2F ≤ ∥P ⊙X∗ −W ∗∥2F , (20)

Here D = {X|xii = 1,X ≥ 0} in our TPL decomposition problem.
Moreover, if we further assume that limk→∞ϵk = 0 and σk+1 = σk

as in Theorem 1. Then, (X∗,W ∗) is a global minimizer of (5).
For any R ∈ M and W ∈ Rn×n, (20) holds according to Theorem

5.1 in [13]. Similarly, the global convergence of ALM follows from
Theorem 5.2 in [13].

IV. EXPERIMENTAL RESULTS

We implement LRSDP in C++, using Eigen [14] library as the
backend and Spectra library [15] as the eigenvector solver. Then
LRSDP is integrated into the OpenMPL framework [16] as an optional
coloring solver. The experiments are conducted on the ISPD’19
benchmarks under the same problem setting as OpenMPL [16]. Each
selected layer n on test m is represented by testm_n in the following
tables. For example, test1_100 represents layer 100 on test 1 of
ISPD2019. As OpenMPL uses one thread at solver level, to fairly
compare the performance and efficiency of different solvers, we use
one thread in OpenMPL for evaluation. All experiments are tested on

Fig. 5 Decomposition results of test6_100 in ISPD’19 benchmarks.

a Linux machine with two 20-core Intel Xeon Gold 6230 CPUs @
2.10GHz and 500 GB memory.

In this section, we demonstrate the effectiveness of LRSDP by
comparing our method with three state-of-the-art TPL decomposition
methods, including ILP [17], exact cover (EC) [16], and SDP [18]
employing interior-point methods, all of which are available coloring
algorithms in OpenMPL. Specifically, Gurobi is adopted as the ILP
solver, and CSDP is utilized as the SDP solver. Our method leverages
LRSDP for the decomposed subgraphs with > 24 vertices and uses
CSDP for the rest, since CSDP is sufficiently fast on these tiny
subgraphs. To be fair, both CSDP and LRSDP use double-precision.
Meanwhile, to solve within a reasonable time, the three algorithms,
including ILP, CSDP, and ours, which support setting up a time limit,
are terminated when the runtime on a single subgraph exceeds one
hour. We also set the total time limit for each test case to 16 hours.
Note that test4_102 and test10_102 are not included in our
experiments as they are so large that would cause a segmentation
fault in OpenMPL before being sent to the coloring solver. All the
other layers in ISPD’19 are included in our experiments, and they are
divided into two tables based on whether they can be solved by all
four decomposers or not. Fig. 5 shows the decomposition result for
the case test6_100 of ISPD’19 benchmarks.

First, TABLE I compares the results of the test cases that all
four decomposers can solve. Among two SDP-based approaches, our
method is 12.48× faster than CSDP on average with 5% lower cost.
Notably, in large cases, our method can achieve up to 80.67× speed
up with even better solution quality (see test3_100 in TABLE
I). Besides, our approach can achieve 25.80× acceleration and 29%
cost reduction compared to the search-based EC algorithm. The ILP
outperforms other algorithms for cost yet suffers the most in efficiency.
More specifically, our method is 186.62× faster than ILP and only
increases about 11% cost, which makes a better trade-off between
performance and efficiency.

Second, TABLE II presents the results of cases in which some
algorithms crash (‘Failed’ in table) or exceed the time limit (‘TLE’
in table). From this table, we observe that our method is able to deal
with fairly large cases within the time limit, whereas CSDP is prone
to fail on these large layouts. What’s more, the runtime of interior-
point-based CSDP increases dramatically with the rising of problem
size, demonstrating the stability and scalability of decomposition-based
LRSDP. The EC algorithm is unable to obtain a feasible solution after
limiting the runtime of a single subgraph, while its total runtime is
also unacceptable in large-scale layouts. ILP may obtain a feasible
solution by constraining the running time, yet the solution quality will
decrease significantly with limited runtime. Taking test4_101 as
an example, our approach can achieve 46% lower cost than ILP. Our
method costs more time here on test4_101 because SDP typically



TABLE I Experiments on different decomposition algorithms. The cases can be solved by all the 4 decomposers.
Vertices ILP EC CSDP Ours

test case Total Mean Max conflict stitch cost time/s conflict stitch cost time/s conflict stitch cost time/s conflict stitch cost time/s

test1 100 8073 25 171 241 299 270.9 88.9 364 266 390.6 17.3 269 287 297.7 4.5 262 285 290.5 2.8
test1 101 4398 61 834 78 138 91.8 3739.1 156 129 168.9 104.6 94 134 107.4 34.1 98 141 112.1 4.8
test1 102 109 16 46 1 1 1.1 2.2 1 2 1.2 0.0 1 1 1.1 0.1 1 1 1.1 0.1
test2 100 253454 34 1068 5046 8934 5939.4 22120.4 8996 8626 9858.6 1910.8 6439 8179 7256.9 330.1 6456 8202 7276.2 101.2
test2 102 13021 42 2375 213 502 263.2 12243.6 565 313 596.3 3794.0 479 475 526.5 579.8 297 486 345.6 28.6
test3 100 21064 92 7060 680 757 755.7 24566.2 1271 213 1292.3 10213.0 1058 1109 1168.9 13577.3 911 733 984.3 168.3
test3 101 8682 71 2858 130 270 157.0 10422.4 343 141 357.1 3806.8 196 276 223.6 854.4 194 266 220.6 30.7
test3 102 76 13 26 2 1 2.1 0.1 1 1 1.1 0.0 2 1 2.1 0.0 2 1 2.1 0.0
test5 100 9187 19 781 354 330 387.0 5523.0 495 329 527.9 90.9 396 329 428.9 43.9 402 321 434.1 6.8
test5 101 12515 20 246 467 232 490.2 113.1 601 300 631.0 29.3 527 228 549.8 9.9 496 229 518.9 3.8
test5 102 8265 51 3295 197 174 214.4 7225.2 379 66 385.6 707.8 262 151 277.1 1526.5 238 144 252.4 40.8
test6 102 26540 28 978 115 482 163.2 451.1 296 567 352.7 99.6 144 477 191.7 65.0 150 479 197.9 10.8
test7 100 287412 18 2678 8424 9740 9398.0 36696.6 10585 10145 11599.5 2401.7 9020 9509 9970.9 2936.4 9089 9490 10038.0 698.6
test8 100 95194 8 78 5683 4606 6143.6 158.2 5785 4586 6243.6 50.9 5750 4547 6204.7 47.2 5752 4549 6206.9 38.0
test8 101 553934 25 4897 6199 13139 7512.9 52660.6 10780 14896 12269.6 14176.5 7275 12741 8549.1 7466.4 7235 12840 8519.0 820.7
test9 100 144539 8 71 8739 6969 9435.9 249.3 8966 6884 9654.4 80.3 8842 6880 9530.0 73.1 8841 6879 9528.9 60.3
test10 100 211030 10 362 9775 9580 10733.0 409.3 10197 9406 11137.6 195.2 9963 9457 10908.7 115.9 9964 9457 10909.7 94.7

average ratio – – – 0.87 1.03 0.89 186.62 1.33 0.97 1.29 25.80 1.05 1.03 1.05 12.48 1.00 1.00 1.00 1.00

TABLE II Experiments on different decomposition algorithms. Some algorithms crash (‘Failed’) or exceed the time limit (‘TLE’).
Vertices ILP EC CSDP Ours

test case Total Mean Max conflict stitch cost time/s conflict stitch cost time/s conflict stitch cost time/s conflict stitch cost time/s

test2 101 165137 90 3505 TLE TLE TLE TLE TLE TLE TLE TLE 4553 5026 5055.6 12327.0 3837 5124 4349.4 489.5
test4 100 203283 63 20521 TLE TLE TLE TLE TLE TLE TLE TLE Failed Failed Failed Failed 16377 10559 17432.9 18357.1
test4 101 231944 76 57176 18012 6250 18637.0 30439.1 TLE TLE TLE TLE TLE TLE TLE TLE 12041 7238 12764.8 41421.6
test6 100 632812 28 309 14954 23427 17296.7 11318.6 Failed Failed Failed Failed 17657 22134 19870.4 407.9 17596 22215 19817.5 213.8
test6 101 399298 96 25155 TLE TLE TLE TLE TLE TLE TLE TLE Failed Failed Failed Failed 8851 12238 10074.8 7469.2
test7 101 762019 57 31521 TLE TLE TLE TLE TLE TLE TLE TLE Failed Failed Failed Failed 13831 18247 15655.7 23700.9
test7 102 314479 92 9473 TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE TLE 6480 6192 7099.2 1880.9
test8 102 568566 66 94828 TLE TLE TLE TLE TLE TLE TLE TLE Failed Failed Failed Failed 97885 8937 98778.7 16016.8
test9 101 911524 25 12887 TLE TLE TLE TLE 18008 24630 20471.0 40595.0 24475 21418 26616.8 11375.8 12031 21909 14221.9 2471.8
test9 102 903364 56 49695 TLE TLE TLE TLE TLE TLE TLE TLE Failed Failed Failed Failed 10015 17668 11781.8 33270.6
test10 101 1304220 38 23389 TLE TLE TLE TLE TLE TLE TLE TLE Failed Failed Failed Failed 18480 28608 21340.8 9748.4

requires a rounding procedure to recover the solution to the original
problem. Besides, on test6_100, our approach is 53× faster than
ILP. In addition, our algorithm can further be adjusted from double-
precision to single-precision, which can bring about a 2× speed-up
in large cases. Generally, the experimental results demonstrate the
robustness and effectiveness of our method on large test cases that
other state-of-the-art methods cannot solve.

V. CONCLUSION

In this paper, we propose a scalable low-rank SDP solver for the
large-scale TPL decomposition problem. Specifically, the augmented
Lagrangian method (ALM) is leveraged here to solve the nonlinear
and nonconvex semidefinite program after low-rank decomposition.
To fully utilize the problem structure, we restrict the optimization of
variables on a smooth manifold and adopt a Riemannian gradient
descent method with Barzilai–Borwein steps (RGBB) to solve the
subproblem with high efficiency. Experimental results show that our
methods are very effective on dense layouts. Specifically, compared
with state-of-the-art TPL decomposition algorithms, our proposed
LRSDP achieves 186×, 25×, and 12× speed-up with decent solu-
tion quality on ISPD’19 benchmarks. In general, the proposed low-
rank SDP solver is robust and effective in solving large-scale TPL
decomposition problems. We expect to see more optimization-based
research on physical design flow as our algorithm provides a new
research direction for solving quadratic programs efficiently.

REFERENCES

[1] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, “Layout decomposition
for triple patterning lithography,” in IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2011, pp. 1–8.

[2] K. Yuan, J.-S. Yang, and D. Pan, “Double patterning layout decomposition
for simultaneous conflict and stitch minimization,” in ACM International
Symposium on Physical Design (ISPD), 2009, pp. 107–114.

[3] B. Yu, K. Yuan, D. Ding, and D. Z. Pan, “Layout decomposition for triple
patterning lithography,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), vol. 34, no. 3, pp. 433–446,
March 2015.

[4] H.-Y. Chang and I. H.-R. Jiang, “Multiple patterning layout decomposition
considering complex coloring rules,” in ACM/IEEE Design Automation
Conference (DAC), 2016, pp. 1–6.

[5] J. Kuang and E. F. Young, “An efficient layout decomposition approach
for triple patterning lithography,” in ACM/IEEE Design Automation Con-
ference (DAC), 2013, pp. 1–6.

[6] B. Borchers, “CSDP, AC library for semidefinite programming,” Opti-
mization methods and Software, vol. 11, no. 1-4, pp. 613–623, 1999.

[7] N. Boumal, V. Voroninski, and A. Bandeira, “The non-convex burer-
monteiro approach works on smooth semidefinite programs,” Conference
on Neural Information Processing Systems (NIPS), vol. 29, 2016.

[8] B. Yu and D. Z. Pan, “Layout decomposition for quadruple patterning
lithography and beyond,” in ACM/IEEE Design Automation Conference
(DAC), 2014, pp. 53:1–53:6.

[9] S. Wright, J. Nocedal et al., “Numerical optimization,” Springer Science,
vol. 35, no. 67-68, p. 7, 1999.

[10] Y. Wang, K. Deng, H. Liu, and Z. Wen, “A decomposition augmented la-
grangian method for low-rank semidefinite programming,” arXiv preprint
arXiv:2109.11707, 2021.

[11] B. Iannazzo and M. Porcelli, “The riemannian barzilai–borwein method
with nonmonotone line search and the matrix geometric mean computa-
tion,” IMA Journal of Numerical Analysis, vol. 38, no. 1, pp. 495–517,
2018.

[12] H. Zhang and W. W. Hager, “A nonmonotone line search technique and its
application to unconstrained optimization,” SIAM Journal on Optimization
(SIOPT), vol. 14, no. 4, pp. 1043–1056, 2004.

[13] E. G. Birgin and J. M. Martı́nez, Practical augmented Lagrangian
methods for constrained optimization. SIAM, 2014.

[14] G. Guennebaud, B. Jacob et al., “Eigen v3,” 2010.
[15] “Spectra.” [Online]. Available: https://spectralib.org/
[16] W. Li, Y. Ma, Q. Sun, L. Zhang, Y. Lin, I. H.-R. Jiang, B. Yu, and D. Z.

Pan, “Openmpl: An open-source layout decomposer,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 40, no. 11, pp. 2331–2344, 2020.

[17] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,” 2022.
[18] B. Borchers, “Csdp, a c library for semidefinite programming,” Optimiza-

tion Methods and Software, vol. 11, no. 1-4, pp. 613–623, 1999.

https://spectralib.org/

