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Abstract—Inverse Lithography Technology (ILT) is a widely
investigated method to improve the yield of chip manufacturing.
However, high computational complexity and difficulty in fabri-
cating curvilinear shapes have hindered the widespread adoption
of ILT. This paper presents an efficient ILT framework, including
a multi-level resolution method for simulation acceleration, a
downsampling strategy for mask optimization, and an improved
mask binary function to improve mask printability. Experimental
results show that the proposed method outperforms state-of-the-
art methods with at least a 33.8% reduction in L2 loss and a
15.5% reduction in PVBand.

I. INTRODUCTION

As technology node continues to shrink, the mismatch be-
tween printed wafer shapes and designed graphics become
more and more severe. At advanced technology nodes, inverse
lithography technology (ILT) and model-based optical proxim-
ity correction (OPC) are two major resolution enhancement
techniques (RETs) that used to improve the printability of
masks. Compared to model-based OPC, ILT offers greater
flexibility and produces masks with better printability and
smaller process variation bands (PVBand). For instance, [1]
and [2] are two representative works of ILT and model-based
OPC, showing that ILT outperforms model-based OPC on the
printability score tested using the same dataset. However, high
runtime overhead and poor mask manufacturability are two
major obstacles preventing the widespread adoption of ILT.

To reduce the runtime overhead of ILT, deep learning meth-
ods have recently been introduced to reduce the number of
iterations by predicting an initial mask solution for the mask
optimization problem [3]–[5]. In [3], a generative adversarial
network (GAN) based method is proposed to predict optimized
mask shapes. In [4], a neural network-based approach is pro-
posed to support mask prediction, ILT correction, and shape
regularization. In [5], a deep model is proposed for mask pre-
diction, and then the predicted mask is further optimized using
the GPU-accelerated level set-based method [6]. These prior
works have demonstrated runtime benefits by employing deep
models for initial mask prediction. However, due to the inherent
uncertainty of neural networks, the quality of the predicted
masks cannot be guaranteed. Although such an initial mask
will be further optimized by subsequent optimization iterations
of ILT, since ILT is very sensitive to the initial solution, the
mask quality may be much lower than that produced by the
original ILT.

Recent efforts have also focused on pattern simplification in
order to improve mask manufacturability. In [4], a loss term
to evaluate mask complexity is introduced to eliminate small
shapes around major features. In [5], a curvature penalty term is
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Fig. 1: Optimized mask outputs.

introduced in the loss function, aiming to obtain smoother shape
boundaries. In [7], a spatial attention map is introduced to avoid
holes and outliers on the optimized layout. The work [7] and
[8] apply an average pooling operation on neighboring pixels
to eliminate small features. Although these methods mitigate
unwanted features to a certain extent, unnatural curvatures and
overly fine features still inevitably exist in the final mask (as
shown in Fig. 1(a)).

In summary, mask generation with high efficiency and good
manufacturability remains the central goal of ILT after years
of effort. To this end, this work presents an ILT framework,
aiming to tackle the aforementioned challenges. The proposed
ILT framework consists of a multi-level resolution method
for simulation acceleration, a downsampling strategy for mask
optimization, and an improved mask binary function to improve
mask printability, specifically:
Runtime efficiency: Inspired by the multigrid method, we pro-
pose a multi-resolution lithography simulation scheme, start-
ing with coarse-grain simulations to optimize computation
efficiency, followed by high-precision lithography simulations
to optimize accuracy. The proposed coarse-to-fine simulation
scheme can accelerate ILT in various situations without model
pretraining. We perform ILT across multiple resolution scale
factors to speed up the mask optimization process. Experimen-
tal results show that with a scale factor of 4, low-resolution ILT
is about 18× faster than high-resolution ILT. High-resolution
ILT optimizes mask under accurate lithography simulation.
Since the mask is iteratively optimized using ILT, the proposed
method does not degrade the mask quality.
Manufacturability & printability: We employ an average pool-
ing operation on neighboring pixels to improve the smoothness
of shape boundaries. Similar to [7], we adopt high-resolution
downsampling to avoid generating unwanted miniature shapes.
As for printability, we propose an improved mask binary
function to optimize mask printability. The improved binary
function makes it easier for ILT to obtain Sub-Resolution Assist
Features (SRAF), which improves the quality of the mask.

Together, the proposed ILT framework offers high computa-



tion efficiency and produces masks of good manufacturability
and printability. On the ICCAD 2013 contest benchmark [9],
compared to state-of-art methods, our approach can reduce
at least 33.8% in L2 loss and 15.5% in PVBand. Fig. 1
compares the masks obtained by [7] and our method. It is
shown that masks obtained by our approach have smoother
and more regular shape boundaries. By employing a multi-
resolution simulation scheme, our runtime of ILT iterations can
be reduced by more than two times.

The rest of the paper is organized as follows. In Section II,
we will present the background and evaluation metrics used in
ILT. In Section III, we propose the multi-level ILT approach.
In Section IV, experimental results are presented. In Section V,
we conclude the paper.

II. BACKGROUND

A. Forward Lithography Model

The forward lithography model is used to describe the map-
ping from the designed mask image M ∈ RN×N to the wafer
image Z ∈ RN×N . The wafer image Z is obtained from the
aerial image I ∈ RN×N passed through the photoresist model.
The aerial image I represents the distribution of lithography
intensities. For simplicity, we use a compact photoresist model
with a constant threshold Ith as shown in Equation (1).

Z (x, y) = R (I) =

{
1, I (x, y) ≥ Ith,
0, I (x, y) < Ith.

(1)

The transformation from mask image M to aerial image I
can be approximated by the Hopkin’s model [10] as shown in
Equation (2).

I (x, y) ≈
Nk∑
k=1

wk∥hk (x, y)⊗M (x, y)∥2, (2)

where hk ∈ RP×P represents the kth optical kernel, and wk

is the corresponding weight. Nk is the total number of kernels
used for simulation. ⊗ denotes the convolution operation. The
complexity of Equation (2) is O(Nk ·P 2 ·N2). It is proved that
convolution in the spatial domain is equivalent to multiplication
in the frequency domain. Therefore, computational efficiency
can be further improved by using the fast Fourier transformation
(FFT), as shown in Equation (3).

I (x, y) ≈
Nk∑
k=1

wk

∥∥F−1 (Hk ⊙F (M))
∥∥2, (3)

where F and F−1 represent FFT and inverse FFT, respectively.
Hk ∈ CP×P is the representation of hk in the frequency do-
main. ⊙ denotes the element-wise multiplication. Note that we
discard the high-frequency part of F(M) so that it can be mul-
tiplied by Hk, and the complexity of Hk ⊙ F (M) is O(P 2).
To restore to the original size, the dimension of the inverse FFT
is N2, and its complexity is O(N2 logN2). The complexity
of Equation (3) is O

(
(Nk + 1) ·N2 logN2 +Nk · P 2

)
. In our

implementation, P = 35, N = 2048, and Nk = 24. Note that
P ≪ N , thus the largest part of computation lies on Nk inverse
FFTs.
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Fig. 2: The complete framework of multi-level ILT.

B. Evaluation Metrics and Problem Formation

Definition 1 (Squared L2 Loss): Given the target image Zt

and the wafer image Znorm, the squared L2 loss is equal to
∥Znorm −Zt∥22. Note that the wafer image Znorm is obtained
under nominal dose and nominal focus.

Definition 2 (PVBand): Process variation band denotes the
XOR area between two aerial images Zin and Zout generated
under different conditions.

We adopt the same settings as [9]: Zin is generated under
the defocus and −2% dose condition. Zout is generated under
nominal focus and +2% dose condition.

Definition 3 (Edge Placement Error): Edge placement Error
(EPE) is a metric used to evaluate how much the wafer image
is distorted from the target image. The measurement points are
evenly distributed along the horizontal and vertical contours of
the shape on the target image. If the vertical distance D(x, y)
of the printed contour to the target one is greater than threshold
distance thr, it is considered as an EPE violation.

Equation (4) shows an example of EPE violation. We set the
threshold distance thr to 15nm, following the setting of [9].

EPE (x, y) =

{
1, D (x, y) ≥ thr,
0, D (x, y) < thr.

(4)

Definition 4 (Mask Fracturing Shot Count): Mask fracturing
shot count is the number of rectangles that used to replicate
the optimized curvilinear mask shapes [4]. It is a metric used
to evaluate the complexity of mask patterns.

Problem 1 (Mask Optimization): Given a target layout Zt,
our goal is to obtain an optimized mask M within acceptable
runtime, hoping to have improvements in terms of printability
and manufacturability of masks.

III. ALGORITHMS

A. Overall Framework

The overall framework of multi-level ILT is illustrated in this
section and shown in Fig. 2. We first perform low-resolution
ILT with different scale factors si from large to small to
obtain computational efficiency. Then, high-resolution ILT is
employed to fine-tune the layout and reduce mask complexity.

We detail the high- and low-resolution ILT in Section III-B.
In Section III-C, we give a modified binary function to improve
the printability of obtained masks. To obtain a more neat layout
of the mask, we introduce the average pooling in Section III-D
to smooth the contours of shapes. Note that this smoothing
operation is only adopted by low-resolution ILTs.
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Fig. 3: The illustration of (a) high-resolution ILT and (b) low-
resolution ILT.

B. Multi-level ILT

First, we give the definition of loss function L used in our
method, as shown in Equation (5). It consists of two parts, the
squared L2 loss Ll2 and PVBand Lpvb. We replace the Znorm

with Zout in the calculation of Ll2 to save computation time
and GPU memory during the optimization process.

L = Ll2 + Lpvb,

Ll2 = ∥Zout −Zt∥22 ,
Lpvb = ∥Zin −Zout∥22 .

(5)

We then combine low-resolution and high-resolution ILT in
the proposed framework to achieve computational efficiency
and good mask manufacturability, respectively. High-resolution
ILT has the same computational complexity as conventional
ILT, but it produces simpler mask patterns. It performs average
pooling on the obtained wafer image to shrink it without losing
information (line 9 in Algorithm 1). The downscaled mask
and wafer images are then fed into the loss function, and
gradients are computed to update the mask image (lines 14–
15 in Algorithm 1). M ′

s and Zs denote the reduced mask
and wafer images, respectively, with a scale factor s. Then,
we restore the mask Ms to its original size to perform an
accurate lithography simulation (line 7 in Algorithm 1). The
computation flow of high-resolution ILT is shown in Fig. 3(a).

For the low-resolution ILT, lithography simulations are per-
formed every s pixel in both X and Y directions. It reduces the
dimensionality of the simulation and saves time considerably
with an acceptable loss of accuracy. Since both the simulation
and the optimization are carried out at a reduced size (lines 12
and 15 in Algorithm 1), there are no upsampling and down-
sampling pairs in the low-resolution ILT. Litho(·) represents
the optical model described in Equation (3) and Equation (1).
The Low-resolution simulation is stated in Equation (6), where
FN represents an FFT with transform dimension equal to N .

I (sx, sy) =
Nk∑
k=1

wk · Ik =
Nk∑
k=1

wk

∥∥F−1
N (Hk ⊙FN (M)) (sx, sy)

∥∥2.
(6)

In Equation (6), there are many wasted computations in the
scaled-down intensity image. The mathematical theorem states
that the reduction of the spatial domain is equivalent to the
expansion of the frequency domain. Therefore, the computation
of Ik in Equation (6) can be replaced by Equation (7) to avoid
redundant computations. Note that the transform dimension of

Algorithm 1 Multi-level ILT

1: Input : Target image Zt ∈ RN×N ; scale factor s; Nk

kernels Hk and corresponding weights wk; learning rate
lr; flag indicates the type of ILT used;

2: Zt,s ← AvgPool (Zt, kernel size = s, stride = s);
3: M ′

s ← Zt,s;
4: repeat
5: Ms = fbinary (M

′
s);

6: if flag == 1 then ▷ high-resolution ILT
7: M(x, y) = Upsample (Ms);
8: Z(x, y) = Litho (M ,Hk, wk, Ith);
9: Zs = AvgPool (Z, kernel size = s, stride = s);

10: else ▷ low-resolution ILT
11: Ms = AvgPool (Ms, kernel size = 3, stride = 1);
12: Zs(x, y) = Litho (Ms,Hk, wk, Ith);
13: end if
14: Gs =

∂L(Zt,s,Zs)
∂M ′

s
;

15: M ′
s = M ′

s − lr ·Gs;
16: until exit conditions are met.

(a) TR = 0 (b) TR = 0.5

Fig. 4: Binarized masks M using different TR. The L2 loss and
PVBand of the mask obtained from (a) are 50626 and 51465.
The L2 loss and PVBand of the mask obtained from (b) are
43452 and 46361.

the inverse FFT is s× smaller in Equation (7) than in Equa-
tion (6). Applying Equation (7) to obtain the intensity images
can greatly improve efficiency since most of the computation
is spent on the Nk inverse FFT.

Ik (sx, sy) = F−1
N

(
1

s2
(Hk ⊙FN (M))

(x
s
,
y

s

))
= F−1

N/s

(
1

s2
(Hk ⊙FN (M))

)
.

(7)

In our implementation, we use Equation (8) to approximate
Equation (7), and experimental results show that this approx-
imation holds. The running time of 200 forward lithography
simulations using Equation (3), Equation (7) and Equation (8)
are 8.173, 0.767 and 0.466 seconds, respectively. The high- and
low-resolution ILT are illustrated in Fig. 3. In Algorithm 1,
the binary function fbinary (line 5) and the smoothing pooling
(line 11) will be explained in detail in Section III-C and
Section III-D.

Ik ≈ F−1
N/s

(
Hk ⊙FN/s (Ms)

)
. (8)

C. Binary Function

During ILT iterations, the mask and wafer images should
be continuous-valued matrices, since gradients are required to
update values of mask pixels. Therefore, we use Equation (9)



(a) The sigmoid curve (b) The gradient curve of sigmoid

Fig. 5: In (a), the blue and orange dots represent the values
in M in the first ILT iteration. They both use the sigmoid
transformation but with TR = 0 and TR = 0.5, respectively.
(b) is their corresponding gradients.

instead of Equation (1) as the resist model during the ILT
optimization.

Z =
1

1 + exp [−α× (I − Ith)]
, (9)

where we take Ith = 0.225 according to settings in [9].
Various binary functions fbinary(·) have been studied to

constrain the pixel values of the mask between 0 and 1. [11]
takes the cosine transformation as its binary function, as shown
in Equation (10).

M =
1 + cosM ′

2
, (10)

where M ′ represents the mask to be optimized and M denotes
the incomplete binarized mask.

Due to the periodicity of Equation (10), the initial learning
rate for ILT using Equation (10) should be chosen carefully,
otherwise the optimization will have difficulty converging.
Therefore, [12] propose a monotonic sigmoid transformation
as the binary function, as shown in Equation (11).

M =
1

1 + exp (−β × (M ′ − TR))
, (11)

where β and TR are hyberparameters. Most pixel-based ILTs
use the sigmoid transformation as its binary function and take
β = 4 and TR = 0.

In the first iteration of ILT, values in the binarized mask M
are {0.5,≈ 1} while values in the original mask are {0, 1}. Due
to the difference between the binarized mask and the original
mask, ILT assigns a large negative value to the opaque areas
of the optimized mask M ′ after the first iteration. It makes
the generation of SRAFs on the opaque areas very difficult
because the sigmoid function tends to fall into local optima.
Fig. 4(a) shows the binarized mask M with TR = 0 after 40
ILT iterations. The areas outside the main features are almost
completely opaque and have no SRAFs. In our observations,
there will be SRAFs after more iterations but this process is
very slow.

Therefore, we take TR = 0.5 so that values in the initial
binarized mask M are {≈ 0.1,≈ 0.9}, which narrows the
difference from the original mask and facilitate the generation
of SRAFs. In Fig. 5 we plot the sigmoid transformation and
its gradient. In Fig. 5(a), we denote the initial values of
the binarized mask M using TR = 0 and TR = 0.5 in
blue and orange, respectively. At the first iteration, for the
sigmoid transformation using TR = 0, M(x, y) corresponding

(a) Mask with pooling (b) Mask without pooling

Fig. 6: The L2 loss and PVBand of mask (a) is 70308 and
69069. The L2 loss and PVBand of mask (b) is 69043 and
70762.

to M ′(x, y) = 0 not only much deviates from the initial mask,
but also its gradient value is the largest.

Fig. 4(b) shows the binarized mask using TR = 0.5 with
the same other settings as Fig. 4(a). The results show that
using the improved binary function helps to obtain SRAF
more easily. Previous works like [4] all make efforts to avoid
small shapes close to main features, like shapes shown in the
red box in Fig. 1(a). It is not contradictory to our proposal,
because of downsampling and pooling operations, our generated
SRAFs have simple shapes as shown in Fig. 1(b). SRAFs of
simple shapes can improve the printability of the mask without
degrading its manufacturability.

Since values in the binarized mask M ∈ (0, 1) are real
numbers, another binarization is needed at last to generate
the complete binarized mask Mout. Equation (12) shows this
binarization, which is adopted by most ILT methods [3]–[5],
[13].

Mout =

{
1,M ≥ tm,
0,M < tm,

(12)

where tm is the threshold value and set to 0.5.
In Fig. 4(b), pixels of main features are very close to 1 mak-

ing them hardly change in later iterations. In our observations,
the adjustments to SRAFs dominate subsequent iterations of
ILT, but due to the small gradients obtained at each iteration,
the SRAFs appeared on the final mask Mout does not many. To
obtain more SRAFs, we use a smaller TR for the final output.
In our implementation, we use TR = 0.5 for the optimization
and TR = 0.4 for the final output. The L2 loss and PVBand
listed in Fig. 4 follow the same settings.

D. Simplify Shapes via Average Pooling
In this section, we introduce another pooling operation to

smooth shape contours in the low-resolution ILT. This average
pooling is applied on n× n adjacent pixels, but its stride size
is not equal to n. For example, we take n = 3 and stride size
equal to 1 to keep the input and output the same size (line
11 in Algorithm 1). It is different from the average pooling
used in the high-resolution ILT Section III-B, which is used
for downsampling.

By adopting this operation, each mask pixel can obtain aver-
age attention on its adjacent pixels and then make adjustments
after considering their values. It enable each pixel to have an
average attention on its neighbors, so their changes will be
more continuous. In our proposed method, since we introduce
more SRAF into the optimized mask, the smoothing operation
is more needed to simplify graphics of masks.

We perform this pooling before binarizing the mask in each
iteration of the low-resolution ILT, as shown in Fig. 3(b).



TABLE I: Results of using different downsampling methods on
case1 of ICCAD 2013 benchmarks.

L2 (nm2) PVB (nm2) TAT (s) #Shots

w/o. downsample 35349 47667 21.086 3048
high-resolution 40525 45875 20.976 882
low-resolution 40562 45906 1.134 889

Option 1

Option 2

(a) (b) (c)

Fig. 7: (a) Two options for optimizing regions; (b) the mask
obtained using option 1; (c) the mask obtained using option 2.

Experimental results show that this pooling operation can
effiently avoid holes and fractures on the resulting masks.
Fig. 6(a) and Fig. 6(b) are mask images with and without the
pooling operation, respectively. The mask without pooling has
a smaller squared L2 loss, but it has a higher shape complexity.
For the optional post-processing, we eliminat too small shapes
and replaced medium-sized irregular SRAFs with rectangles to
further simplify the mask pattern.

IV. EXPERIMENTAL RESULTS

The multi-level ILT is developed on Pytorch. All experiments
are performed on a Linux workstation with a 2.6GHz Intel Xeon
CPU and a single Nvidia GeForce RTX 3090 GPU. The litho-
simulation tool is obtained from ICCAD 2013 competition [9]
and we reimplemented it using torch.fft to take advantage of
GPU. For simplicity, we use “L2”, “PVB”, “EPE”, “TAT” and
“#shots” to denote squared L2 loss, process variation band, edge
placement error, turnaround time and mask fracturing shots
count, respectively. Experimental results demonstrate the effi-
ciency and effectiveness of our method. The proposed method
is validated on designs that cropped from M1 layer and via
layer.

A. Ablation Study
To validate the effectiveness of downsampling methods, we

perform 100 iterations of low-resolution ILT, high-resolution
ILT, and ILT without downsampling, respectively. Their com-
parison results on case1 of the ICCAD 2013 benchmarks [9]
are listed in TABLE I. We set the scale factor for both low-
and high-resolution downsampling equal to 4 and learning rate
equal to 1.

Although the mask produced by ILT without downsampling
has the smallest L2 loss, its complexity is unacceptable. The
high-resolution ILT consumes about the same time as the
ILT without downsampling, but its produced mask has much
smaller “#shots”. The low-resolution ILT achieves more than
18× speedup over high-resolution ILT and obtains masks
of comparable quality, which proves its good computational
efficiency.

B. Results on M1 Designs
In TABLE II and TABLE III, we compare our approach

with SOTA methods on ten M1 designs of 32nm technology

(a) (b) (c) (d)

Fig. 8: One example of via patterns: (a) Target mask; (b)
Binarized mask; (c) Final mask; (d) Wafer image.

nodes provided by ICCAD 2013 benchmarks [9]. Columns
“Neural-ILT [4]”, “A2-ILT [7]”, “GLS-ILT [6]” and “DevelSet
[5]” denote the results of selected baseline ILT methods,
respectively. All these methods limit mask optimization to a
defined region, but they define the region differently. As shown
in Fig. 7(a), Neural-ILT and A2-ILT adopt the option 1 while
GLS-ILT and DevelSet adopt the option 2 as the optimizing
region. For fairness of comparison, we follow their settings
in TABLE II and TABLE III, respectively. Divergence in the
optimizing regions has little effect on their results, as they
produce few SRAFs, but affects the performance of our method
due to the constraints on SRAFs. Fig. 7(b) and Fig. 7(c) are the
masks obtained by “Our-exact” under these two area options,
respectively.

Column ”Our-fast” represents the result using 35 iterations of
the low-resolution ILT with a scale factor of 4 plus 5 iterations
of the high-resolution ILT with a scale factor of 8. Column
”Our-exact” represents the result using 80 iterations of the low-
resolution ILT with a scale factor of 4 plus 10 iterations of
the high-resolution ILT with a scale factor of 8. Note that the
runtime of our method is consisted of ILT iteration time and
post-processing time. The average runtime for ”Our-fast” in
TABLE III includes an ILT time of 0.48 seconds and a post-
processing time of 1.27 seconds. And most of post-processing
time is spent on data transfer between GPU and CPU.

In TABLE II, we outperform A2-ILT by a 34.8% reduction
in squared L2 loss and a 25.8% reduction in process variation
band. Compared with A2-ILT, although the “#shots” of our
mask is larger, its graph is more regular as shown in Fig. 1.
Compared with DevelSet, the exact version of multi-level ILT
reduces “L2”, “PVBand” by 33.8% and 15.5%, respectively,
and reduces “#shots” by 2.4×. The exact version of multi-level
ILT has the fewest average EPE violations compared to other
methods.

We further verify the scalability of our proposed method on
ten additional testcases (as shown in TABLE IV) released by
[4]. These ten cases contain more graphics than ICCAD 2013
benchmarks [9]. Compared with Neural-ILT, the exact version
of multi-level ILT achieves a 40.3% reduction in L2 loss and
a 24.3% reduction in PVBand, and a speedup of over 4.8×.
And the fast version of multi-level ILT obtains masks with the
smallest “#shots”.

C. Results on Via Designs

We randomly choose fifteen via patterns of 2048×2048 size
from the dataset obtained from [14]. Via shapes are smaller
than shapes on the M1 layer and require finer adjustments.
Therefore, we perform 100, 100, and 50 low-resolution ILTs
with scale factors of 8, 4, and 2 in sequence. Finally, 15 high-
resolution ILTs with a scale factor of 8 are performed. Note that



TABLE II: Comparison on ICCAD 2013 benchmarks.

Benchmarks Neural-ILT [4] A2-ILT [7] Our-fast Our-exact

ID Area L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT
(nm2) (nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s)

case1 215344 49817 55975 8 428 11 45824 59136 7 242 4.53 41919 47144 3 272 1.70 38495 47015 3 385 3.45
case2 169280 38174 52010 3 256 17 33976 52054 3 211 4.5 28904 37734 0 235 1.70 28173 37555 0 284 3.44
case3 213504 89411 91357 52 557 10 94634 82661 62 282 4.54 68975 68447 28 265 1.70 67949 69361 22 316 3.44
case4 82560 16744 29982 2 136 9 20405 29435 2 103 4.51 11387 22938 0 175 1.72 10307 21514 0 241 3.45
case5 281958 45598 58900 3 380 11 37038 62068 1 319 4.53 31442 51292 0 326 1.73 28482 49683 0 411 3.46
case6 286234 43836 54969 5 383 10 40701 54842 2 244 4.52 31963 46177 0 323 1.72 30334 44127 0 415 3.42
case7 229149 20324 50542 0 244 16 21840 48474 0 206 4.51 16772 41396 0 216 1.72 14635 36961 0 382 3.46
case8 128544 13337 26353 0 285 15 14912 24598 0 156 4.48 12747 20708 0 193 1.73 11194 20985 0 271 3.42
case9 317581 49401 68817 2 444 11 47489 68056 2 248 4.52 36988 57528 0 366 1.72 34900 54948 0 490 3.47

case10 102400 8511 20734 0 208 14 9399 20243 0 126 4.5 8248 17351 0 144 1.73 7266 16581 0 164 3.47

Average 37515.3 50963.9 7.5 332.1 12.4 36621.8 50156.7 7.9 213.7 4.51 28916.5 41144 3.1 251.5 1.72 27173.5 39873 2.5 335.9 3.45
Ratio 1.381 1.278 3.0 0.989 3.592 1.348 1.258 3.160 0.636 1.307 1.064 1.032 1.240 0.749 0.497 1 1 1 1 1

TABLE III: Comparison on ICCAD 2013 benchmarks.

Benchmarks
GLS-ILT [6] DevelSet [5] Our-fast Our-exact

L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT L2 PVB EPE #shots TAT
(nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s) (nm2) (nm2) (s)

case 1 46032 62693 4 1476 123 49142 59607 - 969 1.5 42503 49784 3 233 1.75 40779 50661 3 307 3.49
case 2 36177 50642 1 861 81 34489 52012 - 743 1.4 34693 43801 2 169 1.74 34201 44322 2 186 3.47
case 3 71178 100945 29 2811 214 93498 76558 - 889 1.29 69698 72255 29 246 1.76 66486 71527 22 308 3.47
case 4 16345 29831 0 432 184 18682 29047 - 376 1.65 11829 22716 0 176 1.75 10942 21500 0 233 3.47
case 5 47103 56328 1 963 76 44256 58085 - 902 0.91 35226 53649 0 268 1.75 30231 51277 0 374 3.47
case 6 46205 51033 1 942 65 41730 53410 - 774 0.84 33883 47716 0 302 1.75 30741 44982 0 365 3.47
case 7 28609 44953 0 548 64 25797 46606 - 527 0.76 21732 44725 0 142 1.73 17101 40294 0 196 3.50
case 8 19477 22541 1 439 67 15460 24836 - 493 1.14 13236 21178 0 158 1.77 11935 20357 0 243 3.47
case 9 52613 62568 0 881 63 50834 64950 - 932 1.21 38781 58845 0 327 1.75 35805 57930 0 435 3.50
case 10 22415 18769 0 333 64 10140 21619 - 393 0.42 11122 19106 0 90 1.75 8825 18470 0 114 3.48

Average 38615.4 50030.3 3.7 968.6 100.1 38402.8 48673 - 699.8 1.112 31270.3 43377.5 3.4 211.1 1.75 28704.6 42132 2.7 286.1 3.48
Ratio 1.345 1.187 1.370 3.386 28.764 1.338 1.155 - 2.446 0.320 1.089 1.030 1.259 0.738 0.503 1 1 1 1 1

TABLE IV: Comparison on larger benchmarks.

Benchmarks Neural-ILT [4] Our-fast Our-exact
ID Area (nm2) L2 (nm2) PVB (nm2) EPE #shots TAT (s) L2 (nm2) PVB (nm2) EPE #shots TAT (s) L2 (nm2) PVB (nm2) EPE #shots TAT (s)

case11 494560 79933 120577 12 669 20 64345 93486 3 534 1.70 61534 94116 4 628 3.48
case12 448496 86995 104266 15 556 12 53402 86606 0 443 1.72 50037 84984 0 537 3.46
case13 492720 133281 152718 70 766 15 98597 118403 29 536 1.69 94496 120889 26 610 3.49
case14 361776 43797 92137 0 455 14 36101 69043 2 415 1.70 32478 68470 1 504 3.47
case15 561174 69521 122115 3 808 19 59208 99443 0 475 1.70 55936 101929 0 544 3.46
case16 565450 73790 117359 2 764 19 63194 96831 0 485 1.69 57169 95182 0 557 3.45
case17 445365 49031 92320 0 531 19 36329 79834 0 424 1.69 32709 75742 0 513 3.45
case18 407760 47409 84971 0 478 16 36753 66672 0 434 1.70 33981 67838 0 511 3.48
case19 596797 93922 115028 5 614 14 68550 110297 0 508 1.71 61824 107744 0 567 3.48
case20 381616 28028 80127 0 452 19 31816 63866 0 382 1.71 30118 63327 0 387 3.46

Average 71570.7 108162 10.7 609.3 16.7 54829.5 88448.1 3.4 463.6 1.70 51028.2 88022.1 3.1 535.8 3.47
Ratio 1.403 1.229 3.452 1.137 4.817 1.074 1.005 1.097 0.865 0.491 1 1 1 1 1

the number we set is only an upper bound of iterations. We exit
early when ILT cannot obtain a new minimum loss within 15
iterations. In Fig. 8, we show the target image, binarization
mask, wafer image, and mask image for one case, which is the
worst of fifteen randomly selected cases. Although its L2 and
PVBand are the largest among 15 cases, all its via shapes are
printed on the wafer image as shown in Fig. 8(d).

V. CONCLUSION

In this paper, we propose an ILT method based on multilevel
lithography simulation with an improved binary function and
a simple but effective smoothing operation. The multi-level
ILT framework greatly reduces the running time of ILT and
the complexity of masks, which are two obstacles preventing
ILT from being widely used. Experimental results show that
the proposed approach outperforms the SOTA method on the
ICCAD 2013 benchmark in mask printability and with superior
runtime performance. Furthermore, our method also shows its
adaptability and advantages on via patterns.
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