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ABSTRACT
Pipelining between data loading and computation is a critical tensor program optimization for GPUs. In order to
unleash the high performance of latest GPUs, we must perform a synergetic optimization of multi-stage pipelining
across the multi-level buffer hierarchy of GPU. Existing frameworks rely on hand-written libraries such as cuBLAS
to perform pipelining optimization, which is inextensible to new operators and un-composable with prior tensor
compiler optimizations. This paper presents ALCOP, the first framework that is compiler-native and fully supports
multi-stage multi-level pipelining. ALCOP overcomes three critical obstacles in generating code for pipelining:
detection of pipelining-applicable buffers, program transformation for multi-level multi-stage pipelining, and
efficient schedule parameter search by incorporating static analysis. Experiments show that ALCOP can generate
programs with 1.23× speedup on average (up to 1.73×) over vanilla TVM. On end-to-end models, ALCOP can
improve upon TVM by up to 1.18×, and XLA by up to 1.64×. Besides, our performance model significantly
improves the efficiency of the schedule tuning process and can find schedules with 99% of the performance given
by exhaustive search while costing 40× fewer trials.

1 INTRODUCTION

Deep learning (DL) has achieved great success in a vari-
ety of application fields, spanning computer vision, natu-
ral language processing, and recommendation systems (He
et al., 2016; Devlin et al., 2018; Naumov et al., 2019). The
widespread use of GPUs (Nvidia, 2020b;a) to accelerate
DNNs makes an indispensable contribution in this AI era.

High-performance tensor programs on GPUs require com-
plex optimization efforts. When Tensor Core was introduced
to GPUs to accelerate deep learning, harnessing the power of
Tensor Cores became the center of GPU software optimiza-
tion, motivating the development of a number of libraries
and compilers (Nvidia, 2021; Yan et al., 2020; Dakkak et al.,
2019; Feng et al., 2021; Chen et al., 2018a; Katel et al.,
2022). Because Tensor Core throughput continued to in-
crease but memory bandwidth lagged, research on tiling
and fusion to improve data re-use surged (Niu et al., 2021;
Zhao et al., 2022; Zheng et al., 2022b; 2020). However, ag-
gressively large tiling limits the number of tiles and hinders
inter-tile parallelism, a crucial GPU mechanism to achieve
high utilization. Restoring the parallelism lost due to ag-
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gressive tiling becomes an important task. Pipelining – the
overlap of data loading and computing – is an ideal mecha-
nism for unleashing intra-tile parallelism. Figure 1 depicts
the concept of pipelining and its performance advantages.
As the difficulty of capitalizing on the ever-growing paral-
lelism in current and future GPUs increases, the study of
pipelining becomes essential.

Despite the necessity of pipelining optimization, existing
approaches are either limited in their design space coverage
or their degree of automation. Prior work (Katel et al., 2022)
has studied double-buffering, a special case of pipelining.
However, double-buffering is only a two-stage, one-level
instance of the entire multi-stage, multi-level pipelining
design space shown in Figure 2 and Figure 3, and simplify-
ing pipelining to double-buffering hinders a major perfor-
mance gain (which will be evaluated in Sec. 5.1). Although
deep learning systems can access comprehensive pipelining
optimization from hand-written libraries (NVIDIA, a) or
compiler-integrated libraries (Xing et al., 2022), due to their
fundamental difference from the tensor program generation
workflow of DL compilers, they are inextensible to new
operators and not composable with prior compiler passes
such as auto-fusion and auto-tiling.

Automatic pipelining presents three distinct challenges:
workload complexity (diverse DL operators), hardware com-
plexity (multi-level memory hierarchy), and design space
complexity (coherent performance tuning factors).
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(a) Concept of tiling, inter-tile parallelism and pipeline parallelism.
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(b) Motivating example: performance of a 2048× 2048×
2048 matrix-multiplication tested on NVIDIA A100 with
different tiling and pipelining choices.

Figure 1. Motivation of automatic pipelining. (a-3) explains the concepts of pipelining, which is overlapping data loading with computation.
(b) gives a motivating example. With tiling only, the performance is always sub-optimal. Pipelining unleashes intra-tile parallelism and
increases the performance under large tiling.
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Figure 2. Concept of multi-stage pipelining. (a) two-stage pipelin-
ing (or called double-buffering) is not enough to hide the data
loading latency. (b) Four-stage pipelining can hide the data loading
latency and achieve full utilization of the computing units. ALCOP
supports multi-stage pipelining.

Our key insight is that, instead of solving everything in a
monolithic compiler pass, we should exploit the progressive
lowering structure of DL compilers and the information
exposed at each level. Specifically, we address the afore-
mentioned three challenges through three decoupled and
collaborative compilation modules: pipeline buffer detec-
tion, pipeline program transformation, and analytical-model
guided design space search. Pipeline buffer detection ad-
dresses the workload complexity because it occurs during
the scheduling phase when the entire dataflow is visible. The
second module addresses the hardware complexity. Dur-
ing the program transformation stage, the intricate for-loop
structure and data movement are revealed and modified.
This module utilizes the safety check of the preceding mod-
ule to execute the robust transformation. The third module
addresses the design space complexity. It happens at the

auto-tuning stage, where pipelining and other techniques
are co-optimized. This module makes use of the preced-
ing parameterized module. We further design an analytical
hardware model to expedite the design space search.

In this paper, we propose ALCOP1 2(Automatic Load-
COmpute Pipelining), the first DL compiler solution (auto-
scheduler, program transformation, auto-tuner) for auto-
mated multi-stage, multi-level pipelining; its architecture is
shown in Figure 4. Additional contributions include:

1. We design methods to examine each buffer for apply-
ing pipelining, including the ordering of pipelining
and other schedule transformations to avoid mutual
interference. (Sec. 2)

2. We design a program transformation pass that handles
index manipulation, synchronization injection, and pro-
logue injection, among other transformations. (Sec. 3)

3. We propose a pipeline-aware analytical performance
model. Combining it with an existing machine-
learning (ML) based tuning algorithm significantly
improves the efficiency of schedule tuning. (Sec. 4)

Experiments show that the ALCOP program transformation
pass can bring on average 1.23×, and up to 1.73× speed-up
to individual DL operators over TVM (Chen et al., 2018a).
ALCOP brings 1.02-1.18× end-to-end inference speed-up
for six DL models over TVM (Chen et al., 2018a), and
1.01-1.64× over XLA (Google, 2021). Through combin-
ing the analytical model with ML-based tuning, we can
identify schedules with 99% performance compared to the

1ALCOP is a copper-based alloy with significantly-enhanced
endurance and strength. We envision our ALCOP will significantly
enhance the power of DL compilers for modern AI-GPUs.

2The source code is released at https://github.com/
hgyhungry/alcop-artifact.

https://github.com/hgyhungry/alcop-artifact
https://github.com/hgyhungry/alcop-artifact
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(c) Multi-level pipelining without inner-pipeline fusion.
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(d) Multi-level pipelining with inner-pipeline fusion.

Figure 3. Concept of multi-level pipelining and inner-pipeline fu-
sion. (a) shows the GPU memory hierarchy, with two levels of
buffers: the shared memory and the register file. (b) shows the
execution timeline of single-level (only shared memory) pipelining.
(c) improves over (b) by pipelining the inner loop: register loading
and computing. (d) improves over (c) via inner-pipeline fusion,
which treats the repeated inner loop as a holistic loop and pipeline
it. ALCOP supports optimizations in (d), which provides the best
performance among (b)-(d).

best schedule in the entire design space while reducing the
number of trials by 40×.

2 SCHEDULE TRANSFORMATION

Automatic pipelining begins by identifying potential pipelin-
ing possibilities. We implement it through a schedule trans-
formation pass in the compiler, which attaches the pipelining
primitive to buffer variables in the program.

Pipelining can be applied to a load-and-use loop in which
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Figure 4. The overview of ALCOP.

the load step copies data into a buffer and the use step reads
data from the buffer. The purpose of the schedule transfor-
mation is to identify and record “load-and-use” structures
in a program. The pass marks the buffer variables within
such load-and-use loops as pipelined buffers. Later on, a
program transformation pass described in Section 3 will
turn the load-and-use structure into its pipelined version.

Two important questions must be addressed: First, we must
determine is what rules we should apply to identify the
buffers that can be pipelined. The second one is determin-
ing the ordering if pipelining in relation to other schedule
transformations, such as tiling, aware of their mutual effect.

2.1 Identification of Buffers for Pipelining

Constraints of pipelining come from not only the algorithm,
i.e., how the buffer is used, but also the hardware capa-
bilities, i.e., what forms of memory copy can be executed
asynchronously. For each buffer variable, the following
three rules are evaluated to determine whether pipelining
can be applied. Firstly, we do not pipeline a buffer that
is not produced by asynchronous memory copy. An asyn-
chronous memory copy indicates that the memory copy is
non-blocking, so we can initiate memory copies for future
loop iterations in advance and meanwhile continue with the
computation in the present iteration. Only when an explicit
synchronization instruction is encountered does the program
block to wait for the completion of the memory copy. If the
data in a buffer is not produced by direct memory copy but
rather by some compute operation, the buffer does not meet
this condition.

Secondly, we require the pipelined buffer to be produced in-
side a sequential load-and-use loop. The purpose of pipelin-
ing is to overlap the loading of future iterations with the
computation of the current iteration, hence it is critical this
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loop is sequential at the first place rather than unrolled or
parallelized. Typically this sequential loop iterates the re-
duction axis in a tensor operation. As a counterexample,
some stencil programs also tile input tensor and store them
in buffers to enhance locality, but different tiles are often
parallelized. The reflection in the tensor program is that the
buffer is produces in a parallelized loop, and our schedule
transformation will make sure this loop is not pipelined.

The final rule is about synchronizing the pipeline: If the
hardware platform supports only scope-based synchroniza-
tions, we inspect all buffers within the same scope and
refuse to pipeline them if their synchronization positions
do not match. Synchronizing the pipeline requires special
memory barriers that wait for certain loading instructions
(e.g., instructions issued in the third last iteration in a 4-
stage pipeline). On NVIDIA Ampere GPUs, such memory
barriers are provided for the shared memory scope. Hence,
the hardware is incapable of resolving this conflict if two
buffers are both in the shared memory scope, but their barri-
ers must be inserted at distinct positions in the program. If
this conflict occurs, our schedule transformation refuses to
pipeline these buffers.

2.2 Ordering of Schedule Transformations

Pipelining is applicable to three schedule transformations
already in existence: cache-reading, tiling, and fusion. We
will briefly introduce these transformations and then deter-
mine whether pipelining should be applied before or after
them.

Cache-reading. It means inserting a read buffer for a tensor
input. Given an algorithm and computation tensor S2 from
tensor S1, applying cache-reading means inserting a new
tensor S1 buf which is an identical copy of S1 but with
a buffer scope. Cache-reading should be applied before
pipelining since pipelining needs to be applied to buffers
generated by the former.

Tiling. It is the process of dividing the output tensor into
blocks. In conjunction with cache-reading, it can cache data
within buffers to improve data reuse. Tiling should also
be performed before pipelining. The second condition for
a buffer to qualify pipelining, i.e., whether there exists a
sequential load-and-use loop, must be inspected based on
the for-loop sketch after tiling.

Fusion. It means avoiding writing back intermediate data
between two operators. Inlining, a specific type of fusion,
should come after pipelining. Inlining a tensor means pro-
ducing the value of the tensor precisely where it is used; this
technique is often used on lightweight element-wise opera-
tions like datatype casting. Figure 5 shows an example in
which originally S2 is produced by applying element-wise
function f(·) to S1, and a buffer tensor S2 buf is injected
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Figure 5. The effectiveness study on the optimization order of in-
lining and pipelining. In case 1, after inlining, S2 buf can no
longer be pipelined because it is no longer produced by an asyn-
chronous memory copy. In case 2, after pipelining, inlining can
still be applied.

after S2 via cache-read. Inlining S2 is equivalent to apply-
ing f(·) first and then copying the data directly into S2 buf
without writing the data back to memory. According to our
first rule outlined in the previous subsection, a pipelined
memory buffer should be produced from an asynchronous
memory copy. However, for S2 buf here, the operation to
produce it is no longer asynchronous, as the explicit f(·)
forces the program to stall, waiting for data to be loaded.
And since buffer S2 buf is not produced asynchronously,
it cannot be pipelined. Here in case 1, inlining impedes
the opportunity of pipelining. Nevertheless, if pipelining
is applied before inlining, like in case 2, the inlining of S2
can still be applied, but in a different manner: Instead of
inlining S2 into S2 buf, we cache-read S1 and fuse the
computation f(·) into the production of S3. Thus, we en-
sure both sides are satisfied: the buffer is produced through
an asynchronous copy and can be pipelined, while compu-
tation f(·) is fused and we avoid explicitly generating an
intermediate tensor.

3 PROGRAM TRANSFORMATION

In this section, we introduce the second component of au-
tomatic pipelining: transforming the program IR (Inter-
mediate Representation) to implement pipelining. After
the schedule transformation outlined in Section 2, the pro-
gram is lowered to its IR form, composed of for-loops and
load/store/compute operations. Figure 7 gives a sample
input and transformed IR of the pipelining pass. Figure 6
also depicts the transformation steps.

3.1 Analysis

The First Step. Given a program IR, pipelining begins with
the collection of pipelining hints inserted by the schedule
transformation, including the buffer to be pipelined and the
number of stages for each buffer.

The Second Step. Given a set of buffers we want to apply
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Figure 6. Workflow and example input and output of the pipelining program transformation

1 Algorithm:
2 /* MatMul */
3 C[i, j] = sum(A[i, k] * B[j, k], reduce_axis=(k,))

1 Schedule:
2 /* cache read B is omitted for brevity */
3 A_shared = cache_read(A)
4 A_reg = cache_read(A_shared)
5

6 /* tiling */
7 C.tile((TB_tile_i, TB_tile_j, TB_tile_k),
8 (Warp_tile_i, Warp_tile_j, Warp_tile_k))
9

10 /* pipelining */
11 A_shared.pipeline(stage=3)
12 A_reg.pipeline(stage=2)

1 InputIR:
2 /* Declare buffer */
3 alloc A_shared[TB_tile_i, TB_tile_k]
4 alloc A_reg[Warp_tile_i, Warp_tile_k]
5

6 for ko in range(0, C_k / TB_tile_k):
7 /* load into shared memory buffer */
8 memcpy(A_shared[...], A[..., ko])
9

10 /* compute with data in shared memory buffer */
11 for ki in range(0, TB_tile_k / Warp_tile_k):
12 /* load into register buffer */
13 memcpy(A_reg[...], A_shared[..., ki])
14 /* compute with data in register buffer */
15 wmma(A_reg[...], ...)

1 TransformedIR:
2 /* define loop extents as variables for code brevity */ :
3 extent_ko, extent_ki = (C_k / TB_tile_k), (TB_tile_k / Warp_tile_k)
4 /* Declare buffer size. */
5 alloc A_shared[3][...]
6 alloc A_reg[2][...]

7 /* Prologue for A_shared and A_reg */
8 for ko in 0 .. 2:
9 /* load into shared memory buffer (same as Line 15-17) */

10 for ki in 0 .. 1:
11 /* load into reg. buffer (same as Line 24-27) */

12 for ko in 0 .. extent_ko:
13 /* load into shared memory buffer */
14 /* guard data copy with producer primitives at Line 15 and Line 17 */
15 A_shared.producer_acquire()
16 async_memcpy(A_shared [ (ko + 2) % 3 ][...], A[..., (ko + 2) % extent ko ])
17 A_shared.producer_commit()

18 /* compute with data in shared memory buffer */
19 /* guard data usage with consumer primitives at Line 22 and Line 30 */
20 for ki in 0 .. extent_ki:

21 if (( ki + 1 ) % extent ki )== 0:
22 A_shared.consumer_wait()
23 /* load into register buffer */
24 async_memcpy(
25 A_reg [ (ki + 1) % 2 ][...],

26 A_shared [ (ko + ((ki+1) / extent ki) ) % 3 ][..., (ki + 1) % extent ki ]
27 )

28 /* tensor-core compute with data in register buffer */
29 wmma(A_reg [ (ki % 2) ] [...], ...)
30 A_shared.consumer_release()

Figure 7. An example to illustrate how to transform an original Tensor-IR (left) to its pipelined version (right).

pipelining, the second analysis task is to reconstruct the
producer tensor and consumer tensor(s) of these buffers.
Then we can derive if there are multi-level buffers by decid-
ing if the producer of a pipeline buffer is also a pipelined
buffer. Since pipelined buffers are always produced via asyn-
chronous memory copy, to determine the producer tensor, it
suffices to retrieve which tensor it copies from. The decision
of consumers happens when IR traversal encounters a load
operation from this buffer.

The Third Step. This step is to determine the sequential
load-and-use loop for each pipelined buffer. This identifies
the iteration variable to be pipelined and is required by all
the index shifting operations in the transformation steps.
The sequential loop can be determined as follows: starting
from the instruction that copies data into the buffer, travers-
ing all the for-loops from inside to outside, and finding the
first sequential loop whose iteration variable is not used to
index inside this buffer. This means the buffer is reused
for each iteration of this loop, which is the loop we want
to pipeline. Take Figure 7 as an example, the pipelined

loop for A shared is with iteration variable ko, and the
pipelined loop for A reg is with variable ki.

The Fourth Step. We should document the pieces of code
that loads and uses this buffer. This information is required
for the injection of synchronization primitives and prologues.
In the Input IR in Figure 7, the “loading” part for A shared
is Line 8, and the “using” part is the ki loop and everything
inside. The loading part for A reg is Line 13, and the using
part is Line 15.

The Fifth Step: We also need to decide where to inject pro-
logues. Since we transform the program to issue memory
copy for future iterations while doing computation for the
current iteration, we need to move the first few stages of
memory copy ahead of the start of the main load-and-use
loop. This pre-posed loading code block is a prologue. Typ-
ically, prologues can be injected simply before the pipelined
loop. However, when a multi-level pipeline appears, the
prologues of inner pipelines must be injected into the se-
quential loop of the outer-most pipeline, in order to build a
holistic pipeline as opposed to a recursive one as shown in
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Figure 3(c).

3.2 Transformations

Five steps are required to transform a load-and-use loop into
a pipelined loop. The Transformed IR in Figure 7 shows the
transformed version of the Input IR in the same figure.

The First Step. This step increases the size of the memory
buffer by the number of pipeline stages. Relevant trans-
formed code is highlighted in light yellow.

The Second Step. This step shifts the indices used in mem-
ory access. The eelevant code is highlighted in blue. In
each load-and-use iteration, we issue asynchronous mem-
ory copy for future iterations rather than the present iteration.
Therefore, we need to increase the pipelining loop variables
in the memory access indices. If it is a 3-stage pipeline, for
instance, we should load data 2 iterations ahead.

The Third Step. This step handles indices for buffer rolling
(circular access) and out-of-bound wrapping. Relevant code
is highlighted in green. There are two cases that we need
to wrap indices: first, when we use the pipelining variable
to index a chunk of the buffer, we should use the modulo
of pipeline iteration variable divided by pipeline stages.
Secondly, since we increase the pipelining variable, it is
possible that we index out of the bound of its producer
tensor. We must take the modulo of the pipelining variable
divided by its own extent to avoid indexing out-of-bound.
A complicated case is in a multi-level pipeline when the
overflow of the inner pipeline causes the increase of the
outer pipeline variable. Line 26 in the transformed IR
handles this case.

The Fourth Step. This step injects prologue primitives.
The contents of prologues are the memory copy of the first
n stage -1 chunks of data, where n stage is the num-
ber of the pipeline stage. We inject prologue at the positions
we record in the preceding analysis pass.

The Fifth Step. The final step injects synchronization
primitives. The pipeline is guarded by four primi-
tives: producer acquire, producer commit,
consumer wait, and consumer release.
producer commit commits a batch of asynchronous
loading operations. consumer wait blocks until
a previous batch of loading is completed. When the
pipeline is full, producer acquire blocks until
consumer release3. The pairs of producer/consumer
primitives are put around the loading/using part of the
buffer, respectively, as shown in Line 15, 17, 22, and
30 of the transformed IR.

3https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#
with-memcpy_async-pipeline-pattern-multi
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Figure 8. A high-level view of the performance model. Compared
to prior work (Lym et al., 2019), our model takes into account
the constraints and trade-offs among pipelining, tiling and spatial
parallelism.

4 STATIC ANALYSIS GUIDED TUNING

This section introduces how we combine a static analytical
performance model with existing machine-learning (ML)
based auto-tuning (Chen et al., 2018b) to choose schedule
parameters. The key component is a novel performance
model aware of pipelining and its interaction with other
optimizations, as illustrated in Figure 8.

4.1 Top-Level Model

Our analytical model is shown in Table 1. At the top
level, the threadblocks are grouped into threadblock-batches
(threadblk batch), and one threadblock-batch occupies all
Streaming Multiprocessors (SMs) at a time. Since all thread-
blocks execute the same program, the latency of a kernel
equals the threadblock latency multiplied by the number
of batches. The number of threadblock-batches in a ker-
nel depends on the GPU scheduling policy, which we learn
through performance profiling. The maximum number of
threadblocks per SM is limited by the size of shared mem-
ory and register files that each SM can provide, as well as
the request of threadblock. Our simulated GPU scheduling
policy considers all these factors to decide Nthreadblk batch.

At the threadblock level, we estimate its final performance
by summing the latencies of three phases: (1) the initial
phase Tinit, in which the first chunk of data is requested
and the pipeline waits for it to arrive; (2) the main loop
Tmain loop, in which the load-and-use pipeline advances at
a steady rate; (3) the epilogue phase Tepilogue, in which
the final results are written back into the global memory.
Tepilogue is determined using the Epilogue Model equation
proposed in DELTA (Lym et al., 2019).

Let us consider Tmain loop. It illustrates load-and-use loop
at the shared memory level, which comprises copying data
from the device memory to the shared memory, reading the
data into the register, and doing computations with tensor
cores. We employ a Pipeline Latency Model, which is de-
scribed in the next subsection, to calculate the latency of
the loop. This model considers the pipelining and multi-
plexing factors, Npipe, Nmplx, which means the number of

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#with-memcpy_async-pipeline-pattern-multi
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#with-memcpy_async-pipeline-pattern-multi
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#with-memcpy_async-pipeline-pattern-multi
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Table 1. Analytical Performance Model
Category Model
Kernel Latency Model Tkernel = Tthreadblk ×Nthreadblk batch

Pipeline Latency Model

Input: Tload, Tuse, Nloop, Npipe, Nmplx

Output: Tload use loop

If Tload ≤ (Npipe ×Nmplx − 1)× Tuse: Tload use loop = Tuse ×Nloop

Else: Tload use loop = (Tload + Tuse)×Nloop ÷Npipe

Threadblock Latency Model

Tthreadblk = Tinit + Tmain loop + Tepilogue

Tinit = Tsmem load + Treg load

Tmain loop = PipelineLatencyModel(Tsmem load, Tsmem use, Nsmem loop, Nsmem pipe stage, Nthreadblk per SM )
Tsmem use = PipelineLatencyModel(Treg load, Tcompute, Nreg loop, Nreg pipe stage, Nwarp per threadblk)

Computation Latency Model Tcompute =
FLOPsone reg loop

ThroughputSM × Util(Nwarp per threadblk, Nthreadblk per SM )

Memory Latency Model

Tsnen load = MAX(TLLC load, TDRAM load)

TLLC load = LATLLC read +
Bytesone smem loop ×Nthreadblk per threadblk batch

BWLLC

TDRAM load = LATDRAM read +
Bytesthreadblk batch workset

BWDRAM

Epilogue Model Tepilogue = LATDRAM write +
Bytesoutput tile ×Nthreadblk per threadblk batch

BWDRAM write

stages the pipeline has, and the number of parallel work-
ers that can be multiplexed to hide the memory copy la-
tency. At the shared memory level, these two parameters
equal to the number of stages at the outer load-and-use loop,
Nsmem pipe stage, and the number of parallel threadblocks
in an SM, Nthreadblk per SM .

Calculation of Tmain loop still needs the latency of the use
phase in this loop. However, the use phase is another
pipeline that loads data into the register files and performs
computations with tensor cores. We can calculate the la-
tency of the use phase by estimating the stable state latency
of the inner pipeline through inner-pipeline fusion. For this
inner load-and-use loop, the use latency refers to the latency
of performing arithmetic operations inside one loop on ten-
sor cores. The pipeline and multiplex factors are determined
by the number of stages of this inner load-and-use loop and
the number of parallel warps in a threadblock.

4.2 Obtaining Detailed Latencies

Pipeline Latency Model. Now we address the core issue
of estimating the latency of a load-and-use loop in its stable
state. Intuitively, the prediction should differ depending
on whether the bottleneck is loading or using. Line 3 in
the Pipeline Latency Model in Table 1 is the criterion for
determining the bottleneck. Figure 9 illustrates the two sce-
narios in which computation or loading is the bottleneck.
The intuition is that, during the loading of one data chunk,
the computation units can be used to compute other chunks
of data in this pipeline (Npipe), or used for other parallel
workers (Nmplx). If the latency of data loading exceeds the
latency of all computations that can overlap with it, the load-
ing becomes the bottleneck, making the loop latency equal
to the latency of one load-and-use iteration, divided by the
number of overlapping streams, i.e., (Tload + Tuse)/Npipe.

Tensor 
Core

Buffer 1
Buffer 2

Thread- 
block 1

Time

tload tuse

Thread- 
block 2

Buffer 1
Buffer 2

Utilization = 1

(a) Case 1: tuse ·Nmplx ·Npipe ≥ (tload + tuse)
Time

Utilization = (Nmplx * Npipe * tuse) /(tload + tuse) 

Buffer 1
Buffer 2

Thread- 
block 1

Buffer 1
Buffer 2

Tensor 
Core

Thread- 
block 2

(b) Case 2: tuse ·Nmplx ·Npipe < (tload + tuse)

Figure 9. Explanation of the pipeline latency model. A load can be
overlapped by computing in other threadblocks, or in other stages
of the same threadblock.

Computation and Memory Latency Model. To obtain the
computation latency, we can simply divide the number of
float-point operations performed inside a loop by the tensor
core throughput in an SM. When determining the latency
of memory copies, four parameters must be considered:
the amount of data transferred, the available bandwidth,
the number of parallel workers (threadblocks or warps) to
share with the bandwidth, and a constant round-trip latency
LAT . Note that GPU LLC is shared by all SMs. Hence
the DRAM traffic cannot be computed by the sum of data
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Figure 10. Single operator performance normalized to TVM on A100.

Table 2. Comparison of compiler search methods.
Grid

Search XGB Anal.
Only

Anal.
+ XGB (ours)

Cost Model
N.A.

ML Analytical ML
Prior Knowledge? No Yes Yes

Update Cost Model? Yes No Yes

Sampling Enumerate
Simulated
Annealing

Cost-Model
Ranking

Simulated
Annealing

loaded by all threadblocks because the data may hit in LLC.
We model DRAM traffic by deciding the working set of a
threadblock-batch.

4.3 Model-Guided Auto-Tuning

Now, we will discuss how to use the analytical performance
model for scheduled tuning. The workflow of auto-tuning
is composed of a cost model to predict performance from
schedule, and a sampling method to propose new trials.
Unlike the analytical model we developed, TVM uses not
an analytical model but a machine learning (ML)-based
cost model that only learns from the profiled performance
results. Analytical model and ML-based tuning offer com-
plementary benefits: analytical model does not require the
complexity of compiling and running sampled schedules but
cannot be very accurate because it is difficult to capture hard-
ware factors such as memory system thoroughly. ML-based
tuning learns the cost model from measured performances
that incorporate these complex factors, but it requires a large
amount of sampled data, leading to a lengthy tuning process.

Finally, we leverage the analytical performance model’s
prediction to pre-train the ML-based model, allowing the
ML model to acquire previous knowledge while still utiliz-
ing profiled data. Table 2 compares our method (Model-
Assisted XGB) with other available auto-tuning approaches.

5 EVALUATION

5.1 Single Operator Performance

This part evaluates pipelining speedup on single operators.
Our benchmarks extracted from real DNN workloads con-
tain four operators with a variety of shapes. All operators

use half-precision and run on Tensor Cores. We run all
experiments on NVIDIA Ampere GPU, as prior generations
lack the asynchronous memory-copy hardware feature. Our
evaluation platform is NVIDIA A100-SMX4 with 40GB
device memory. The software we use is CUDA v11.4.

We implement our pipelining framework based on
TVM (Chen et al., 2018a) v0.8 and compare it against the
vanilla TVM. We augment both ALCOP and baselines with
shared memory swizzling to avoid bank conflict limitation.
We also manually insert double-buffering primitives into
TVM and use it as the second baseline (TVM DB). We also
compare against two downgraded versions of our compiler
for ablation study: ALCOP without multi-level (ML), mean-
ing just pipelining in shared memory level, and ALCOP
without ML and multi-stage (MS), meaning only allow-
ing two-stage pipelining. Here we exhaustively search the
schedule space and give the best schedule for ours and all
baselines.

Figure 10 shows the performance of different compilers nor-
malized to TVM. Our compiler produces operators that are
0.95-1.73×, on average 1.23×, faster than TVM. Pipelin-
ing is especially effective for operators with small output
shapes but long reduction axis. Take matrix-multiplication
(MatMul) as an example, MM RN50 FC, the operator that
gives the largest speedup, has an output shape of 1024× 64,
and a reduction axis of 2048. Also, for Batched Matrix
Multiplication (BMM), the operators with short reduction
axis (e.g., BMM BERT QK) show much smaller speedup
than those with long reduction axis (e.g., BMM BERT SV).

Insights about when pipelining works well. Prob-
lems with small output shapes (e.g., MM BERT FC2,
MM RN50 FC) have limited spatial parallelism, so they
benefit more from pipelining since pipelining uncovers ex-
tra parallelism. For problems with large output shapes (e.g.,
MM Conv1x1 1), or with small reduction dimensions (e.g.,
BMM GPT2 QK), pipelining provides limited benefit since
the former already have abundant parallelism and the latter
cannot amortize the latency of initial loading stages in the
pipelining schedule.
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Table 3. Model speedup from pipelining
Model Speedup over TVM Speedup over XLA
BERT 1.15 1.27

BERT-Large 1.18 1.16
GPT-2 1.15 1.34

ResNet-18 1.02 1.64
ResNet-50 1.06 1.02
VGG-16 1.10 1.01
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Figure 11. Single operator performance versus libraries.

Ablation study. Multi-level and multi-stage pipelining are
both critical to final speedup. As shown in Figure 10, TVM
DB does not bring obvious speedup over TVM. Without
multi-level pipelining, ALCOP can only provide an average
1.13× speedup. Without multi-level and multi-stage pipelin-
ing, ALCOP can only give 1.01× speedup over TVM.

5.2 End-to-End Performance

To evaluate end-to-end model acceleration, we compare
against two baselines: TVM (Chen et al., 2018a) and
XLA (Google, 2021) (TF v2.9.1). XLA is a compiler inte-
grated into the Tensorflow framework to optimize models in
an end-to-end fashion. We evaluate six popular deep learn-
ing models. BERT, BERT-Large (Devlin et al., 2018) and
GPT-2 (Radford et al., 2019) are popular models in Natural
Language Processing (NLP). ResNet-18, ResNet-50 (He
et al., 2016) and VGG-16 (Simonyan & Zisserman, 2014)
are three convolution neural networks widely used in vi-
sion tasks. Pipelining can be applied to MatMuls, BMMs
and Conv2Ds, which are the most computation intensive
operators and consumes a great proportion of the inference
latency in these models.

Table 3 shows the end-to-end speedup in real models. We
achieve 1.02-1.18× end-to-end speedup over TVM and 1.01-
1.64× speedup over XLA.

5.3 Comparison with Libraries

We compare with kernels in vendor libraries (cuBLAS
(NVIDIA, a)/cuDNN (NVIDIA, b)), which are heavily hand-
optimized for the typical problem shapes we evaluate. Note
that despite their high performance, libraries take huge man-
ual efforts due to low modularity and cannot replace com-
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Figure 12. Best-in-top-k performance of two analytical perfor-
mance models. The mark ’compile fail’ means the first 10 or
50 proposed schedules fail to compile into executables.

pilers in AI-GPU optimization.

Figure 11 shows the performance of ALCOP normalized
to library kernels. We can achieve on-par, on average 93%
normalized, performance compared with library kernels.
For some operators like BMM BERT QK, our compiler
even generates faster kernels than cuBLAS because our
compiler can search the entire schedule space and find the
best schedule for input operators.

5.4 Performance Model Accuracy

The metric we use to evaluate our performance model is
best performance in model-ranked top-k schedules, or best-
in-top-k in short. It means the best performance within
the top k schedules is predicted by the performance model.
Compared to mean-absolute-error among the entire schedule
space, best-in-top-k is more meaningful to schedule tuning
because tuning cares about finding efficient schedules within
a limited number of trials.

We compare against bottleneck-based analysis, a simple
model that takes the maximum of computation, shared mem-
ory loading and device memory loading time, assuming full
utilization of computation throughput and bandwidth. It
is over-simplified in the following ways: (1) assumes an
aggregated computation unit, but in GPUs the Tensor Cores
are distributed in different SMs and occupancy of SMs mat-
ters. (2) agnostic to the latency hiding effect, which is what
pipelining mainly benefits.

Figure 12 shows the best-in-top-k results for our analytical
model and bottleneck-based analysis for k = 10, k = 50.
All results are normalized to exhaustive search, i.e., the best
performance in the entire schedule space. Within the top-10
trials, our performance model achieves an average of 79%
performance compared to the best in exhaustive search, but
the bottleneck-based method only achieves 75%. Within
the top-50 trials, which is a 40× saving of trials compared
to exhaustive search, our model achieves an average 92%
performance, whereas the bottleneck-based method only
achieves 88%. Our model also achieves >95% performance
for all matrix-multiplication (MatMul) operators.
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Figure 13. Search efficiency of schedule tuning methods.

5.5 Analytical-Model-Guided Schedule Tuning

This part evaluates our technique to combine the analytical
model with machine learning (ML) based schedule-tuning.
The metric is best-in-k-trials similar as in the last part. We
compare our method with the other three methods, as de-
tailed in Table 2: (1) Grid-Search, which simply grid-search
all the parameter configurations and does not learn anything
from the collected performance data. (2) XGB, which is the
default method in TVM (Tavarageri et al., 2021), and uses
XGBoost (Chen & Guestrin, 2016) as a cost model to fit
the collected data and uses simulated annealing to propose
new trials. (3) Analytical-only, which ranks all schedules
according to their predicted performance via our analytical
model (4) Analytical+XGB, which first pretrains the XGB
model offline with pairs of schedules and their predicted
performance from the analytical model, and next follows
the same workflow as XGB.

Figure 13 shows the best-in-k-trials of the four searching
methods, normalized to the best performance in exhaustive
search. At a budget of 10 trials, our Model-Assisted XGB
finds schedules that reach 95% of the best performance in
exhaustive search, while sampling purely based on an ana-
lytical model or non-pretrained XGB gives 79% and 70%
of the best possible performance accordingly. At a budget
of 50 trials, which is a > 40× saving of trials compared to
an exhaustive search, our method reaches 99% of the best
possible performance, while Model-Ranking and XGB only
obtain 92% and 86%, respectively. To sum up, we find that
(1) analytical model helps ML: Model-Assisted XGB is bet-
ter than XGB because it incorporates prior knowledge about
the hardware, and (2) ML helps analytical model: Model-
Assisted XGB is better than pure analytical model because
it uses the actual profiled data to fine-tune the performance
model.

6 RELATED WORK

Pipelining. Pipelining, as a GPU kernel optimization, is
frequently used in GPU libraries like CUTLASS (Nvidia,

2021). CUTLASS implements pipelining in matrix multipli-
cation and convolution kernels. However, being a template-
based kernel library, CUTLASS is unable to provide au-
tomatic pipelining for any tensor programs; this is only
possible with our compiler-based solution.

The term “pipelining” in distributed DL training (Huang
et al., 2019; Narayanan et al., 2019; Barham et al., 2022;
Zheng et al., 2022a) refers to operator-wise parallelism.
In this case, different GPUs compute different stages of
a model, and multiple micro-batches are computed in a
pipelined fashion. Compared to our optimization at the
scope of a single kernel, those model-level pipelining work
use distinct techniques and focuses mainly on stage partition-
ing strategy. Pipelining is also a hardware design technique
widely used in accelerator designs (Liu et al., 2016; Jouppi
et al., 2017; Sohrabizadeh et al., 2020; Liao et al., 2021), or
hardware generation languages (Wei et al., 2017; Lai et al.,
2019; Wang et al., 2021a; Parashar et al., 2019). Despite
sharing the same mission of improving computation and
memory system utilization, the hardware-based pipelining
and our compiler-based approach are very different in that
hardware technique mainly benefit accelerator design, but
our technique benefits program optimization for general-
purpose architectures like GPU. Software-pipelining has
been studied to exploit instruction-level parallelism (Ning
& Gao, 1993; Govindarajan et al., 1996) and multithread
parallelism (Wei et al., 2012). Compared to those, ALCOP’s
task is more challenging because it must support multi-level
pipelining and must automatically split code into a load-
or compute-blocks using IR analysis, whereas, in other set-
tings, the pipeline stages are straightforward.

Performance Model. There is a rich amount of work on
analytical performance models for GPUs (Hong & Kim,
2009; Volkov, 2016; Wang et al., 2020; Huang et al., 2014;
Zhang & Owens, 2011; Baghsorkhi et al., 2010; Lym et al.,
2019). The most relevant is DELTA (Lym et al., 2019),
which builds a model to predict the latency of Conv2D
kernels on GPUs. However, ALCOP is the first to model
how pipelining stage numbers affect performance and trade-
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offs between pipelining and tiling. ALCOP differs from
analytical model-based search in that it combines ML- and
analytical-based search as detailed in Section 4.3.

Recently, static analysis has arisen to supplement the stan-
dard ML-based schedule tuning, whose cost model lacks
hardware knowledge. Tuna (Wang et al., 2021b) builds a
performance model for CPU and GPU to replace the ML-
based schedule tuning in AutoTVM (Chen et al., 2018b).
We show that a combination of an analytical model and
machine learning can achieve greater search efficiency than
the Tuna technique.

7 CONCLUSION

This paper addresses the important need for automatic
pipelining in deep learning compilers. Due to the large
tiling size required to mitigate bandwidth constraints, inter-
tile parallelism is inadequate for achieving high utilization,
and intra-tile pipelining becomes essential. We propose
the first compiler solution that supports multi-stage, multi-
level pipelining. Through introducing automatic pipelin-
ing, our compiler can generate GPU programs with an av-
erage 1.23× and maximally 1.73× speedup over vanilla
TVM (Chen et al., 2018a). Additionally, we develop an
analytical performance model which significantly improves
the search efficiency of the schedule tuning process.
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A. Artifact Appendix
A.1 Abstract
We provide the compiler transformation pass for pipelining
optimization used in our paper. The functionality and tech-
nical details of the transformation pass is described in Sec-
tion 3 of the paper. We provide instructions to set up evalu-
ation environments, build the code base, and provide scripts
to benchmark DNN operators with our optimizations and on
baselines.

A.2 Artifact check-list (meta-information)
• Algorithm: Pipelining compiler pass.

• Program: Benchmark scripts.

• Run-time environment: Docker image that we provide, or
built-from-scratch environment following our instructions.

• Hardware: NVIDIA A100 GPU.

• Output: Program log files.

• Experiments: Experiments to reproduce the operator speedup
results in the paper Section 5.A.

• How much time is needed to prepare workflow (approxi-
mately)?: 10 minutes.

• How much time is needed to complete experiments (approx-
imately)?: 1-2 minutes for example test case, 5 hours for full
test.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: Apache License 2.0.

• Workflow framework used?: Apache TVM (integrated in the
docker image we provide).

A.3 Description
A.3.1 How delivered
The artifact is available through the public github repository:
https://github.com/hgyhungry/alcop-artifact.

A.3.2 Hardware dependencies
NVIDIA A100 GPU.

A.3.3 Software dependencies
We provide two ways to set up the dependencies of this
artifact.

The first way is to use the docker image we provide with
all dependencies installed: hguyue1/alcop:latest.

The second way is to build our codebase from scratch.
For the second way, we require

• CUDA toolkit v11.2 or higher
• LLVM v10.0.0 or higher

A.3.4 Data sets
The artifact does not require specific data sets.

A.4 Installation
We provide two ways to install the package for this artifact.

Method 1: The first way is to use the docker image we
provide where everything is built and installed:

Step 1: Start docker.

#!/bin/bash

docker run -it --gpus all \

-w /tvm hguyue1/alcop:latest bash

Step 2: Inside the docker, set environment variables.

export TVM_HOME=/tvm

export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}

Method 2: The second way is to install the package from
scratch. For the second way, you can follow the steps below:

Step 1: Start from an NVIDIA docker

docker run -it --gpus all -v /path/to/this/repo:/tvm \

-w /tvm nvidia/cuda:11.4.0-cudnn8-devel-ubuntu20.04 \

bash

Step 2: Inside the docker, install dependencies:

apt-get update

apt-get install -y python3 python3-pip \

python3-dev python3-setuptools gcc \

libtinfo-dev zlib1g-dev build-essential \

cmake libedit-dev libxml2-dev \

git llvm

pip install numpy decorator attrs tornado \

psutil ’xgboost>=1.1.0’ cloudpickle \

matplotlib torch pytest

Step 3: Build the TVM shared library

# create build directory

mkdir build

cp cmake/config.cmake.template build/config.cmake

# build the shared library

cd build

cmake ..

make -j

Step 4: Set environment variables.

export TVM_HOME=/tvm

export PYTHONPATH=$TVM_HOME/python:${PYTHONPATH}

A.5 Experiment workflow
Experiment 1: run a simple GEMM example.

cd /tvm/auto_pipeline_exp/single_op

# baseline

python3 dense_tensorcore_in_topi.py

# optimized

python3 dense_tensorcore_autopipeline_example.py

Experiment 2: run the whole test suite. This means to
search the entire configuration space with autotvm infras-
tructure for our optimizations, baseline vanilla TVM, and
baseline TVM with double-buffering.
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cd /tvm/auto_pipeline_exp/single_op

sh run.sh

A.6 Evaluation and expected result
Experiment 1: Expected output of the baseline script

# expected output of dense_tensorcore_in_topi.py

Test with pipelining

Result correct.

Time cost of 0.001948 throughput 70.571906 Tflops

Expected output of the baseline script

# expected output of

# dense_tensorcore_autopipeline_example.py

Test with pipelining

Running on target: cuda

[Info] calling pipeline buffer transformation

[Info] calling swizzle buffer transformation

Result correct.

Time cost of 0.000738 throughput 186.303047 Tflops

Experiment 2: The output log files are under the folder
/tvm/auto_pipeline_exp/single_op/result. We pro-
vide the expected output files for several operators through
the following shared drive. https://drive.google.com/
drive/folders/1pZhwS4zRFIIQfLlL8DfbJRtEjkxFouqA?

usp=sharing

A.7 Methodology
Submission, reviewing and badging methodology:

• http://cTuning.org/ae/submission-20190109.
html

• http://cTuning.org/ae/reviewing-20190109.html

• https://www.acm.org/publications/policies/
artifact-review-badging
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