
Efficient Model-based OPC via Graph Neural
Network

Shuyuan Sun1, Xuelian Chen2, Fan Yang1∗, Bei Yu3, Shang Li1 and Xuan Zeng1∗
1State Key Lab of ASIC & System, School of Microelectronics, Fudan University, China, 2Cogenda Inc., China

3Department of Computer Science and Engineering, The Chinese University of Hong Kong, China

Abstract—As feature size continues to shrink and light source
wavelengths remain unchanged, the optical diffraction effects
seriously degrade chip yield. Optical proximity correction (OPC)
has become an essential step for chip manufacturability. However,
OPC cannot achieve satisfactory mask correction results in an
affordable number of iterations on some layouts, delaying the
chip design cycle. In this paper, we propose to use the Graph
Neural Network (GNN) to predict the initial mask correction and
speed up model-based OPC. We design a graph model to represent
the chip layout, with segments represented as graph nodes and
the diffraction effects between them represented as graph edges.
The GNN is used to obtain the embedding of the segment, and
we predict the shift value based on its output. The proposed
GNN-based predictor enhances the original OPC to find a good
correction solution for full-chip-size masks in fewer iterations.
compared with the original OPC method, experimental results on
55nm and 32nm full chip designs show that the proposed GNN-
based OPC method reduces the number of iterations up to 75%
and the acquired mask of comparable quality.

I. INTRODUCTION

Segment shift-based OPC is the most widely used type of
OPC in practical scenarios, which is also called the model-
based OPC. For advanced technology nodes, existing model-
based OPC methods suffer from high computation costs and
may not get satisfactory correction results in a limited number
of iterations. It raises serious concerns due to the stringent
demand for a fast design cycle. For instance, it may take over
one week on thousands of CPU cores to complete the OPC task
for a large design.

Many methods have been proposed to accelerate model-
based OPC methods, which can be divided into two categories:
pattern matching based and machine learning based. For pattern
matching based approaches [1], [2], the OPC results of fre-
quently occurring design cells are reused to accelerate the OPC.
Considering designs containing mostly repetitive cells, such as
SRAM, the pattern matching-based approach can significantly
reduce the runtime of OPC. However, the improvement brought
by pattern matching-based methods is limited for layouts with
many different shapes.

For machine learning-based approaches, the work [3] pro-
poses the concentric square sampling (CSS) method to obtain
the feature vectors of segments, then uses linear regression
to predict the shifts. In [4], a hierarchical Bayesian model
combined with linear regression is used to avoid overfitting. It
also proposes a concentric circle area pixel sampling (CCAS)
method to simulate the physics of light propagation, as shown
in Fig. 1. In [5], the features of the segments are generated
using the CCAS method, and then a neural network is used to
predict the movements of segments. In [6], the matrix-based
concentric circle sampling (MCCS) method is proposed, and
maximal circular mutual information is used to select important

*Corresponding authors: {yangfan, xzeng}@fudan.edu.cn.

(a)
(b)

Fig. 1: (a) the constructed graph from the layout in our proposed
approach. (b) the feature extracted from the layout using CCAS
method. Each black node in (a) corresponding one clip like (b)
in CCAS method.

features. CCS, CCAS, and MCCS methods use nearby pixels of
a segment to represent local geometric relations. In these pixel-
based methods, each segment is an independent instance. But
a full-chip OPC has tens of thousands of segments that need
to adjust their positions. The time for data preparation, infer-
ence, and training of pixel-based methods will soon become
prohibitive.

Recently, another resolution enhancement technique (RET)
called inverse lithography (ILT) has attracted much attention.
In [7], Generative Adversarial Network (GAN) is employed to
generate initial corrections to reduce the running time of ILT. In
[8], a level set algorithm is introduced for mask optimization,
and GPU is used to accelerate lithography simulations. In
[9], each pixel on the mask constructs a graph using the
pixels sampled by the CCAS method, then a GNN is used to
predict the pixel value. However, the high computation cost and
discontinuity problem prevent ILT from being widely applied
to full-chip size mask correction. In [10], ILT is performed
on a via layer of a larger layout, and good correction results
are obtained. It is a nice try because vias locate sparsely in
the layout, so there would be fewer graphics discontinuity
problems. But there will be more discontinuous shapes near
the boundaries of the ILT correction window since there are
dense shapes in the M1 layer. The discontinuity problem of the
ILT on the M1 layer will be severe. Another disadvantage is
that the masks produced by ILT have poor manufacturability
compared to the model-based OPC. ILT adjusts the pixels of
the mask according to the difference between the litho result
and the target image. It provides better flexibility in optimizing
mask patterns but results in unwanted shapes that make masks
difficult to produce. On the contrary, Model-based OPC may
lose some flexibility since it only adjusts positions of segments,
but its moderate runtime makes it practical to be applied to the
full-chip design. In real-world scenarios, commercial OPC tools
would choose the model-based OPC to correct the entire mask
and then apply ILT to fix hot spots in smaller areas.

In this work, we propose to use GNN to predict the initial
shifts of segments, aiming to speed up the OPC process. The
outputs of the GNN-based predictor are taken as the initial
input for the following model-based OPC. In Fig. 1, we show
the extracted CCAS features by compared to the proposed
graph model. The proposed method is designed for segment
shift-based OPC on the full-chip size mask. and The main
contributions of this work are summarized as follows.

• We introduce a graph model to represent the mask layout.
The graph model can efficiently capture the features of
the segments with significant less runtime for feature
extraction compared to the pixel-based methods. It effec-
tively reduces the complexity of the extraction of features
compared to the pixel-based methods.

• We leverage a modified GNN to process the obtained
features, then make predictions based on its output embed-
ding. We also propose two different graph convolutional
kernels for different types of geometric relationships be-
tween segments.

• Experimental results on 55nm and 32nm full chip designs
show that the proposed GNN-based OPC method can
reduce the number of iterations up to 75%, compared with
the original OPC method, with comparable quality.

The rest of the paper is organized as follows. In Section II,
we present the preliminary knowledge of model-based OPC
and GNN. In Section III, we illustrate the proposed GNN-based
OPC prediction method. In Section IV, the experimental results
are demonstrated to show the efficacy of the proposed method.
In Section V, we conclude the paper.

II. BACKGROUND

In this section, we first review knowledge about OPC and
the Graph Neural Network (GNN), then give definitions of
measurement metrics and the formulation of the problem.

A. OPC
In Fig. 2(b), blue lines draw the target shape, and the

grey contour is its aerial image after lithography simulation.
The aerial image is significantly different from the designed
shape. It shows the importance of OPC for improving the
layout manufacturability. The model-based OPC technique first
fractures edges into small segments denoted in orange in Fig. 2.
Then under the guidance of lithography simulations, segments
move inward or outward to compensate for unfavorable features
caused by lithography effects. The model-based OPC repeatedly
manipulates segments and tries to minimize the differences
between the aerial image and the target design.

All shapes within distance D (around 1000 ∼ 2000nm) will
affect the lithographic image of segments. As the feature size
continues to shrink and the mask pattern is denser, more shapes
should be considered in the OPC process, which makes the OPC
more difficult to converge. In the model-based OPC, the shift
of segments may oscillate and require more OPC iterations to
have a satisfactory correction solution in advanced technology
nodes.

B. Graph Neural Network
GNNs are very efficient at handling graph type data. In each

layer of the GNN, all nodes perform the same computation
simultaneously, and the operation is defined as the convolution
kernel of the GNN. Therefore, the size of the input graph can be
arbitrary since all nodes share the same parameterized kernel.

()a ()b ()c

Fig. 2: The left one draws the corrected shape, its optical image
and target shape. Optical image is drawn in grey lines and target
shape is drawn in blue line. The corrected shape is in orange.
The middle one is the original mask shape and its optical image.
The right one shows that segments move outward and inward
to compensate for the lithographic effects.

The convolution kernel of GNN transforms and aggregates the
features of nodes and edges. Depending on the size of the
information window that needs to be considered, we can stack
different numbers of GNN layers to extract local information
at multiple scales.

Many variants of GNNs have been proposed, and the dif-
ference between them mainly lies in the design of convolution
kernels. Graph Convolutional Networks (GCN) [11] and RGCN
[12] are two representative examples. GCN [11] applies a
linear transformation to all adjacent nodes, then uses “mean”
aggregation to obtain feature vectors.

f(vi)
(k+1)

= σ

 1

ci

 ∑
j∈N(i)

W (k)f(vj)
(k)

+W (k)f(vi)
(k)

 ,

(1)
where f(vi)

(k+1) denotes the feature of node vi at k-th layer,
j ∈ N(i) represents all connected nodes of node vi. W (k)

represents the transformation matrix formed by learnable pa-
rameters at k-th layer. ci is the normalization factor.

RGCN [12] applies different transformations to nodes con-
nected by different types of edges, unlike GCN which uses the
same transformation for all connections,. The computation of
RGCN is formulated in Eq.(2).

f(vi)
(k+1)

= σ

∑
r∈R

∑
j∈N(i,r)

1

ci,r
Wr

(k)f(vj)
(k)

+W
(k)
0 f(vi)

(k)

 ,

(2)
where R is the relation type set of the graph. j ∈ N(i, r) means
node vj is the neighboring node of node vi in type of r. W (k)

r

stands for the transformation matrix for type r connection at
k-th layer.

C. Problem Formulation

Definition 1 (RMSE Loss). Root-Mean-Square Error
(RMSE) is an important metric to evaluate the quality of
regression models. The calculation of RMSE is shown as

RMSE =

√√√√√ N∑
i

(yi − ŷi)
2

N
, (3)

Design Graph
GNN-based

Predictor Model-based

OPC

Corrected

Design

Fig. 3: The hybrid model-based OPC flow.

where yi represents the ground truth value and ŷi is the
predicted value. N is the total number of testing data.

Definition 2 (R2 Score). R2 Score is also called the coef-
ficient of determination, which is closely related to the RMSE
loss. The definition of R2 is shown as

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)
2
, (4)

where ȳ is the mean of all ground truth values. It measures
the portion of variations in the dependable variables from the
independent variables. When all the predictions take the mean
of the true values, R2 score equals to zero.

Definition 3 (Edge Placement Error). Edge Placement Error
(EPE) is an important metric to evaluate mask printability. As
is shown in the middle image of Fig. 2, measuring points are
sampled evenly on the horizontal and vertical edges of the target
shape. We measure the minimum distance D from measuring
points to lithographic contours. In Fig. 2, the red pointer gives
one example of measuring the distance D. If the distance D is
greater than the threshold distance thr, we mark it as an EPE
violation. We set thr = 15 in our settings.

EPE(x, y) =

{
1, D(x, y) ≥ thr,
0, D(x, y) < thr.

(5)

Problem 1 (Accelerate the Model-based OPC) Our goal is to
shorten the runtime of model-based OPC by giving good initial
moving values of segments, helping it give good correction re-
sults in a limited number of iterations. The prediction accuracy
is evaluated by the RMSE loss and the R2 score. The mask
printability is assessed by the amount of EPE violations.

III. ALGORITHMS

In this section, we first introduce a hybrid model-based
OPC pipeline, explaining how the original OPC improves its
performance using our proposed method. Then we build a graph
model to represent the layout geometry. Finally, we show how
to use a GNN to obtain the final node embedding and use it to
predict shifts of segments.

A. Hybrid Model-based OPC Flow

Model-based OPC first splits the edges of polygons into
multiple movable segments, and then iteratively adjusts the
positions of segments under the guidance of lithography sim-
ulations. It is time-consuming for OPC to obtain satisfactory
calibration results on a chip size layout. Finding a good solution
in a limited number of iterations is a challenge for OPC on some
layouts. Therefore, we aim to reduce the runtime of model-
based OPC by accurately predicting segment movements. The
proposed hybrid OPC flow is shown in Fig. 3.

Furthermore, we propose a hybrid OPC online prediction
scheme to fine-tune the GNN model during the OPC process.

(a) (b)

(c)

Fig. 4: A graph is constructed from a layout. (a) and (b) are
enlarged views of the convex and concave corner segments. (c)
is a magnified view of spatial connections (esp edges).

Due to the large size of the entire chip, model-based OPC
divides the layout into small tiles. The OPC will be executed
sequentially on these tiles. After completing OPC on N tiles,
we retrain the GNN-based predictor using obtained correction
results on these tiles. Therefore, the proposed hybrid OPC flow
has good adaptability to various mask designs.

B. Graph Representation of Layouts
Fig. 4 is a small snippet from a layout, explains how we

convert the layout to a graph G = (V,E). V and E represent
node and edge sets respectively. Segments are represented
as graph nodes. Furthermore, we divide the nodes into three
types: convex, concave, and ordinary. In Fig. 4, the segments
represented by these three types of nodes are marked in red,
blue, and orange. Fig. 4(a) and Fig. 4(b) respectively shows
an enlarge view of convex and concave segments. The one-hot
encoding is used to encode segment types and concatenate them
with segment length and its ratio to edge length to form node
embeddings representing segments.

We define three types of edges to represent the geometric
relationship between the three types of line segments. For
direct contact line segments, we use edges eseq to connect
them, which is called sequential connection. Edges esp connect
adjacent segments belonging to different polygons, which we
call spatial connections. We show an example of esp edges in
Fig. 4(c) and mark them with grey dashed lines. An edge esy
connects adjacent segments that belong to the same polygon
but without directly touch, called a symmetric connection. In
Fig. 4, we mark edges esy in red dashed lines.

The relative positions between segments are important for de-
scribing the local geometric relationships. We use the difference
between the center points of the segment on the x-axis and the
y-axis as the features of edge eseq . The geometric relationship
between two segments that in sequential connection is quite

 0, 1 1,0 1, 1

Fig. 5: An illustration for features of sequential connected
segments.

()1k

bf v−

()abf e

+

()MLP

(),seqh a b

(),seqh a c

...

()AGGR
()seqh a

()1k

af v−

+
()MLP

()a

kf v

Fig. 6: The computation graph of SeqConv.

regular. They are either in a straight line or perpendicular to
each other, as shown in Fig. 5. For simplicity, We give the
definition for features of edge eseq as

f (eseq (a, b)) = [p (xb − xa) , p (yb − ya)] , (6)

p (z) =

 1, z > 0
0, z = 0
−1, z < 0

, (7)

where f (eseq (a, b)) represents the feature vector of edge
esq (a, b). a and b are two segments connected via edge eseq .
Note that the sequential connection is directional. esq (a, b)
means b connected to a. xa and ya respectively stands for the
x and y coordinates of center point of the segment a.

For the spatial and symmetrical connections, the geometric
relationships between segments are more complex than se-
quential ones. The coordinates difference of center points of
connected segments are used but without the reduction function
p(·) shown in Eq. (7). Besides, we concatenate the vertical
distance dab between connected segments to the embeddings
of edge esp and esy .

f (esp (a, b)) = [xb − xa, yb − ya, dab] . (8)

Eq. (8) formulates the embedding computation for edge esp,
which also applies to the edge esy . Neighboring segments also
need to be found in the OPC tool. So we can directly use the
built-in functions in the OPC tool to efficiently construct the
edge esp and the edge esy .

C. Graph Neural Network Design
In Section III-B, we build a graph to represent the layout. The

initial node embedding of each segment can only represent its
own attributes, we have to make good use of the connection in
the graph. We leverage a message passing-based Graph Neural
Network (GNN) to update the node embeddings via stacking
layers. In one GNN layer, each node would transform and
aggregate the features of its connected nodes to update self-
representation. Each graph node could obtain a K-depth local
knowledge by stacking K layers of GNN. We assume that the
output node embeddings of the GNN can well encode the local
geometric relationships of the segments.

All nodes on the graph share the same convolution kernel of
GNNs. The difference between various message passing-based
GNNs lies in the design of convolution kernels. The framework
of most GNNs is shown in the Algorithm 1. The Conv(·)
function stands for different designs of the convolution kernel.
In GCN [11] and RGCN [12], the designs of Conv(·) function
are respectively shown in Eq. (1) and Eq. (2).

a

c

b

aa

bb

cc

() [1,1]abf e = −

() [0, 1]acf e = −

aa

(),seqh a b

(),seqh a c

b

a

c

(1) (2)

Fig. 7: An illustration for SeqConv.

Here we propose two convolution kernels, i.e. SeqConv and
SpaceSymmConv, to better encode the local neighborhood
of segments. The span range of the edge eseq is smaller
than the edge esp and esy . If we process all nodes with
different transformations in one convolution operation like RCN
[12], we will get too much global information and lack local
knowledge. Therefore, there are two convolutions SeqConv
and SpaceSymmConv for processing the information passed
through edge eseq and edge esp/esy respectively. This modi-
fication to the convolution kernel also gives more flexibility
compared to RCN [12].

Algorithm 1 the framework of message passing-based GNNs

1: Input : Graph G(V,E), input node features xv , v ∈ V ;
input edge features xe, e ∈ E; depth K;

2: Output : vector representations zv for all nodes v ∈ V ;
3: f0(v)← xv , v ∈ V ;
4: f(e)← xe, e ∈ E;
5: for k = 1...K do
6: fk (vi) = Conv

(
G, fk−1 (vi) , f

k−1 (vj) , f (eij)
)
, eij ∈

E;
7: end for
8: zv ← fK(v),∀v ∈ V ;
9: return zv;

To consider both the relative positions and properties of
segments, we concatenate the embeddings of edges with the
embeddings of connected nodes to form a feature vector. The
obtained feature vectors are then processed using a learnable
MLP (Multilayer Perceptron) and output embeddings repre-
senting the node-edge pairs. The computation graph of this
operation for the sequential connection is shown in the grey
dashed box in Fig. 6. This operation is represented in Eq. (9),
where the resulting embedding hr is called the neighborhood
feature vector. Er denotes the edge set of type r, and H(·)
represents the learnable MLP.

hr(i, j) = H [f (vj) , f (eij)] , eij ∈ Er. (9)

For each edge type, a node may have multiple con-
nected nodes. Therefore, we take the element-wise mean of
{hr(i, j),∃er(i, j) ∈ Er} to obtain a general vector hr(i). This
operation is denoted as AGGR(·) in Fig. 6.

In SeqConv, we concatenate the neighborhood feature vec-
tor hseq(i) with the embedding fk−1 (vi) of node i, and use
another MLP to generate the final representation of nodes in this
GNN layer. Fig. 6 shows the computation graph of SeqConv.
Fig. 7 gives a small example of SeqConv, illustrated on both
the layout side and the graph side. In Fig. 7(2), the geometry
of the segment within the blue area can be represented by
the embedding of node a obtained after one SeqConv. And

a

b

c

(1) (2)

Fig. 8: Fragments a, b, and c in (1) have the same geometric
neighborhoods as shown in (2), but with different shifting
values after OPC.

segments wthin the yellow region could be reached by node a
after two layers of SeqConv.

In SpaceSymmConv, we first calculate the neighborhood
feature vectors of hsp and hsy using Eq. (9). Then we update the
node embeddings using an MLP with hsp(i), hsy(i) and f(vi)
as input. The computation graph of SpaceSemConv is similar
to that of SeConv shown in Fig. 6, and the only difference is
the input of the second MLP. We first use the SeqConv to get
a node embedding representing the partial shapes of polygon
edges and then use SpaceSymmConv to obtain information
about the wider spatial extent.

Generally, we stacked two layers of SeqConv followed
by one layer of SpaceSymmConv. For advanced nodes, we
stacked three layers of SeqConv, followed by two layers
of SpaceSymmConv. We believe that the feature vector zv
obtained by GNN can capture the local geometric information
of segments. We predict the movement of segments based on
the outputs of GNN, making the predicted values are close to
those obtained by the model-based OPC.

From the observations of the layout shapes after OPC, it is
found that the shifts of segments are not only related to the
local environments, but also affected by the movements of its
adjacent segments. In Fig. 8, the geometric neighborhood of
fragments a, b and c share the same structure as shown in (2),
but their shifting values after the OPC are quite different.

Therefore, we make two times of predictions and use the
attention mechanism to improve the prediction accuracy on
shifting values. We have the first prediction y1 based on the
feature vectors zv generated by the GNN. The attention module
uses the movement value of the first prediction y1 and the
feature vector zv as input to make the second movement
prediction y2. Experimental results show that it can greatly
improve regression accuracy.

IV. EXPERIMENTAL RESULTS

The GNN-based predictor is implemented in Python with the
Pytorch-geometric toolkit [13]. An Nvidia RTX 2080 Ti GPU
is used for training and testing. We conduct experiments on two
full-chip size layouts to verify the effectiveness of our approach.
One is on a 55nm CPU design with 837×553 µm2 size. And the
other is on the case 3 of the ICCAD 2016 dataset [14], which
is a 32nm design. The ICCAD 2016 dataset was originally
proposed for hotspot classification, but we use it to validate
that our approach is also applicable at the full-chip size. This
layout contains 9779 polygons and is of size 40288×25830
nm2.

On the 55nm CPU layout, we integrate the proposed GNN-
based predictor with a commercial OPC tool. Experimental
results show that our method effectively reduces the number
of iterations of the original OPC, while also improving the

TABLE I: Time analysis of graph construction and prediction.

#Polygon W/H (nm) Build Graph Prediction

38 2048 0.02s 0.064s
447 2048 × 4 0.20s 0.56s

1293 2048 × 6 0.36s 1.03s
2164 2048 × 8 0.69s 1.83s

TABLE II: Regression Performance.

Layout Area Pixel-based Graph-based
(µm× µm) MSE R2 Inference time(s) MSE R2 Inference time(s)

xt184 14×20 6.6964 0.7703 8.044 6.0813 0.8345 0.05
sram 122×81 2.7014 0.9217 11.53 2.6155 0.9662 2.031

Ratio 1.081 0.940 9.406 1 1 1

OPC quality. For the ICCAD 2016 layout of 32nm, we use
the lithography simulator from the ICCAD 2013 benchmark
suite [15]. We re-implemented the OPC method according to
[16] as the raw OPC tool for the ICCAD 2016 layout.

A. GNN predictor performance

To measure the efficiency and accuracy of our approach,
we conduct the following experiments. Table I shows graph
construction time and graph neural network inference time in
layout of different sizes. The “W/H” denotes the width/height
of the cut square layouts. The “#Polygon” denotes the number
of polygons. The layouts are cut from the ICCAD 2016 layout.
The results in Table I show that the runtime of our approach is
trivial to the entire OPC process, which usually takes hundreds
of seconds.

To evaluate the accuracy of predictions, we use two 65nm
designs xt184 and sram to form the training and testing
dataset. For pixel-based approach, we use the CCAS method
proposed in [4] to extract features. However, the accuracy of
linear regression used in [4] is not acceptable. To improve the
regression accuracy, we replace the linear regression in [4] by a
neural network with two hidden layers. Dropout operation and
L2 norm regulation are used to further improve the regression
accuracy. In the sram layout, the data used for graph-based
predictor is 6 times smaller than the pixel-based one. In both
layouts, the graph-based approach is more than 5x faster than
the pixel-based one. We set the batch size to 1024 for the
pixel-based predictor and 4 for the graph-based one. Note that
the RMSE loss on the xt184 is bigger than on the sram for
both predictor. Because there are many repetitive shapes in the
sram layout, and the testing part of xt184 is most different
from the training part. We use the xt184 layout to test the
generality of the predictors and the sram layout to evaluate the
representation ability for the layout. This proves that the graph-
based approach can achieve the same or better representation
of the layout than the pixel-based one.

B. Full-chip OPC on CPU and ICCAD 2016 Layout

For full-chip size OPC, we need to divide the layout into
small tiles to suit the input size of the optical model. Because of
the movement of a fragment is determined by the litho intensity
of its center point. Since these points are sparsely located in
the layout, the OPC tools uses some sample rate to calculate
the lithographic map. Therefore, the OPC tile size is usually
larger than the input size of the optical model to make the
OPC process more efficient. But with more graphics need to
be considered, complete the OPC process in limited iterations
would also be harder. We have demonstrated the accuracy of

1011

122775%

Fig. 9: The EPE descending curve of the CPU layout.

7995

6973

60%

Fig. 10: The EPE descending curve of the ICCAD 2016 layout.

our GNN-based predictor before, and here we test whether it
can boost the raw OPC and improve its performance.

The CPU layout is a real chip design of 837×553 µm2 size,
and the used commercial OPC tool divides it into 896 tiles of
27×27 µm2 size. After the OPC results of N tiles are obtained,
the GNN model is retrained with the new correction results.
In this way, the prediction model will keep being updated
during the OPC process to adapt the design. Compared to the
original OPC with 8 iterations, GNN-enhanced OPC use only
two iterations acquiring comparable correction result, shown in
Fig. 10.

For the ICCAD 2016 layout, we modify the original litho
simulator from [15] to simulate larger mask size. As this layout
is comparable small, we split it into 24 tiles of size 8.2×8.2
µm2 size. Since the OPC time for each tile is small and there
are only limited tiles, we use 8 tiles for model training, then
use the trained model give prediction to the rest tiles. In Fig. 9,
the GNN-enhanced OPC reduces over 1000 EPE violation than
the raw OPC after 5 iterations. Compared to the original OPC,
the GNN-enhanced OPC achieves a similar number of EPE
violations using only 40% running time, as shown in Fig. 10.

Our method may not suitable for isolated shapes and small
size mask correction, because the original OPC on them is
capable converge in limited iterations. But for full-chip-scale
mask correction, the original OPC cannot give a corrected mask
of good printability in a affordable number of iterations. Ex-
perimental results show that our GNN-based predictor provides
good initial values for model-based OPC and acquire compara-
ble mask quality in much fewer OPC iterations. Furthermore,
Our method is practical and easy to be integrated into the
original OPC flow.

V. CONCLUSION

In this paper, we propose a graph model to represent the
layout, then use GNN to generate the final embedding of
segments. The generated embeddings are used to predict the
shifts of segments and accelerate the iteration procedure of
OPC. Compared to traditional methods that predict the shift
of fragments using their surrounding pixels, our graph-based
approach has better prediction accuracy and consumes much
less inference time. Experimental results show that our ap-
proach could significantly reduce the number of iterations of
the original model-based OPC to obtain comparable correction
results on full-chip designs.

ACKNOWLEDGEMENT

This research is supported partly by National Key R&D
Program of China 2020YFA0711900, 2020YFA0711903, partly
by National Natural Science Foundation of China (NSFC)
research projects 62090025, 62141407, 61974032, 61929102,
and The Research Grants Council of Hong Kong SAR
(No. CUHK14209420 and CUHK14208021).

REFERENCES

[1] Tom Wang and etc. Pattern centric opc flow: a special ret flow with fast
turn-around-time. In Optical Microlithography XXI, volume 6924, page
69243V. International Society for Optics and Photonics, 2008.

[2] Piyush Verma and et al. Pattern-based pre-opc operation to improve
model-based opc runtime. In Photomask Technology 2014, volume 9235,
page 923506. International Society for Optics and Photonics, 2014.

[3] Allan Gu and Avideh Zakhor. Optical proximity correction with lin-
ear regression. IEEE Transactions on Semiconductor Manufacturing,
21(2):263–271, 2008.

[4] Tetsuaki Matsunawa, Bei Yu, and David Z Pan. Optical proximity
correction with hierarchical bayes model. In Optical Microlithography
XXVIII, volume 9426, page 94260X. International Society for Optics and
Photonics, 2015.

[5] Bo-Yi Yu and et al. Deep learning-based framework for comprehensive
mask optimization. In Proceedings of the 24th Asia and South Pacific
Design Automation Conference, pages 311–316, 2019.

[6] Bentian Jiang, Evangeline FY Young, and et al. A fast machine learning-
based mask printability predictor for opc acceleration. In Proceedings of
the 24th Asia and South Pacific Design Automation Conference, pages
412–419, 2019.

[7] Haoyu Yang and et al. Gan-opc: Mask optimization with lithography-
guided generative adversarial nets. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 39(10):2822–2834, 2019.

[8] Ziyang Yu, Guojin Chen, Yuzhe Ma, and Bei Yu. A gpu-enabled level
set method for mask optimization. In 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pages 1835–1838. IEEE, 2021.

[9] Shengen Zhang, Xu Ma, and et al. Fast optical proximity correction
based on graph convolution network. In Optical Microlithography XXXIV,
volume 11613, pages 190–197. SPIE, 2021.

[10] Guojin Chen, Bei Yu, and et al. Damo: Deep agile mask optimization
for full chip scale. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2021.

[11] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[12] Michael Schlichtkrull, Thomas N Kipf, and et al. Modeling relational
data with graph convolutional networks. In European semantic web
conference, 2018.

[13] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with
PyTorch Geometric. In ICLR Workshop, 2019.

[14] Rasit O Topaloglu. Iccad-2016 cad contest in pattern classification
for integrated circuit design space analysis and benchmark suite. In
2016 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pages 1–4. IEEE, 2016.

[15] Shayak Banerjee and et al. Iccad-2013 cad contest in mask optimization
and benchmark suite. In 2013 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), pages 271–274. IEEE, 2013.

[16] Jian Kuang, Evangeline FY Young, and et al. A robust approach for
process variation aware mask optimization. In 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE), pages 1591–1594.
IEEE, 2015.

