
Fast and Accurate Wire Timing Estimation Based on
Graph Learning

Yuyang Ye1, Tinghuan Chen2,3, Yifan Gao1, Hao Yan1,
Bei Yu2, Longxing Shi1

1Southeast University
2Chinese University of Hong Kong
3Chinese University of Hong Kong, Shenzhen

Apr. 18, 2023

Introduction

As the design gets closer to tape-out, a
more accurate wire timing estimation is
required to guide timing optimization.

P&R

T
im

in
g

O
p

tim
iz

a
tio

n

(a) SPICE simulator

(b) Sign-off timer

(c) Timing estimator

Physical design Timing analysis

Critical paths

Slacks

Design constraints

Design changes

Large scale design

Interaction between physical design and
timing analysis 1.

As designs become larger and larger, a
faster wire timing estimation is a
necessity to speed up STA.

Wire timing estimation
48%

Prepare
42%

Prop.
10%

Runtime breakdown for Opentimer on a
million-gate circuit using 40 CPUs 2.

1Fast and Accurate Wire Timing Estimation on Tree and Non-Tree Net Structures
2GPU-Accelerated Static Timing Analysis

Wire Timing Estimation: Fast? or Accurate?

3/23

• An example of paths on netlists is shown at left. There are 7 paths on the netlist with
11 gates.

• An example of paths on nets is shown at right. There are 2 paths on the net with 11
capacitances.

Path 1

Path 2

Path 3

Path 4

Path 6

Path 5

Net A

Path 7

Path on netlist

Stage1 Stage2 Stage3 Stage4

Loop1 Loop2

Stage5

Source Sink1

Sink2

Path on wire

Drive cell Load cell

Sink2

Source Sink1Net A

Path 1

Path 2

Introduction: Paths on the Netlist and Wire

4/23

• The numbers of paths are more than 1 million with just 10k gates.

• The maximum path number of paths on these nets is just 49, and most of the nets are
composed of 10-30 paths.

• Thus, The limited number of wire paths opens a door for the graph learning method
to estimate wire timing effectively while considering path information.

101 102 103 104

102

104

106

#Gate

#
P
at
h
on

N
et
li
st

200 400 600

102

104

106

#Capacitance
#
P
at
h
on

W
ir
e

Motivition: Comparison of #Paths on the Netlist and Wire

5/23

• A complex RC net → RC graph G = (V, E ,P);

• A capacitance → A node vi in V ;

• A resistance connected between node vi and vj → An edge eij in E ;

• A wire path from the path source Source to the target sink Sink1 → A sub-graph q in
P consists of all nodes and edges visited

Source C C C

C 2C

C

2C

C

C 3C

C
R R

R

R

R

R R

R

R

R

R

R

Sink1

Sink2

Node Edge Path

Path1

Neighbor Node for Source Faraway Node for Source

Neighbor Edge for Source Faraway Edge for Source

Path2

RC Network from Graph View

6/23

Firstly, we give some basic definitions:
• Definition 1 (Wire Path): The timing path of a wire, which is from the source to the

target sink.

• Definition 2 (Wire Slew): The time required for a signal of high-to-low or
low-to-high transition on a wire is captured from the signal waveform and defined as
fall/rise slew.

• Definition 3 (Wire delay): The time required for a signal that propagates from the
wire source to the target wire sink.

Then, Problem 1 (Wire timing estimation) is formulated as follows:
• Given an RC net with parasitics and net structure

• Capture the information of each path, each capacitance, each resistance, net structure
and their relationships effectively and estimate the wire slew and wire delay of the
wire path based on these information.

Problem Formulation

7/23

Proposed Method

In our work, Problem 1 can be handled with two steps: In step 1, we propose a
graph learning method GNNTrans, including three different modules to generate
wire path representation for each wire path through collecting information of nets;
In step2, we apply Multilayer Perceptronlayers (MLPs) based on the generated
representations to fast and accurately estimate wire slew and wire delay.

GNNTrans

GNN
Module

Graph
Transformer

Module

Path 1

Path 2

Predicting

Wire Slew

Wire Delay

Step1 Step 2

Pooling
Module

Wire Path
Representations

Overall Flow

9/23

Table: Raw node and path features used.

Type Name Description

Node

capacitance value values of capacitance
num of input nodes number of input nodes
num of output nodes number of output nodes
tot input cap total input capacitance
tot output cap total output capacitance
num of connect. res number of connected resistance
tot input res total input resistance
tot output res total output resistance
downstream cap Elmore downstream capacitance
stage delay Elmore stage delay

Path

input slew input transition time
dir. of drive cell drive strength of drive cell
func. of drive cell functionality of drive cell
dir. of a load cell drive strength of load cell
func. of load cell functionality of load cell
ceff of load cell effective capacitance of load cell
Elmore delay wire path Elmore delay
D2M delay wire path D2M delay

The RC net graph G is represented with:
• Node feature matrix X for each capacitance

• Path feature matrix H for each wire path

• Weighted adj. matrix A for each resistance

• Label matrix for real wire slew and delay

Node
Features

Path
Features

Weighted
Adj.

RC Graph: nodes, paths

Path 1

Path 2

Data Representation

10/23

GNNTrans mainly consists of three modules: standard GNN, graph transformer
and pooling. After GNNTrans, we can get path representations for each wire path.

One-hop neighbors Two-hop neighbors

GNN
Layers

Transformer
Layers

Multi-head self-attentionFaraway nodes

Pooling

Path

Path
Representation

RC Graph

GNNTrans

11/23

To learn the RC net graph’s local structural information, we update a node’s
representations by aggregating information from its neighbors with graph
connectivity in GNN module. In Equation (1), it demonstrates the details where
W(ℓ1)

1 and W(ℓ1)
2 denote the learnable matrices. ReLU is a nonlinear function.

7 3 1

6 2

4

8

9

1

3

7

4

8

2

9

6

1

x(ℓ1)
i = ReLU(W(ℓ1)

1 x(ℓ1−1)
i + W(ℓ1)

2 aiu
∑

u∈N (vi)

x(ℓ1−1)
u). (1)

GNNTrans: GNN Module

12/23

To learn the RC net graph’s global net information (relationships between
capacitances and resistances) without over-smoothing issues, we update a node’s
representations by a multi-head self-attention mechanism in graph transformer
module. In Equation (2), it demonstrates the details where W(ℓ2)

3 , W(k,ℓ2)
V are

learnable linear transformation matrices. ∥ denotes concatenating operation.

x(L1+ℓ2)
i = x(L1+ℓ2−1)

i + W(ℓ2)
3 ∥Kk=1

∑
u∈V

ã(k,ℓ2)
iu

(
W(k,ℓ2)

V x(L1+ℓ2−1)
u

)
. (2)

GNNTrans: Graph Transformer Module

13/23

To generate the wire path representations, we select and combine the node
representations X(L1+L2): {x(L1+L2)

i , ∀i ∈ V} after graph learning with original wire
path features H: {hq, ∀q ∈ P} in the pooling module. In Equation (3), it
demonstrates the details where Vq is the node set of wire path q and Nq is the
number of nodes on wire path q.

Wire Path Representation

Path Features Node Representations

Wire Path Representation

Path Features Node Representations

RC Graph: nodes, paths

Path 1

Path 2

fq = (
1

Nq

∑
vi∈Vq

x(L1+L2)
i)∥hq. (3)

GNNTrans: Pooling Module

14/23

Based on the wire path representations F: {fq,∀q ∈ P}, we use a multilayer
perceptron layer MLP to predict the wire slew and delay under SI mode. Trainable
parameters θ and ϕ in the multilayer perceptron layer MLP are introduced.

Sq = MLP(θ | fq), (4)

Dq = MLP(ϕ | fq,Sq). (5)

where Sq and Dq are the wire slew and delay estimation results of wire path q.

Predicting and Path Delay Calculation

15/23

Results

• Synopsys StarRC extracts RC parasitics,
and the golden timing report is
generated by Synopsys PrimeTime SI
mode with TSMC16nm technology.

• CPU Device: a 72-core 2.6GHz Linux
machine with 1024 GB memory.

• GPU Device: 4 NVIDIA Tesla V100
GPUs.

• Benchmarks: 18 opencore circuits 1.

Table: Benchmark statistics.

Benchmark #Cells #Nets (Non-tree) #FFs #CPs

Train

PCI_BRIDGE 1234 1598 (279) 310 456
DMA 10215 10898 (1963) 1956 1475
B19 33785 34399 (8906) 3420 5093

SALSA 52895 57737 (16802) 7836 9648
RocketCore 90859 93812 (38919) 16784 12475
VGA_LCD 56194 56279 (20527) 17054 8761

ECG 84127 85058 (31067) 14,018 13189
TATE 184601 185379 (51037) 31,409 27931
JPEG 219064 231934 (73915) 37,642 36489

NETCARD 316137 317974 (76924) 87,317 46713
LEON3MP 341000 341263 (81687) 108,724 50716

Total 1390111 1075068 (402026) 326470 212766

Test

WB_DMA 40962 40664 (9493) 718 9619
LDPC 39377 42018 (10257) 2048 7613

DES_PERT 48289 48523 (9534) 2983 10976
AES-128 113168 90905 (42657) 10686 24973

TV_CORE 207414 189262 (53147) 40681 33706
NOVA 141990 139224 (36482) 30494 39341

OPENGFX 219064 231934 (62395) 37,642 47831

Total 810264 782530 (223965) 125252 221890

1OpenCores, http://opencores.org

Experimental Settings

17/23

Table: Estimation accuracy of non-tree nets (R2 score).

Benchmark
Wire Slew/Delay Estimation Accuracy of Non-tree Nets (R2 score)

DAC20 GCNII GraphSage GAT Trans. GNNTrans

WB_DMA 0.721/0.693 0.894/0.846 0.912/0.907 0.907/0.872 0.851/0.804 0.987/0.979
LDPC 0.714/0.705 0.871/0.829 0.904/0.893 0.881/0.872 0.817/0.781 0.991/0.985

DES_PERT 0.703/0.662 0.906/0.871 0.918/0.872 0.897/0.851 0.824/0.807 0.984/0.975
AES-128 0.684/0.651 0.824/0.819 0.846/0.829 0.832/0.824 0.807/0.791 0.979/0.962

TV_CORE 0.607/0.594 0.738/0.709 0.819/0.806 0.791/0.748 0.795/0.769 0.969/0.957
NOVA 0.664/0.631 0.795/0.781 0.834/0.829 0.819/0.802 0.783/0.774 0.976/0.971

OPENGFX 0.568/0.537 0.781/0.759 0.827/0.816 0.792/0.773 0.812/0.803 0.962/0.959

Average 0.666/0.639 0.830/0.802 0.866/0.850 0.845/0.820 0.813/0.790 0.978/0.970

• The average R2 scores of GNNTrans reach 0.978 and 0.970, which outperforms GCNII
by 0.148/0.168, GraphSage by 0.112/0.120, and GAT by 0.133/0.150.

• Compared Transformer, our method achieves gains of 0.165/0.180 on average.

Wire Slew/Delay Estimation Accuracy of Non-tree Nets

18/23

Table: Estimation accuracy of all nets (R2 score)

Benchmark
Wire Slew/Delay Estimation Accuracy of All Nets (R2 score)

DAC20 GCNII GraphSage GAT Trans. GNNTrans

WB_DMA 0.823/0.791 0.915/0.909 0.944/0.921 0.932/0.916 0.912/0.875 0.999/0.994
LDPC 0.815/0.797 0.908/0.863 0.925/0.917 0.913/0.907 0.862/0.859 0.995/0.991

DES_PERT 0.837/0.822 0.924/0.913 0.927/0.899 0.902/0.899 0.875/0.861 0.997/0.990
AES-128 0.802/0.760 0.879/0.867 0.883/0.872 0.845/0.824 0.867/0.854 0.987/0.982

TV_CORE 0.795/0.782 0.821/0.810 0.844/0.837 0.831/0.824 0.889/0.876 0.989/0.986
NOVA 0.783/0.710 0.854/0.847 0.872/0.865 0.845/0.831 0.876/0.871 0.984/0.980

OPENGFX 0.769/0.729 0.835/0.827 0.864/0.851 0.840/0.829 0.897/0.869 0.982/0.979

Average 0.803/0.770 0.877/0.862 0.894/0. 880 0.873/0.861 0.882/0.866 0.990/0.986

• Our method can achieve 0.990 and 0.986 accuracy on average in wire slew and delay
estimation.

Wire Slew/Delay Estimation Accuracy of All Nets

19/23

Table: Path arrival time estimation accuracy, including R2 score / MAE (ps), and runtime
(s) comparison. “MAE” represents maximum absolute error. PlanA (L1=25, L2=5), PlanB
(L1=20, L2=10), and PlanC (L1=15, L2=15) are GNNTrans with 3 different configurations,
which helps test our work in different ways.

Benchmark
Path Delay Estimation Accuracy: R2 score and MAE(ps) Runtime(s)

PrimeTime Piror Work Our Work STA-SI Our Work
STA-SI DAC20 PlanA PlanB PlanC Full Gate Wire Total

WB_DMA 1.0000/0.00 0.746/42.45 0.999/0.57 0.997/0.59 0.972/1.52 276.7 136.2 25.1 161.3
LDPC 1.0000/0.00 0.722/58.21 0.998/0.64 0.996/0.67 0.981/0.83 365.9 200.4 32.9 233.3

DES_PERT 1.0000/0.00 0.709/37.32 0.999/0.43 0.997/0.71 0.983/1.05 386.3 186.7 27.4 214.1
AES-128 1.0000/0.00 0.654/71.27 0.954/5.32 0.984/2.32 0.990/1.14 593.7 340.5 56.7 397.2

TV_CORE 1.0000/0.00 0.527/127.58 0.928/8.56 0.976/4.27 0.981/3.94 614.6 400.6 60.2 460.8
NOVA 1.0000/0.00 0.604/84.61 0.967/2.64 0.979/1.25 0.985/0.91 1133.8 491.2 87.3 578.5

OPENGFX 1.0000/0.00 0.574/100.67 0.931/6.18 0.969/3.68 0.975/2.54 1185.4 567.3 97.6 664.9

Average 1.0000/0.00 0.648/74.59 0.968/3.48 0.985/1.93 0.981/1.70 650.91 331.84 55.31 387.16

• The R2 scores using different plans reach 0.968, 0.985, and 0.981 on average.
• The average MAEs using different plans are 3.48ps, 1.93ps and 1.70ps.
• The wire timing estimator costs 55.7s on average for different designs scaling from

40k to 200k nets.

Path Delay Estimation Accuracy

20/23

Conclusion

• The limited number of wire paths opens a door for the graph learning method to
estimate wire timing effectively while considering path information

• GNNTrans can encode wire paths into path representations containing whole net
information, including local structures and global relationships.

• Wire timing estimator based on GNNTrans is accurate meanwhile fast.

Conclusion

22/23

THANK YOU!

	Introduction
	Proposed Method
	results
	conclusion

