DESIGN, AUTOMATION & TEST IN EUROPE

17 – 19 April 2023 · Antwerp, Belgium

The European Event for Electronic System Design & Test

Efficient Design Rule Checking with GPU Acceleration

Wei Zhong¹, **Zhenhua Feng**¹, Zhuolun He², Weimin Wang¹, Yuzhe Ma³, Bei Yu²

¹Dalian University of Technology ²Chinese University of Hong Kong ³HKUST(GZ)

Apr. 18, 2023

Introduction

• Design rule checking (DRC) is the process to verify that a design layout conforms to a set of predefined design rules.

Growth of design rules.

- Width check
- Space check
- Enclosing check

(a) Example of width check; (b) Example of space check; (c) Example of enclosing check.

Algorithms

• The overview of our GPU-accelerated design rule checking flow.

Overview of our GPU-accelerate DRC.

• The method of transferring layout information from the CPU to the GPU.

Encoding and decoding of a layout. Polygon edges are separated and stored uniformly in an edge matrix. The compact representation reduces data transfer overhead.

- Scanline inside polygon.
- Overlap checking.
- Scanline Between Polygons.

Scanline inside polygon

Programming architecture for the scanline algorithm.

Suppose there are two vertical edges $e_1 = x_1 \times [y_{11}, y_{12}]$ and $e_2 = x_2 \times [y_{21}, y_{22}]$. If the their distance is smaller than the threshold ϵ :

$$|x_1 - x_2| < \epsilon, \tag{1}$$

they will be recorded as an candidate edge pair. Similarly, for horizontal $e_3 = [x_{31}, x_{32}] \times y_3$ and $e_4 = [x_{41}, x_{42}] \times y_4$, they will be recorded when the condition $|y_3 - y_4| < \epsilon$. holds.

For any two polygons $P^{(i)}$ and $P^{(j)}$, threshold ϵ , if any one of the following formulas is satisfied, they will be regarded as a pair of polygons with the possibility of violation:

$$P_{ll}^{(i)}.x < P_{ur}^{(j)}.x + \epsilon,$$
(2)

$$P_{ll}^{(j)}.x < P_{ur}^{(i)}.x + \epsilon, \tag{3}$$

$$P_{ll}^{(i)}.x < P_{ur}^{(j)}.y + \epsilon, \tag{4}$$

$$P_{ll}^{(j)}.x < P_{ur}^{(i)}.y + \epsilon, \tag{5}$$

Two typical overlapping examples.

Polygon A and Polygon B are detected using the scanline algorithm between polygons.

Experimental result

- A 64-bit Ubuntu Linux machine with TITAN RTX GPU and 3.5GHz Intel Core i9-10920X CPU.
- The compilers include CUDA NVCC 10.2 and GNU GCC 5.4.0.
- 4096 threads for all kernel configurations and 1 CPU core for all host operations.
- Baseline is KLayout 0.26.6.
- The layout benchmarks in the experiments are generated by OpenROAD project with default settings.

Correctness of DRC Results

Space check results with (a) DRC script and (b) ours; Enclosing check results with (c) DRC script and (D) ours.

Table: Enclosing check in Metal1

Design	gcd	aes	bp_be	bp
8 CPU threads	33.522	13194.039	58477.239	90250.85
16 CPU threads	34.212	13074.176	51671.131	85792.708
24 CPU threads	34.52	13072.36	49047.536	74497.754
Ours	0.343	27.932	257.056	409.381
Speedup	100.641×	468.01 ×	190.80 ×	181.98 ×
Average	201.1 ×			

Table: Enclosing check in Metal2

Design	gcd	aes	bp_be	bp
8 CPU threads	5.547	1977.047	2859.979	3332.67
16 CPU threads	5.732	1997.85	2435.594	2321.697
24 CPU threads	5.552	1976.503	2320.845	2298.961
Ours	0.291	30.493	132.717	250.022
Speedup	19.08 ×	64.82 ×	17.49 ×	11.21 ×
Average	22.19 ×			

Table: Space check in Metal1

Design	gcd	aes	bp_be	bp
8 CPU threads	10.99	376.244	5950.007	14865.705
16 CPU threads	11.131	3692.87	4540.09	8833.2
24 CPU threads	10.989	3690.08	4226.62	7565.84
Ours	0.316	19.091	250.799	471.71
Speedup	34.78 ×	193.29 ×	16.85 ×	16.04 ×
Average	36.71 ×			

Table: Space check in Metal2

Design	gcd	aes	bp_be	bp
8 CPU threads	6.378	2732.5534	3870.166	5015.233
16 CPU threads	6.168	2703.47	3365.211	3767.176
24 CPU threads	6.174	2666.539	3114.918	3621.914
Ours	0.399	28.591	121.279	238.966
Speedup	15.47 ×	93.26 ×	25.68 ×	15.16 ×
Average	27.38×			

Conclusion

- An efficient data packing method customized for layout data transfer.
- A GPU-based scanline algorithm that can perform parallel scanning of complex graphics.
- Speedup of 36× when performing space check on the ${\tt Metall}$ layer.
- Speedup of 201× when performing enclosing check of the Metall layer.

THANK YOU!