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Abstract
Accurate and robust power models are highly demanded to ex-

plore better CPU designs. However, previous learning-based power
models ignore the discrepancies in data distribution among different
CPU designs, making it difficult to use data from the historical con-
figuration to aid modeling for new target configuration. In this paper,
we investigate the transferability of power models and propose a mi-
croarchitecture power modeling method based on transfer learning
(TL). A novel TL method for artificial neural network (ANN)-based
power models is proposed, where cross-domain mixup generates
more auxiliary samples close to the target configuration to fill in the
distribution discrepancy and domain-adversarial training extracts
domain-invariant features to complete the target model construction.
Experiments show that ourmethod greatly improves themodel trans-
ferability and can effectively utilize the knowledge of the existing
CPU configuration to facilitate target power model construction.
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1 Introduction
The replacement of modern CPUs is gradually accelerating, with

stringent time-to-market and lengthy and time-consuming design
flow becoming notorious challenges. Meanwhile, power consump-
tion has become one of the core metrics of concern in CPU design.
Complex CPU architectures need to be modeled to obtain accu-
rate power estimates to ensure a good performance-power trade-off.
Therefore, how to complete power modeling for the new CPU design
quickly and accurately has become a key concern of the community.

To overcome the above challenges, people try to conduct power
modeling to guide the CPU design at the early design stage, i.e., the
microarchitecture design stage. Lee et al. [1] use microarchitecture
design parameters to perform regression-based power modeling to
support DSE, but it could not accurately model different workload
programs. McPAT [2] models power analytically in a hierarchical
manner, i.e., from the transistor level to the architecture level. How-
ever, McPAT has struggled to meet the latest design requirements
due to its low modeling accuracy and lack of support for advanced
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Figure 1: Data distribution for three BOOM configurations.

Table 1: Modeling MAPE for different configurations.

Ridge → SmallBOOM LargeBOOM GigaBOOM

SmallBOOM 6.93% 11.98% 10.55%
LargeBOOM 61.29% 8.22% 15.24%
GigaBOOM 64.17% 15.48% 6.74%

process technologies. PowerTrain [3] re-weighs the power of each
component from McPAT by linear regression with L1 regulariza-
tion, but it lacks transferability for different designs. Runtime power
model [4] based on performance monitoring counters (PMC) allows
design-time power modeling using equivalent microarchitecture
events, but typically comes with some loss of accuracy.

Zhai et al. propose the McPAT-Calib framework [5], which utilizes
machine learning (ML) methods to calibrate McPAT-7nm. Although
their framework achieves high performance in experiments, the
limitation is still observed. McPAT-Calib uses several typical archi-
tectures evenly distributed throughout the design space as training
sets, thus ensuring high generality of the power calibration model.
However, in practical applications, the CPU design space is too large
[6], and people often only focus on the design and optimization of
a certain configuration. Therefore, it is difficult to obtain so many
typical configurations, while it is more practical to use the existing
historical configuration to assist in modeling the target configura-
tion. ML-based models usually assume that the training and test data
are independent and identically distributed (i.i.d.), but for CPU de-
sign, even in the same design space, there are still large distribution
discrepancies for different configurations. Existing power models
ignore this problem, and thus have poor transferability and difficulty
in using historical data and knowledge of existing configurations.

Taking RISC-V BOOM [7] as an example, it has five typical con-
figurations for different application scenarios, e.g., SmallBOOM (S)
focuses on power efficiency, GigaBOOM (G) pursues higher per-
formance, and LargeBOOM (L) aims at PPA balance. Based on the
features selected by McPAT-Calib, Figure 1 visualizes the power data
of these three configurations by principal component analysis (PCA).
We can intuitively observe a large discrepancy in data distribution,
which will pose two problems. (1) A power model trained with an
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Table 2: Microarchitecture design parameters and power statistics for three BOOM configurations.

Parameters SmallBOOM (S) LargeBOOM (L) GigaBOOM (G)
−− − Default + ++ −− − Default + ++ −− − Default + ++

FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8
DecodeWidth 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

FetchBufferEntry 5 6 8 12 16 18 21 24 27 30 30 30 35 35 40
RobEntry 16 24 32 40 48 81 90 96 105 114 125 130 130 130 140

IntPhysRegister 36 44 52 60 68 88 94 100 105 112 108 118 128 130 140
FpPhysRegister 36 42 48 52 56 88 92 96 105 112 108 118 128 130 140
LDQ/STQEntriy 4 6 8 12 16 16 20 24 28 32 24 28 32 34 36
BranchCount 6 7 8 9 10 14 15 16 16 16 18 19 20 21 22

MemIssue/FpIssueWidth 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
IntIssueWidth 1 1 1 1 2 2 3 3 3 3 5 5 5 5 5

DCache/ICacheWay 2 4 4 4 8 8 8 8 8 8 8 8 8 8 8
DCache/ICacheTLBEntry 8 8 8 8 16 16 16 16 16 32 32 32 32 32 32

DCacheMSHR 2 2 2 2 4 4 4 4 4 4 8 8 8 8 8
ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4

Min. Power (mW) 9.54 9.73 10.22 10.64 12.11 21.12 22.14 22.31 22.98 28.03 36.84 38.33 34.12 35.41 36.70
Max. Power (mW) 14.62 16.01 18.10 17.06 19.94 38.07 39.15 42.56 43.85 50.52 61.80 59.94 59.75 60.43 65.23
Avg. Power (mW) 11.84 12.60 13.51 13.67 15.55 27.27 28.45 29.53 30.32 35.26 44.86 45.88 42.96 43.56 45.91
Std. Power (mW) 1.32 1.53 1.71 1.69 1.78 4.57 4.49 4.82 4.97 5.30 5.78 5.50 6.58 5.97 7.16

existing configuration is usually not accurate enough for the new
target configuration, especially for some more complex target sam-
ples. As shown in Table 1, the average mean absolute percentage
error (MAPE) for known configurations is only 7.30%, while for un-
known configurations is up to 29.79%. (2) Directly using data from
an existing configuration to aid in target model construction may
have negative effects and instead reduce modeling accuracy (see
Section 5.3 for details). Therefore, it is urgent to handle different
distributions and improve the transferability of power models.

To handle distribution discrepancies, we can treat different con-
figurations as different domains and use TL to complete microarchi-
tecture power modeling. Specifically, we use an ANN-based power
model and use cross-domain mixup to generate auxiliary samples,
and finally, use improved domain-adversarial training to complete
target model construction. Our work is the first to apply TL to power
modeling, which can effectively utilize the existing configuration to
enhance the power modeling of the target configuration.

The main contributions can be summarized as follows:
• We introduce prior knowledge and design an ANN-based mi-
croarchitecture power model, to automatically extract better
features and complete nonlinear power modeling.

• We propose a cross-domain mixup approach to generate aux-
iliary samples that are closer to the target configuration, thus
addressing the problem of insufficient labeled target samples
and filling in distribution discrepancies.

• We perform domain-adversarial training on the source, target,
and auxiliary domains to extract domain-invariant features
for knowledge transfer and model construction.

2 Preliminaries
RISC-V BOOM. RISC-V is an open-source instruction set archi-
tecture (ISA) suited for various applications. Berkeley out-of-order
machine (BOOM) is a ten-stage pipeline out-of-order design that has
gained widespread attention from academia and industry. Thanks
to the parametric microarchitecture design, designers can gener-
ate BOOM cores with different configurations, e.g., SmallBOOM (S),
LargeBOOM (L), GigaBOOM (G). We consider them as three differ-
ent domains and give five sub-architectures respectively, and the
design parameters are listed in Table 2, along with the measured

power statistics under 100 commonly used benchmarks (i.e.workload
programs).
Artificial Neural Network. Artificial neural network (ANN) [8] is
an ML model with powerful feature extraction and function fitting
capabilities. In recent years, ANN has become more and more popu-
lar, and has been widely used in prediction tasks (e.g. classification
and regression) in various disciplines achieving more competitive
results than traditional statistical models. Moreover, the ANN model
exhibits good transferability [9]. In this paper, we use an ANN-based
microarchitecture power model by introducing prior knowledge.
Transfer Learning. For traditional ML models, once the data distri-
bution is changed, new labeled training data needs to be re-collected
to rebuild the model [10]. For microarchitecture power modeling, if
the configuration changes significantly, it is expensive to re-collect
sufficient labeled data due to the lengthy and time-consuming design
flow. Therefore, how to transfer knowledge from one configuration
to another related configuration becomes increasingly important.
TL [11] can be used to solve such problems, aiming to improve the
performance on target domain by transferring the knowledge from
source domain, thereby reducing the dependence on a large amount
of target domain data. To the best of our knowledge, the use of TL
in the field of power modeling has not been discussed before.

3 Problem Formulation
Problem 1 (Microarchitecture Power Modeling). Given labeled
samples of size𝑚 from a source configuration CS,𝐷𝑠 = {(𝒙𝑠

𝑖
, 𝑦𝑠

𝑖
)}𝑚

𝑖=1,
and labeled samples of size 𝑛 from the target configuration CT , 𝐷𝑡 =

{(𝒙𝑡
𝑖
, 𝑦𝑡

𝑖
)}𝑛

𝑖=1. The objective is to construct a target microarchitecture
power model that gives accurate power predictions for unlabeled
samples, {(𝒙𝑡

𝑖
)}𝑁

𝑖=𝑛+1, on the target configuration CT .

Considering the correlation and distribution discrepancies be-
tween different configurations, our focus is on how to transfer the
knowledge gained in the source domain (i.e. existing configuration)
to the target domain (i.e. new target configuration) to improve target
modeling performance.

4 Methodologies
Figure 2 illustrates our ANN- and TL-based microarchitecture

power modeling flow. For given configuration and benchmark, we
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Figure 2: Our microarchitecture power modeling flow.
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Figure 3: Network structure of our ANN-based power model.

perform microarchitecture simulation (using gem5) and McPAT-7nm
modeling to obtain microarchitecture modeling features 𝒙 , and use
golden gate-level power analysis flow to obtain power ground truth
𝑦. The source samples are historical data from the existing configu-
ration, while the training target samples need to be re-collected.

Our modeling method aims to optimize target model construction
using historical source samples. First, based on prior knowledge of
microarchitecture power modeling, we use an ANN-based power
model to automatically extract better features from different feature
sources and accomplish nonlinear modeling. Then, we use a cross-
domain mixup approach to generate auxiliary samples close to the
target configuration, fully utilizing the labeled samples of source
configuration to overcome the insufficient labeled target samples. By
this way, we can narrow the inter-domain discrepancy. Finally, we
perform improved domain-adversarial training between the source,
target, and auxiliary domains to extract domain-invariant features,
to complete knowledge transfer and ANN-based model construction.

4.1 ANN-Based Microarchitecture Power Model
Zhai et al. [5] identified a wide range of feature sources for mi-

croarchitecture power modeling, including: (1) McPAT-7nm mod-
eling results (38-dimension), contain preliminary estimates of dy-
namic power for all levels of components, as well as Core.Area and
Core.Leakage; (2) microarchitecture design parameters (18-dimension)
that provide configuration information, shown in Table 2; and (3)
event statistics (90-dimension), obtained by gem5 simulation, reflect
the critical activities of important CPU components. We use these
three feature sources to model the total power directly.

Neural networks have shown dominance in ML, which relies on
their ability to extract features. Even simple multilayer perceptron
(MLP) models can adequately approximate arbitrary complex non-
linear functions. However, the MLP model has too many parameters,
so it is not just difficult to train, but also easy overfitting the training
data. To exploit the powerful feature extraction and transferability of
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Figure 4: (a) Probability density function (PDF) of Beta dis-
tribution. (b) Data distribution after cross-domain mixup,
where “Target-U” and “Target-L” indicate unlabeled and la-
beled target samples, respectively.

ANN, we give an example ANN-based power model by introducing
the prior knowledge of microarchitecture power modeling.

Figure 3 shows our model, including an input layer, a feature
extractor, and a regressor for total power prediction. The input is
the normalized 146-dimensional total features from three feature
sources. The feature extractor contains three hidden layers. To re-
duce the complexity, the first hidden layer extracts features from
different sources separately. According to the prior knowledge of
the importance of features, the number of neurons is set to 20, 5,
and 25 respectively. The second and third hidden layers are fully
connected networks. To enhance gradient propagation and simplify
the learning process, we add a residual network between the first and
third layers. The power regressor contains a fully connected hidden
layer and an output layer that predicts the total power value. The
rectified linear unit (ReLU) activation function is used for each layer
except the output layer to enhance the ability to model nonlinear
relations.

4.2 Cross-Domain Mixup
When constructing a power model for the new target configura-

tion, the biggest challenge comes from collecting enough labeled
samples. Meanwhile, unlike the transfer of classification tasks, the
distribution discrepancies in power modeling are present in both fea-
ture and label space. We propose a cross-domain mixup approach to
address these problems, filling in the distribution discrepancies while
enriching the labeled samples. Mixup [12] is an data augmentation
method that supports simple linear behavior in-between training
examples, regularizing neural networks by training them on convex
combinations of random image pairs and their associated labels.

For samples belonging to the source and target configuration
respectively, the similarity can be considered as the potential for
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Figure 5: Illustration of the pipeline in improved domain-adversarial training.

knowledge transfer. We use the cosine measure between the source
sample 𝒙𝑠 and the target sample 𝒙𝑡 to measure this similarity:

similarity = cos < 𝒙𝑠 , 𝒙𝑡 >=
𝒙𝑠 · 𝒙𝑡

| |𝒙𝑠 | | | |𝒙𝑡 | | . (1)

Then, for each labeled target sample (𝒙𝑡 , 𝑦𝑡 ), we select the 𝑘

labeled source samples with the highest similarity to it and perform
cross-domain mixup:

𝒙𝑚𝑖 = _𝑖𝒙
𝑡 + (1 − _𝑖 )𝒙𝑠𝑖 , 𝑖 = 1, ..., 𝑘 (2)

𝑦𝑚𝑖 = _𝑖𝑦
𝑡 + (1 − _𝑖 )𝑦𝑠𝑖 , 𝑖 = 1, ..., 𝑘 (3)

where _𝑖 ∼ Beta(20, 2). This Beta distribution is shown in Figure 4(a),
as we aim to enhance the ability to model the target configuration.
Since the modeling feature 𝒙 is a vector and the power label 𝑦 is a
scalar, the linear interpolation can be directly performed.

We treat the auxiliary samples generated by cross-domain mixup
as a new domain of size 𝑘𝑛, called auxiliary domain, i.e., 𝐷𝑚 =

{(𝒙𝑚
𝑖
, 𝑦𝑚

𝑖
)}𝑘𝑛

𝑖=1. To keep the balance among three domains, 𝑘 is set to
⌈𝑚+𝑁

2𝑛 ⌉. Figure 4(b) shows the data distribution of the three domains
after cross-domain mixup. It can be seen that the distribution of
auxiliary domain is close to the target distribution, and also helps to
fill the gap between the target and source domains.

4.3 Domain-Adversarial Training
After cross-domain mixup, there are still distribution discrepan-

cies between domains, so we aim to exploit the transferability of
ANN to extract domain-invariant features to facilitate knowledge
transfer. Recent works have shown that domain-adversarial training
of neural networks [13] for image classification tasks can learn dis-
criminative but domain-invariant features between the source and
target domains. We improve it for a regression task (i.e. power mod-
eling) and perform domain-adversarial training on three domains.

To implement adversarial training, a 3-class domain classifier
is connected after the feature extractor to discriminate the source
(corresponding domain labels are set to 0, i.e., 𝑑𝑠 = 0), target (𝑑𝑡 = 1),
and auxiliary (𝑑𝑚 = 2) domains. In our task, domain-adversarial
training is accomplished by jointly optimizing two networks: (1) the
feature extractor and power regressor used both during training and
test, and (2) the domain classifier that discriminates between the
three domains during training.

Figure 5 illustrates the pipeline of the improved domain-adversarial
training. Taking the samples of the three domains generated by cross-
domain mixup as input, this neural network consists of three major
parts, i.e., the feature extractor 𝐺 𝑓 (·;\ 𝑓 ) with parameters \ 𝑓 , the

power regressor 𝐺𝑦 (·;\𝑦) with parameters \𝑦 , and the 3-class do-
main classifier 𝐺𝑑 (·;\𝑑 ) with parameters \𝑑 . The two modules, 𝐺 𝑓

and 𝐺𝑦 constitute the power model desired in Section 4.1.
We use mean squared error (MSE) as the regression loss L𝑦 for

power prediction, and train𝐺 𝑓 and𝐺𝑦 with all labeled samples from
the three domains, with losses:

L𝑠
𝑦 (\ 𝑓 , \𝑦) =

1
𝑚

𝑚∑
𝑖=1

L𝑦 (𝐺𝑦 (𝐺 𝑓 (𝒙𝑠𝑖 ;\ 𝑓 );\𝑦), 𝑦
𝑠
𝑖 ), (4)

L𝑡
𝑦 (\ 𝑓 , \𝑦) =

1
𝑛

𝑛∑
𝑖=1

L𝑦 (𝐺𝑦 (𝐺 𝑓 (𝒙𝑡𝑖 ;\ 𝑓 );\𝑦), 𝑦
𝑡
𝑖 ), (5)

L𝑚
𝑦 (\ 𝑓 , \𝑦) =

1
𝑘𝑛

𝑘𝑛∑
𝑖=1

L𝑦 (𝐺𝑦 (𝐺 𝑓 (𝒙𝑚𝑖 ;\ 𝑓 );\𝑦), 𝑦𝑚𝑖 ). (6)

The domain classifier 𝐺𝑑 uses a softmax activation function with
categorical cross-entropy (CCE) as the adversarial loss L𝑑 . We use
all labeled and unlabeled samples to train 𝐺𝑑 , with losses:

L𝑠
𝑑
(\ 𝑓 , \𝑑 ) =

1
𝑚

𝑚∑
𝑖=1

L𝑑 (𝐺𝑑 (𝐺 𝑓 (𝒙𝑠𝑖 ;\ 𝑓 );\𝑑 ), 𝑑
𝑠
𝑖 ), (7)

L𝑡
𝑑
(\ 𝑓 , \𝑑 ) =

1
𝑁

𝑁∑
𝑖=1

L𝑑 (𝐺𝑑 (𝐺 𝑓 (𝒙𝑡𝑖 ;\ 𝑓 );\𝑑 ), 𝑑
𝑡
𝑖 ), (8)

L𝑚
𝑑
(\ 𝑓 , \𝑑 ) =

1
𝑘𝑛

𝑘𝑛∑
𝑖=1

L𝑑 (𝐺𝑑 (𝐺 𝑓 (𝒙𝑚𝑖 ;\ 𝑓 );\𝑑 ), 𝑑𝑚𝑖 ) . (9)

In order for 𝐺 𝑓 to extract domain-invariant features, i.e., 𝐺𝑑 can-
not correctly perform domain classification, the complete optimiza-
tion objective is as follows:

𝐸 (\ 𝑓 , \𝑦, \𝑑 ) = L𝑠
𝑦 (\ 𝑓 , \𝑦) + L𝑡

𝑦 (\ 𝑓 , \𝑦) + L𝑚
𝑦 (\ 𝑓 , \𝑦)

−𝛽 (L𝑠
𝑑
(\ 𝑓 , \𝑑 ) + L𝑡

𝑑
(\ 𝑓 , \𝑑 ) + L𝑚

𝑑
(\ 𝑓 , \𝑑 ),

(10)

where 𝛽 > 0 is a hyper-parameter for trade-off, and the saddle point
\̂ 𝑓 , \̂𝑦 , \̂𝑑 given by

(\̂ 𝑓 , \̂𝑦) = argmin
\ 𝑓 ,\𝑦

𝐸 (\ 𝑓 , \𝑦, \̂𝑑 ), (11)

\̂𝑑 = argmax
\𝑑

𝐸 (\̂ 𝑓 , \̂𝑦, \𝑑 ). (12)

At the saddle point, the regression loss L𝑦 on the three domains
is minimized and the adversarial loss L𝑑 is maximized. A gradient
reversal layer (GRL) is inserted between the feature extractor 𝐺 𝑓

and the domain classifier 𝐺𝑑 . During the forward propagation, GRL
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passes the data normally. However, during the backward propagation,
GRL takes the gradient from the domain classifier𝐺𝑑 and multiplies
it by −1, and then passes it to the feature extractor 𝐺 𝑓 .

After completing domain-adversarial training, 𝐺 𝑓 and 𝐺𝑦 form
the desired target power model, and𝐺𝑦 (𝐺 𝑓 (𝒙𝑡 ; \̂ 𝑓 ); \̂𝑦) can be used
to predicted the total power of unlabeled target sample 𝒙𝑡 .

5 Evaluation
As shown in Table 2, we chose three distinct configurations (i.e.,

SmallBOOM (S), LargeBOOM (L), GigaBOOM (G)) of RISC-V BOOM,
along with 100 commonly used benchmarks to evaluate the power
models. We use 7 nm PDK ASAP7 [14] and commercial power anal-
ysis flow (Genus for logic synthesis, VCS for simulation @ 500MHz,
and PrimeTime PX for power analysis) to obtain the power ground
truth. Therefore, we can obtain data for three configurations, each
containing 500 samples. Based on the given three configurations, we
evaluate six transfer tasks: L → S, G → S, S → L, G → L, S → G,
and L→ G. MAPE is used as the metric to evaluate the accuracy of
power modeling results. All experiments are conducted on Intel(R)
Core(TM) i9-9900k CPU@3.60GHz with 64GB main memory.

5.1 Baselines
Microarchitecture Power Models. We compare our modeling

method with previous representative microarchitecture power mod-
eling approaches, including parameter-based method (HPCA07) [1],
event statistics-based method (TCAD17) [4], and the model (Power-
Train) [3] that only re-weights the McPAT modeling results. McPAT-
Calib [5] uses a wider range of feature sources and advanced ML
methods to calibrate McPAT-7nm results. McPAT-CalibAL [15] uses
an active learning method (PowerGS) to select labeled target sam-
ples. We use two naive ways to construct previous power models,
i.e., using only the labeled target samples (Tgt O.) and directly using
both the labeled source and target samples (Both), to evaluate the
impact of the source samples on target models.

Transfer Learning Baselines. Fine-tune [9] first pre-trains an
ANN model using labeled source samples, and then fine-tunes the
pre-trained model with labeled target samples. DANN [13] trains the
target model using labeled source and target samples, and uses all
samples to train a binary classifier used to discriminate source and
target domains. MDD [16] learns a new feature representation by
minimizing the disparity discrepancy between the encoded source
and target domains. TrAdaBoostR2 [17] is based on the reverse boost-
ing principle, which reduces the weights of poorly predicted source
samples at each boosting iteration. KLIEP [18] is a kernel-based sam-
ple bias correction method minimizing the KL-divergence between
a reweighted source and target distributions. KMM [19] reweights
source samples to minimize the MMD between source and target
domains. WANN [20] relies on an adversarial weighting approach
to minimize the Y-discrepancy between domains.

5.2 Accuracy of ANN-Based Model
We first verify the accuracy of the ANN-based power model de-

scribed in Section 4.1. We perform 10-fold cross-validation in each of
the three configurations, respectively, and compare our model using
total features with various regression models combining feature se-
lection in McPAT-Calib. As shown in Table 3, the ANN-based model
obtains the best modeling results because better features can be au-
tomatically extracted from different feature sources and has strong
nonlinear modeling capability. Compared to the MLP regressor with

Table 3: Modeling accuracy of different models.

Features Model S L G Avg.

Selected

Linear Regressor 6.95% 8.12% 6.52% 7.20%
Ridge Regressor 6.94% 8.13% 6.60% 7.22%

Gaussian Process Regressor 7.01% 8.36% 6.92% 7.43%
KNeighbors Regressor 6.60% 8.37% 5.82% 6.93%

Support Vector Regressor 8.14% 9.69% 7.90% 8.58%
Random Forest Regressor 5.48% 7.03% 6.08% 6.20%

XGBoost Regressor 4.56% 5.45% 5.62% 5.21%

Total MLP Regressor 5.27% 5.28% 5.62% 5.39%
Our ANN-based model 5.42% 4.89% 4.75% 5.02%
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Figure 6: Test MAPE with different values of 𝑛.

the same number of hidden layers and neurons, the introduction of
prior knowledge leads to better results for our model.

5.3 Comparison and Analysis of Power Models
We compare our microarchitecture modeling method with the

previous power models and investigate the transferability of these
models. All previous models are constructed in two ways, i.e., Tgt
O. and Both, and compared with our TL-based modeling method.
In each transfer task, all source samples are labeled, and for the
target configuration, 80% of the samples are used as the training
set, and the remaining 20% as the test set, i.e., 𝑛 = 400. To eliminate
randomness, we repeat each experiment five times and report the
average values of MAPE for each transfer task in Table 4. It can be
observed that for TCAD17 and PowerTrain, directly using the source
samples to assist the target modeling will bring negative effects and
leads to a decrease in modeling accuracy, while no significant gain is
observed for HPCA07. ForMcPAT-Calib andMcPAT-CalibAL, the use
of source samples is beneficial to improve the modeling accuracy of
the target configuration. Compared with the state-of-the-art results
(i.e. McPAT-CalibAL), our TL-based model achieves better results,
being able to reduce the test MAPE by 18.6%.

To further explore the effectiveness of our TL method, we com-
pare the results when 𝑛 takes different values, and Figure 6 plots
the average test MAPE for the six transfer tasks. As with previous
models, we construct ANN-based models directly in two naive ways,
and compare them with the proposed TL method (TL). By comparing
Tgt O. and Both, it can be seen that for ANN-based model, the intro-
duction of source samples can always enhance the modeling ability
of target configurations, but the performance gain decreases with the
increase of 𝑛. Importantly, our TL method can improve the transfer-
ability of the model by utilizing the knowledge of the source sample
more efficiently, always showing better transfer results whether us-
ing fewer or more labeled target samples. Moreover, when achieving
a similar target modeling accuracy as McPAT-CalibAL, our method
requires fewer labeled target samples, i.e., can reduce the dependence
on labeled target samples. Since the training time of the power model
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Table 4: Comparison with previous microarchitecture power models.

Task HPCA07 [1] TCAD17 [4] PowerTrain [3] McPAT-Calib [5] McPAT-CalibAL [15] Ours
Tgt O. Both Tgt O. Both Tgt O. Both Tgt O. Both Tgt O. Both

L→ S 10.30% 10.21% 7.81% 9.28% 7.30% 7.98% 5.15% 4.97% 4.94% 4.67% 5.25%
G→ S 10.30% 10.23% 7.81% 10.82% 7.30% 8.93% 5.15% 5.09% 4.94% 4.99% 5.19%
S → L 13.63% 13.63% 10.21% 10.60% 8.23% 8.87% 5.97% 5.43% 5.54% 4.93% 4.28%
G→ L 13.63% 13.51% 10.21% 12.61% 8.23% 8.75% 5.97% 6.10% 5.54% 5.89% 4.14%
S → G 11.62% 11.72% 7.55% 7.83% 6.67% 6.77% 6.56% 5.97% 6.35% 5.55% 3.85%
L→ G 11.62% 11.58% 7.55% 8.33% 6.67% 6.75% 6.56% 5.63% 6.35% 5.42% 3.80%

Average 11.85% 11.81% 8.53% 9.91% 7.40% 8.01% 5.89% 5.53% 5.61% 5.24% 4.42%
Ratio 2.681 2.672 1.930 2.242 1.674 1.812 1.333 1.251 1.269 1.186 1.000

Table 5: Comparison with previous TL methods.

TL Method L→ S G → S S → L G → L S → G L → G Avg.→
Fine-tune [9] 5.33% 5.47% 4.81% 5.43% 5.09% 4.75% 5.15%
DANN [13] 5.47% 5.49% 4.95% 5.09% 4.75% 4.61% 5.06%
MDD [16] 5.49% 5.80% 4.78% 5.04% 5.19% 4.80% 5.18%

TrAdaB. [17] 5.41% 5.35% 4.71% 4.81% 5.10% 5.00% 5.06%
KLIEP [18] 6.20% 5.73% 4.77% 5.18% 5.19% 4.77% 5.31%
KMM [19] 5.58% 5.52% 5.04% 5.13% 5.20% 5.12% 5.27%
WANN [20] 5.91% 6.05% 4.98% 5.30% 4.75% 4.69% 5.28%

Ours 5.25% 5.19% 4.28% 4.14% 3.85% 3.80% 4.42%
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Figure 7: Ablation study of our TL method.

is much less than the acquisition time of the labeled samples, our
method can effectively reduce the construction cost of target models.

5.4 Comparison and Analysis of TL Methods

After specifying the transfer task, we can compare our TL method
with TL baselines, all of which are implemented on our ANN-based
model. Similarly, 80% of the target samples are used as the training
set. We can observe from Table 5 that our method achieves the best
transfer performance. This is because most previous TL methods
ignore the distribution discrepancies in the label space, and some are
proposed for unsupervised domain adaptation. Our cross-domain
mixup approach can fill the distribution discrepancies in both feature
and label space, meanwhile the domain-adversarial training makes
full use of both labeled and unlabeled target samples.

As the ablation study on our TL method, we explore the impact
of the two proposed TL techniques, as shown in Figure 7. “w/o
CDM” means adversarial training only on the source and target do-
mains without cross-domain mixup, showing a slight improvement
(i.e. Avg. MAPE=5.06%). “w/o DAT” represents training the ANN-
based model directly with labeled samples from the three domains,
without domain-adversarial training, and achieves better transfer im-
provements (i.e. Avg. MAPE=4.70%). “Full TL” uses both techniques
to achieve the best transfer results (i.e. Avg. MAPE=4.42%).

6 Conclusion
We propose a novel microarchitecture power modeling method

based on ANN and TL. It solves the problem of distribution discrep-
ancies between different CPU configurations, effectively utilizing the
available source configuration data to enhance the modeling ability
of the target configuration. Our method improves the transferability
of learning-based power models, meanwhile has higher modeling ac-
curacy. However, how to enhance the transferability between power
models from heterogeneous processors is still an open problem.
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