
Microarchitecture Power Modeling via Artificial Neural
Network and Transfer Learning

Jianwang Zhai1, Yici Cai1, Bei Yu2

1Tsinghua University
2The Chinese University of Hong Kong

Jan. 18, 2023

Introduction

Power Modeling

• With the slowdown of Moore’s law and the breakdown of Dennard scaling, power
consumption has become the main challenge in high power-efficiency CPU design.

• Accurate and robust power models are highly demanded to explore better designs.

• Time-to-market for newer generations of CPU is stringent, and designers want to
perform modeling for the new target CPU at a lower cost.

Challenges

• High requirements: modeling speed, accuracy, and generality.

• Complex architecture & large-scale design space & advanced technology.

• The lengthy EDA design flow makes data collection very difficult.

Power Modeling for Modern CPUs

3/34

To overcome the above challenges, people try to conduct power modeling to guide
the CPU design at the early design stage, i.e., the microarchitecture design stage.

Related Work

• Regression for power modeling using design parameters1.

• PMC-based power models using equivalent microarchitecture events 2.

• Hierarchical analytical power modeling, McPAT3.

• Re-weighting McPAT results by linear regression4.

• Calibrate McPAT using a broader range of features and machine learning (ML)5.

1
B. C. Lee, et al. “Illustrative Design Space Studies with Microarchitectural Regression Models”. In: Proc. HPCA, 2007.

2
M. J. Walker, et al. “Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs”. In: IEEE TCAD, 2017.

3
S. Li, et al. “McPAT: An integrated power, area, and timing modeling framework for multicore and manycore architectures”. In: Proc. MICRO,

2009.
4

W. Lee, et al. “PowerTrain: A learning-based calibration of McPAT power models”. In: Proc. ISLPED, 2015.
5

J. Zhai, et al. “McPAT-Calib: A Microarchitecture Power Modeling Framework for Modern CPUs”. In: Proc. ICCAD, 2021.

Previous Solutions & Limitations

4/34

Limitations

• ML-based models usually assume that the training and test data are independent
and identically distributed , i.e., i.i.d.

• However, there are significant discrepancies in data distribution among different
CPU designs, even when they are in the same design space.

• Thus, previous learning-based models ignore the issue of transferability and often
require retraining the model by collecting sufficient data for a new target CPU design.

5/34

• Taking RISC-V BOOM6 as an example, principal component analysis (PCA) is used
to visualize the power data for three different configurations.

• Power models trained using one existing configuration are usually not accurate
enough for new target configurations.

−1.5 −1 −0.5 0 0.5 1 1.5 2

−0.5

0

0.5

1

X

Y

SmallBOOM
LargeBOOM
GigaBOOM

Data distribution.

Table: Modeling MAPE.

Ridge → SmallBOOM LargeBOOM GigaBOOM

SmallBOOM 6.93% 11.98% 10.55%
LargeBOOM 61.29% 8.22% 15.24%
GigaBOOM 64.17% 15.48% 6.74%

6
J. Zhao, et al. "SonicBOOM: The 3rd generation berkeley out-of-order machine." Fourth Workshop on Computer Architecture Research with RISC-V,

2020.

Gap between Training & Testing Data: Example

6/34

Preliminaries

• Artificial neural network (ANN) is an ML model with powerful feature extraction
and function fitting capabilities.

• Importantly, ANN models exhibit good transferability7 and are widely used for
prediction tasks in various disciplines.

Input

Hidden Hidden

Hidden

Output

7
J. Yosinski, et al. “How transferable are features in deep neural networks?” In: Proc. NeurIPS, 2014.

Artificial Neural Network

8/34

• For traditional ML models, once the data distribution is changed, new labeled
training data needs to be re-collected to rebuild the model.

• Transfer Learning (TL)8 aims to improve the performance of the target model by
transferring knowledge from the source domain, thus reducing the dependence on
target domain data.

8
S. J. Pan, et al. “A survey on transfer learning”. In: IEEE TKDE, 2010.

Transfer Learning

9/34

Definition (Power)
The total power can be expressed as:

P = Pdynamic + Pstatic = αCV2
DDf + VDDIleakage︸ ︷︷ ︸
Transistor level

=
∑

βnfn(en,d) + g(d)︸ ︷︷ ︸
Microarchitecture level

(1)

Definition (Microarchitecture Configuration)

A CPU design characterized by a set of microarchitecture design parameters, such as
FetchWidth, DecodeWidth, FetchBufferEntry, etc..

Definition (Benchmark)
The workload program executed on the target CPU design.

Problem Formulation

10/34

• The objective of microarchitecture power modeling is to estimate the power of
different benchmarks running on the target microarchitecture configuration.

• To handle the distribution discrepancies, we focus on how to transfer the knowledge
gained in the source domain (i.e., the existing configuration) to the target domain (i.e.,
the new target configuration) to improve the target modeling performance.

Problem (Microarchitecture Power Modeling)

Given labeled samples of size m from a source configuration CS , Ds = {(xs
i , ys

i)}m
i=1, and

labeled samples of size n from the target configuration CT , Dt = {(xt
i , yt

i)}n
i=1. The objective

is to construct a target power model that gives accurate power predictions for unlabeled
samples, {(xt

i)}N
i=n+1, on the target configuration CT .

Problem Formulation

11/34

Method

• ANN-Based Microarchitecture Power Model

• Cross-Domain Mixup

• Domain-Adversarial Training

Source

Config. & Bench.

Target

Config. & Bench.

Target

Config. & Bench.

Power

Prediction

Micro. Simulation

McPAT-7nm

Microarchitecture

Features

Power

Ground Truth

Micro. Simulation

McPAT-7nm

Microarchitecture

Features

(a)

Training

(b)

Test

Feature

Extrator

Domain

Classfier

Power

Regressor

GRL

Feature

Extrator

Domain

Classfier

Power

Regressor

GRL

Target

Samples

Source

Samples

Auxiliary

Samples

Target

Samples

Source

Samples

Auxiliary

Samples

Cross-Domain

Mixup

Domain-

Adversarial

Training

Power

Regressor

Feature

Extrator

Target ANN-Based Power Model

Power

Regressor

Feature

Extrator

Target ANN-Based Power Model

RTL
Logic Synthesis

Gate Netlist
Power Analysis

RTL
Logic Synthesis

Gate Netlist
Power Analysis

Our microarchitecture power modeling flow.

Overview

13/34

• The total power is modeled directly using the modeling features.

• Feature sources: McPAT-7nm modeling results & microarchitecture design
parameters & event statistics obtained by gem5 simulation.

• Features are extracted separately from different sources according to their
importance; a residual network is added to enhance the gradient propagation.

Network structure of ANN-based power model:

..
.

.
.
.

.
.
.

Residual Network
..

.
.

..

Input Feature Extractor Power Regressor

M
c
P

A
T

P
a
ra

m
s

E
v

e
n
t

T
o

tal P
o

w
er

1o

1i

38i

39i

56i

57i

146i

ANN-Based Power Model

14/34

• The total power is modeled directly using the modeling features.

• Feature sources: McPAT-7nm modeling results & microarchitecture design
parameters & event statistics obtained by gem5 simulation.

• Features are extracted separately from different sources according to their
importance; a residual network is added to enhance the gradient propagation.

Network structure of ANN-based power model:

..
.

.
.
.

.
.
.

Residual Network
..

.
.

..

Input Feature Extractor Power Regressor

M
c
P

A
T

P
a
ra

m
s

E
v

e
n
t

T
o

tal P
o

w
er

1o

1i

38i

39i

56i

57i

146i

ANN-Based Power Model

14/34

• The total power is modeled directly using the modeling features.

• Feature sources: McPAT-7nm modeling results & microarchitecture design
parameters & event statistics obtained by gem5 simulation.

• Features are extracted separately from different sources according to their
importance; a residual network is added to enhance the gradient propagation.

Network structure of ANN-based power model:

..
.

.
.
.

.
.
.

Residual Network
..

.
.

..

Input Feature Extractor Power Regressor

M
c
P

A
T

P
a
ra

m
s

E
v

e
n
t

T
o

tal P
o

w
er

1o

1i

38i

39i

56i

57i

146i

ANN-Based Power Model

14/34

Motivation

• The biggest challenge comes from collecting enough labeled samples.

• The distribution discrepancies are present in both feature and label space.

Cross-Domain Mixup

• The similarity can be considered as the potential for knowledge transfer:

similarity = cos < xs, xt >=
xs · xt

||xs||||xt|| . (2)

• For each labeled target sample (xt, yt), we select the k most similar labeled source
samples and perform mixup:

xm
i = λixt + (1 − λi)xs

i , i = 1, ..., k (3)

ym
i = λiyt + (1 − λi)ys

i , i = 1, ..., k (4)

where λi ∼ Beta(20, 2), k is set to ⌈m+N
2n ⌉ to keep the balance among domains.

Cross-Domain Mixup

15/34

Data Distribution

• We can get the labeled auxiliary domain samples, Dm = {(xm
i , ym

i)}kn
i=1, that are closer

to the target distribution.

0 0.2 0.4 0.6 0.8 1

2

4

6

8

λ

P
D
F

λ ∼ Beta(20, 2)

(a) Beta distribution.

−1 0 1

−0.5

0

0.5

1

X

Y

Source
Target-U
Target-L
Auxiliary

(b) Data distribution.

Auxiliary Domain

16/34

Motivation

• After cross-domain mixup, there are still distribution discrepancies between the
different domains.

• How to take advantage of all labeled and unlabeled samples to train a better model
for the target domain.

Domain-Adversarial Training

• Domain-adversarial training of neural networks9 for image classification tasks can
learn discriminative but domain-invariant features between the source and target
domains.

• We extend it for a regression task (i.e., power modeling) and perform
domain-adversarial training on three domains: source, target, and auxiliary domains.

9
Y. Ganin et al. “Domain-adversarial training of neural networks”. In: JMLR, 2016.

Domain-Adversarial Training

17/34

• Input: all labeled and unlabeled samples from the three domains.

• Three major parts: the feature extractor Gf (·; θf), the power regressor Gy(·; θy), and
the 3-class domain classifier Gd(·; θd).

• GRL is a gradient reversal layer, aiming to make Gd unable to distinguish which
domain the sample comes from, thereby extracting domain-invariant features.

Power Regressor

Domain Classifier

GRL

Input

Source

Samples

Auxiliary

Samples

Target

Samples

Source

Samples

Auxiliary

Samples

Target

Samples

Feature Extractor

Regression

Loss

Regression

Loss

Adversarial

Loss

y

f

L

d

f

L

−

y

y

L

d

d

L

(;)f fG

(;)y yG

(;)d dG

yL

dL

MixupMixup

ForwardpropForwardprop

Backwardprop

L

Mixup

Forwardprop

Backwardprop

L

sD

mD

tD

Illustration of the pipeline in improved domain-adversarial training.

Domain-Adversarial Training: Pipeline

18/34

Power Regression

• We use mean squared error (MSE) as the regression loss Ly for power prediction.

• We train Gf and Gy with all labeled samples from the three domains with losses:

Ls
y(θf , θy) =

1
m

m∑
i=1

Ly(Gy(Gf (xs
i ; θf); θy), ys

i), (5)

Lt
y(θf , θy) =

1
n

n∑
i=1

Ly(Gy(Gf (xt
i ; θf); θy), yt

i), (6)

Lm
y (θf , θy) =

1
kn

kn∑
i=1

Ly(Gy(Gf (xm
i ; θf); θy), ym

i). (7)

Domain-Adversarial Training

19/34

Adversarial Training

• The domain classifier Gd uses a softmax activation function with categorical
cross-entropy (CCE) as the adversarial loss Ld.

• We use all labeled and unlabeled samples to train Gf and Gd, with losses:

Ls
d(θf , θd) =

1
m

m∑
i=1

Ld(Gd(Gf (xs
i ; θf); θd), ds

i), (8)

Lt
d(θf , θd) =

1
N

N∑
i=1

Ld(Gd(Gf (xt
i ; θf); θd), dt

i), (9)

Lm
d (θf , θd) =

1
kn

kn∑
i=1

Ld(Gd(Gf (xm
i ; θf); θd), dm

i). (10)

Domain-Adversarial Training

20/34

Optimization Objective and Solution

• In order for Gf to extract domain-invariant features, i.e., Gd cannot correctly perform
domain classification, the complete optimization objective is:

E(θf , θy, θd) = Ls
y(θf , θy) + Lt

y(θf , θy) + Lm
y (θf , θy)

−β(Ls
d(θf , θd) + Lt

d(θf , θd) + Lm
d (θf , θd)),

(11)

where β > 0 is a hyper-parameter for trade-off.

• The saddle point θ̂f , θ̂y, θ̂d are given by:

(θ̂f , θ̂y) = argmin
θf ,θy

E(θf , θy, θ̂d), (12)

θ̂d = argmax
θd

E(θ̂f , θ̂y, θd). (13)

• The final target model: yt
prediction = Gy(Gf (xt; θ̂f); θ̂y).

Domain-Adversarial Training

21/34

Evaluation

L2
Cache

I-Cache
I-TLB

Fetch Buffer

Decoder Decoder

RAS
BTB

BP

Decoder

Re-Order Buffer

FP
Issue Queue

INT
Issue Queue

MEM
Issue Queue

INT RF

FP RF

……

Rename Logic Retire LogicAllocate Logic

MemCalc

FPDiv

FPInt

FMA

iMul

iDiv

ALU RoCC

CSRs

ALU

ALU

D-Cache D-TLB
MSHR

STQ LDQ

FrontEnd IDU EU LSU

Detailed BOOM pipeline.

RISC-V

• Free & Open source; Easy to start.

• Has received great attention and support
from academia and industry.

BOOM

• A family of out-of-order RISC-V designs.

• High performance & Parametric
microarchitecture design & Automatic
design flow.

• There are various typical configurations for
different application scenarios.

RISC-V BOOM

23/34

• Three distinct RISC-V BOOM configurations; 100 commonly used benchmarks.

• Six transfer tasks: L → S, G → S, S → L, G → L, S → G, and L → G.

Table: Design parameters and power statistics of three BOOM configurations.

Parameters
SmallBOOM (S) LargeBOOM (L) GigaBOOM (G)

−− − Default + ++ −− − Default + ++ −− − Default + ++

FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8
DecodeWidth 1 1 1 1 1 3 3 3 3 3 5 5 5 5 5

FetchBufferEntry 5 6 8 12 16 18 21 24 27 30 30 30 35 35 40
RobEntry 16 24 32 40 48 81 90 96 105 114 125 130 130 130 140

IntPhysRegister 36 44 52 60 68 88 94 100 105 112 108 118 128 130 140
FpPhysRegister 36 42 48 52 56 88 92 96 105 112 108 118 128 130 140
LDQ/STQEntriy 4 6 8 12 16 16 20 24 28 32 24 28 32 34 36
BranchCount 6 7 8 9 10 14 15 16 16 16 18 19 20 21 22

MemIssue/FpIssueWidth 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2
IntIssueWidth 1 1 1 1 2 2 3 3 3 3 5 5 5 5 5

DCache/ICacheWay 2 4 4 4 8 8 8 8 8 8 8 8 8 8 8
DCache/ICacheTLBEntry 8 8 8 8 16 16 16 16 16 32 32 32 32 32 32

DCacheMSHR 2 2 2 2 4 4 4 4 4 4 8 8 8 8 8
ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4

Min. Power (mW) 9.54 9.73 10.22 10.64 12.11 21.12 22.14 22.31 22.98 28.03 36.84 38.33 34.12 35.41 36.70
Max. Power (mW) 14.62 16.01 18.10 17.06 19.94 38.07 39.15 42.56 43.85 50.52 61.80 59.94 59.75 60.43 65.23
Avg. Power (mW) 11.84 12.60 13.51 13.67 15.55 27.27 28.45 29.53 30.32 35.26 44.86 45.88 42.96 43.56 45.91
Std. Power (mW) 1.32 1.53 1.71 1.69 1.78 4.57 4.49 4.82 4.97 5.30 5.78 5.50 6.58 5.97 7.16

Experiment: Data & Task

24/34

• HPCA0710: design parameter-based modeling method.

• TCAD1711: microarchitecture event statistics-based method.

• PowerTrain12: re-weights the McPAT modeling results with L1 regularization.

• McPAT-Calib13: use a wider range of feature sources and advanced ML methods.

• McPAT-CalibAL14: use an active learning method to select labeled target samples.

Training Ways

• Tgt O.: train the target model using only the available labeled target samples.

• Both: train the target model using both the labeled source and target samples.

10
B. C. Lee, et al. “Illustrative Design Space Studies with Microarchitectural Regression Models”. In: Proc. HPCA, 2007.

11
M. J. Walker, et al. “Accurate and Stable Run-Time Power Modeling for Mobile and Embedded CPUs”. In: IEEE TCAD, 2017.

12
W. Lee, et al. “PowerTrain: A learning-based calibration of McPAT power models”. In: Proc. ISLPED, 2015.

13
J. Zhai, et al. “McPAT-Calib: A Microarchitecture Power Modeling Framework for Modern CPUs”. In: Proc. ICCAD, 2021.

14
J. Zhai, et al. “McPAT-Calib: A RISC-V BOOM Microarchitecture Power Modeling Framework”. In: IEEE TCAD, 2023.

Result: Power Modeling Baselines

25/34

• Fine-tune15 first pre-trains an ANN model using labeled source samples, and then
fine-tunes the pre-trained model with labeled target samples.

• DANN16 trains the target model using labeled source and target samples, and uses
all samples to train a binary classifier used to discriminate source and target domains.

• MDD17 learns a new feature representation by minimizing the disparity discrepancy
between the encoded source and target domains.

• TrAdaBoostR218 is based on the reverse boosting principle, which reduces the
weights of poorly predicted source samples at each boosting iteration.

15
J. Yosinski, et al. “How transferable are features in deep neural networks?” In: Proc. NeurIPS, 2014.

16
Y. Ganin, et al. “Domain-adversarial training of neural networks”. In: JMLR, 2016.

17
Y. Zhang, et al. “Bridging theory and algorithm for domain adaptation”. In: Proc. ICML, 2019.

18
D. Pardoe, et al. “Boosting for regression transfer”. In: Proc. ICML, 2010.

Experiment: Transfer Learning Baselines

26/34

• KLIEP19 is a kernel-based sample bias correction method minimizing the
KL-divergence between a reweighted source and target distributions.

• KMM20 reweights source samples to minimize the maximum mean discrepancy
(MMD) between source and target domains.

• WANN21 relies on an adversarial weighting approach to minimize the Y-discrepancy
between domains.

19
M. Sugiyama, et al. “Direct importance estimation with model selection and its application to covariate shift adaptation”. In: Proc. NeurIPS, 2007.

20
J. Huang, et al. “Correcting sample selection bias by unlabeled data”. In: Proc. NeurIPS, 2006.

21
A. de Mathelin, et al. “Adversarial weighting for domain adaptation in regression”. In: Proc. ICTAI, 2021.

Experiment: Transfer Learning Baselines

27/34

• Cross-validation is performed in each of the three configurations.

• Compared with SOTA ML models, ANN-based power models embedded with a
prior knowledge can achieve comparable or even better modeling accuracy.

Table: Modeling accuracy of different models.

Features Model S L G Avg.

Selected

Linear Regressor 6.95% 8.12% 6.52% 7.20%
Ridge Regressor 6.94% 8.13% 6.60% 7.22%

Gaussian Process Regressor 7.01% 8.36% 6.92% 7.43%
KNeighbors Regressor 6.60% 8.37% 5.82% 6.93%

Support Vector Regressor 8.14% 9.69% 7.90% 8.58%
Random Forest Regressor 5.48% 7.03% 6.08% 6.20%

XGBoost Regressor 4.56% 5.45% 5.62% 5.21%

Total
MLP Regressor 5.27% 5.28% 5.62% 5.39%

Our ANN-based model 5.42% 4.89% 4.75% 5.02%

Accuracy of ANN-Based Model

28/34

• Perform the six transfer tasks in the three distinct configurations.

• The use of source samples is not always beneficial (e.g. TCAD17 & PowerTrain).

• Compared with the SOTA results, our TL-based model achieves better results.

Table: Comparison with previous microarchitecture power models.

Task
HPCA07 TCAD17 PowerTrain McPAT-Calib McPAT-CalibAL

OursTgt O. Both Tgt O. Both Tgt O. Both Tgt O. Both Tgt O. Both

L → S 10.30% 10.21% 7.81% 9.28% 7.30% 7.98% 5.15% 4.97% 4.94% 4.67% 5.25%
G → S 10.30% 10.23% 7.81% 10.82% 7.30% 8.93% 5.15% 5.09% 4.94% 4.99% 5.19%
S → L 13.63% 13.63% 10.21% 10.60% 8.23% 8.87% 5.97% 5.43% 5.54% 4.93% 4.28%
G → L 13.63% 13.51% 10.21% 12.61% 8.23% 8.75% 5.97% 6.10% 5.54% 5.89% 4.14%
S → G 11.62% 11.72% 7.55% 7.83% 6.67% 6.77% 6.56% 5.97% 6.35% 5.55% 3.85%
L → G 11.62% 11.58% 7.55% 8.33% 6.67% 6.75% 6.56% 5.63% 6.35% 5.42% 3.80%

Average 11.85% 11.81% 8.53% 9.91% 7.40% 8.01% 5.89% 5.53% 5.61% 5.24% 4.42%
Ratio 2.681 2.672 1.930 2.242 1.674 1.812 1.333 1.251 1.269 1.186 1.000

Comparison and Analysis of Power Models

29/34

• For ANN-based model, the introduction of source samples can always enhance the
target modeling ability, but the performance gain decreases with the increase of n.

• Importantly, our TL method can improve the transferability of the model by utilizing
the source knowledge more efficiently, always showing better transfer results.

50 100 150 200 250 300 350 400

4

6

8

10

n

M
A
P
E

(%
)

Tgt O.

Both

TL

Test MAPE with different values of n (labelled num in target domain).

Further Analysis on Target Domain Num n

30/34

• All TL methods are implemented on our ANN-based model.

• Cross-domain mixup can fill the distribution discrepancies in both feature and label
space, meanwhile the domain-adversarial training makes full use of both labeled and
unlabeled target samples, thus achieving the best transfer performance.

Table: Comparison with previous TL methods.

TL Method L → S G → S S → L G → L S → G L → G Avg.→
Fine-tune 5.33% 5.47% 4.81% 5.43% 5.09% 4.75% 5.15%

DANN 5.47% 5.49% 4.95% 5.09% 4.75% 4.61% 5.06%
MDD 5.49% 5.80% 4.78% 5.04% 5.19% 4.80% 5.18%

TrAdaB. 5.41% 5.35% 4.71% 4.81% 5.10% 5.00% 5.06%
KLIEP 6.20% 5.73% 4.77% 5.18% 5.19% 4.77% 5.31%
KMM 5.58% 5.52% 5.04% 5.13% 5.20% 5.12% 5.27%

WANN 5.91% 6.05% 4.98% 5.30% 4.75% 4.69% 5.28%

Ours 5.25% 5.19% 4.28% 4.14% 3.85% 3.80% 4.42%

Transfer Results

31/34

• “w/o CDM” means adversarial training only on the source and target domains
without cross-domain mixup.

• “w/o DAT” represents training the model directly with labeled samples from the
three domains, without domain-adversarial training.

• “Full TL” uses both techniques to achieve the best transfer results.

L
→ S

G
→ S

S → L

G
→ L

S → G
L
→ G

3

4

5

6

M
A
P
E

(%
)

Both (w/o TL)

w/o CDM

w/o DAT
Full TL

Ablation study of our TL method.

Ablation Study

32/34

Why is our modeling method effective?

• ANN-Based Power Model: to ensure powerful feature extraction and transferability.

• Cross-Domain Mixup: can address the problem of insufficient labeled target samples
and fill in the distribution discrepancie in both feature and label space.

• Domain-Adversarial Training: can extract domain-invariant features for further
knowledge transfer and complete the target model construction.

Open problem

• How to improve the transferability between power models of highly heterogeneous
processors.

Conclusion

33/34

THANK YOU!

	Introduction
	Preliminaries
	Method
	Evaluation

