
Graph-Learning-Driven Path-Based Timing Analysis Results
Predictor from Graph-Based Timing Analysis

Yuyang Ye1, Tinghuan Chen2, Yifei Gao1, Hao Yan1, Bei Yu2, Longxing Shi1
1 School of Electronic Science and Engineering, Southeast University

2 Department of Computer Science and Engineering, Chinese University of Hong Kong
{yeyuyang, g_yifei, yanhao, lxshi}@seu.edu.cn; {thchen, byu}@cse.cuhk.edu.hk

Abstract
With diminishing margins in advanced technology nodes, the

performance of static timing analysis (STA) is a serious concern,
including accuracy and runtime. The STA can generally be divided
into graph-based analysis (GBA) and path-based analysis (PBA). For
GBA, the timing results are always pessimistic, leading to overdesign
during design optimization. For PBA, the timing pessimism is re-
duced via propagating real path-specific slews with the cost of severe
runtime overheads relative to GBA. In this work, we present a fast
and accurate predictor of post-layout PBA timing results from inex-
pensive GBA based on deep edge-featured graph attention network,
namely deep EdgeGAT. Compared with the conventional machine
and graph learning methods, deep EdgeGAT can learn global timing
path information. Experimental results demonstrate that our pre-
dictor has the potential to substantially predict PBA timing results
accurately and reduce timing pessimism of GBA with maximum
error reaching 6.81 ps, and our work achieves an average 24.80×
speedup faster than PBA using the commercial STA tool.
ACM Reference Format:
Yuyang Ye, Tinghuan Chen, Yifei Gao, Hao Yan, Bei Yu, Longxing Shi. 2023.
Graph-Learning-Driven Path-Based Timing Analysis Results Predictor from
Graph-Based Timing Analysis . In 28th Asia and South Pacific Design Automa-
tion Conference (ASPDAC ’23), January 16–19, 2023, Tokyo, Japan. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3566097.3567904

1 Introduction
The accuracy of timing analysis is a serious concern for dimin-

ishing margins in advanced technology nodes for designs with over
millions of cells and manymulti-corner multi-mode timing scenarios.
Improved accuracy helps to reduce overdesign, particularly during
place-and-route and timing closure steps. However, it comes at the
cost of long runtime while timing analysis. Commercial EDA tools,
such as PrimeTime [1] and Tempus [2], support graph-based analysis
(GBA) and path-based analysis (PBA) modes in static timing analysis
(STA), enabling a tradeoff of accuracy versus runtime.

In GBAmode, pessimistic transition time is propagated at each cell
of the timing graph [1]. GBA is able to calculate all the path delays
in circuits and report the critical paths in a fast way. However, it
always introduces pessimism due to the worst-case slew propagation.
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPDAC ’23, January 16–19, 2023, Tokyo, Japan
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9783-4/23/01. . . $15.00
https://doi.org/10.1145/3566097.3567904

U1 U2
A
B

Load=10
Net A

Load=10
Net B

Cell 2Cell 1

ZZ A0.15

0.25

0.22

GBA delay=0.20

Timing Path: From U1/A to U2/Z

(a) Example of Graph-based timing analysis for path from U1/A to U2/Z

U1 U2
A
B

Load=10
Net A

Load=10
Net B

Cell 2Cell 1

ZZ A0.15

0.25

0.13

PBA delay=0.14

Timing Path: From U1/A to U2/Z

(b) Example of Path-based timing analysis for path from U1/A to U2/Z

Figure 1: Examples of timing analysis inGBAandPBAmodes:
The GBA mode is fast, while the results are pessimistic; For
PBA mode, timing analysis pessimism is reduced at the cost
of runtime increment.

A GBA example is shown in Figure 1(a), where the worst slew of
input pins is utilized in slew propagation. During a setup check for
the timing path from U1/A to U2/Z, the slew of pin U1/Z would be
computed based on the worst slew, i.e. slew at U1/B, thus the slew
of the pin U1/Z will be overestimated. Then the delay of cells on
the timing path, including U1 and U2, will be overestimated, which
causes path arrival time overestimated, leading to an overdesign.

In PBA mode, timing analysis pessimism is reduced at the cost
of significantly greater runtime than GBA mode [3]. Figure 1(b)
illustrates transition propagation in PBA mode. For the same timing
path, the slew of the pin U1/Z is computed based on the real slew
of inputs, i.e. slew at U1/A. Then the actual path-specific slew is
propagated on the path and used in delay calculation for cells, which
helps to improve the accuracy of time analysis. As the number of
timing paths increases, there is an exponential increment in the
possibilities of transition propagation and delay calculation at each
cell. It causes PBA runtime-intensive.

PBA plays an important role in critical path timing signoff for
large-scale designs using advanced technology nodes. Unfortunately,
it is difficult to tradeoff accuracy and runtime while timing analysis
due to today’s timing-consuming PBA. In Molina [4] and Kahng [5],
they name fast prediction of PBA timing results based GBA results
as a solution to achieve runtime and accuracy tradeoff and impor-
tant near-term challenge for machine learning applied in electronic
design automation (EDA) community. Kahng et al. [6] develop two

https://doi.org/10.1145/3566097.3567904
https://doi.org/10.1145/3566097.3567904

classification and regression tree models to capture divergence in cell
slew/delay in PBA and GBA timing mode, where the overall timing
path delay divergence is estimated by cumulative cell delay diver-
gence values on timing paths. However, the accuracy is extremely
limited while only considering local cell features.

Recently, graph neural networks (GNNs) are proposed to fast and
accurately perform machine learning tasks through aggregating in-
formation from neighborhoods on graph-like data [7]. Since circuits
can be represented as graphs directly, GNNs are used to solve vari-
ous electronic design automation (EDA) problems [8–11]. However,
there is a common problem in the current GNN models, such as
graph attention networks (GATs) and graph convolutional networks
(GCNs), is that edge features are not fully considered. In GATs, the
edge information considered is only the indication of whether there
is an edge or not, i.e., connectivities. In GCNs, the edge features
utilized are just one-dimensional values, e.g., edge weights. How-
ever, post-layout circuit graph edges often possess rich information,
which represents the interconnects as shown in Figure 1. Instead
of being a binary variable or one-dimensional value, the edge fea-
tures should be continuous and multi-dimensional while achieve
timing analysis, including the parasitic capacitances and resistances
information, which influences cell slew and delay significantly.

In this paper, we propose a fast predictor of post-layout PBA
timing results from GBA results based on deep EdgeGAT. Compared
with prior work [6] which predicts PBA results based on local cell
features, our GAT model can help learn global and complete timing
information, including cell features and net features on whole timing
paths. Totally different from conventional GNNmodels, the proposed
deep edge-featured graph attention network model, namely deep
EdgeGAT, is capable of exploiting multi-dimensional node (cell) and
edge (net) features with a new attention mechanism to incorporate
them into better node embeddings for predicting PBA timing results
in a fast and accurate way. We highlight our contributions in detail.
• To the best of our knowledge, we are the first to present
an end-to-end GAT-based model for accurately predicting
path-based timing values, including cell slew, delay and path
arrival time, from graph-based timing analysis. It helps reduce
pessimism in GBA and avoid overdesign in design.
• We present deep edge-featured graph attention networks,
namely deep EdgeGAT, to extend traditional GATs and to
perform embedding for predicting PBA results accurately
with learning both node (cell) and edge (net) features.
• Wepredict cell slew and delay in a singlemodel synergistically
to facilitate model training.
• Our predictor is evaluated with real designs, which demon-
strates the generalize ability to solve unseen designs.

2 Problem Formulation and Discussions
2.1 Problem Formulation

Compared with cell delay while calculating path arrival time,
the divergence of wire delay under GBA and PBA mode can be
ignorable. Thus, we focus on predicting PBA cell slew/delay and
path arrival time based on GBA timing reports and timing path
structure accurately for critical paths (CPs) to achieve timing analysis
efficiency and accuracy tradeoff. For each cell in a design, the problem
is to capture complex interactions of the input node/edge features
and their impact on PBA timing results. If the predictor is trained

using a sufficient number of designs, it can be applied to unseen
designs with generalization. Since deep EdgeGAT is used in our
predictor for improving accuracy, we represent all critical paths
(CPs) in circuits as an edge-featured graph and take it as input of
deep EdgeGAT, which we introduce in detail as follows.

Definition 1 (Edge-featured Graph). An edge-featured graph G =

{V,E,𝑿 ,𝑯 } is defined as an undirected graph consisting of: (1) a
node set V = {𝑣 (1) , 𝑣 (2) , . . . , 𝑣 (𝑛) }, where |V| = 𝑁 . It denotes cell set
on critical paths; (2) an edge set E, where |E| = 𝑀 . It denotes net set
on critical paths; (3) node features 𝑿 ∈ R𝑛×𝑘𝑥 , where 𝑖th row vector
𝒙𝑖 ∈ R𝑘𝑥 is the node features for the 𝑖𝑡ℎ node; (4) edge features 𝑯 ∈
R𝑚×𝑘ℎ , where the row vector 𝒉𝑝 ∈ R𝑘ℎ is the edge features for the
𝑝𝑡ℎ edge or the edge between 𝑖𝑡ℎ and 𝑗𝑡ℎ node.

In this paper, an edge-featured graph G is represented by an edge-
featured adjacency matrix 𝑯 , a node feature matrix 𝑿 , and a label
matrix 𝒚, including cell slew and delay results. Based on this defini-
tion, the problem formulation is shown as follows.

Problem 1. Given a training set 𝑃train which includes edge-featured
graphs representing critical paths with GBA and PBA timing results
in training cases, we use 𝑃train to train a graph-learning based model
for a testing set 𝑃test (where 𝑃test ∩ 𝑃train = ∅) which includes
edge-featured graphs representing critical paths with GBA results in
testing cases and generate their PBA timing results based on given
GBA timing results and timing path structure information without
additional STA runtime.

2.2 Overall Flow
In this paper, Problem 1 is divided into three tasks based on delay

calculation progress: Task 1 performs node embedding considering
each cell, net information on critical paths and path structure based
on trained deep EdgeGAT, which is beneficial to improve predicting
accuracy of cell slew and delay in PBA mode based on GBA results.
Task 2 predicts cell slew in PBA mode 𝑆PBAcell for each cell based on
node embedding results at first, then uses the predicted cell slew
along with node embedding results to predict PBA cell delay 𝐷PBA

cell .
In Task 3, the path arrival time of target critical path in PBA mode
𝐴𝑇 PBA

path can be estimated by cumulative addition of predicted PBA
cell delay 𝐷PBA

cell values and GBA wire delay 𝐷GBA
wire values on it. The

overall flow is shown in Figure 2.

Edge-featured Graph

GBA Timing Results
PBA Timing Results

Point Trans Incr Path

U0_reg/CP 0.00000 0.00000 0.00000

U0_reg/Q 0.01308 0.04382 0.04382

U1/Z 0.02745 0.01973 0.06355

U2/Z 0.00766 0.01808 0.08163

Path arrival time 0.08163

INPUT Our Work OUTPUT

Node Embedding

Predicting Cell Slew
and Delay

Data
Representation

Path Arrive Time
Calculation

PBA Cell Slew and Delay

PBA Path Arrival Time

initial node features initial edge features

Final embeddings

Task 1

Task 2

Task 3

Critical Paths

GBA-STA

Timing Constraints

Circuit Netlist

Wire Technology File

Timing Library

Figure 2: The overall flowof our PBA timing results predictor.
2

Table 1: Raw node and edge features used in deep EdgeGAT.

Type Name Description

Node

cell delay delay of cell
cell output slew transition time of cell output pin
cell input slew transition time of cell input pin on path
cell input slew type rise or fall
cell threshold voltage threshold voltage of cell
wst cell input slew worst transition time of input pins
cell drive strength drive strength of cell
cell functionality functionality of cell
tot cell input cap sum of cell input pin cap
tot cell load cap total load capacitance of cell

Edge

net delay delay of net
net slew type rise or fall
net output slew transition time of net output pin
net input slew transition time of net input pin
tot net cap sum of net capacitance
tot net res sum of net resistance
net input cap capacitance of driver cell for net
tot net load cap total capacitance of load cells

2.3 Why Deep Graph Learning?
In a 𝐷-layer graph learning neural network, each node can learn

information in the 𝐷-hop neighborhood. Thus information beyond
the 𝐷-hop neighborhood can not be aggregated. In [6], it uses 2-
stage model, namely bigram-based model, as the fundamental unit
for predicting PBA timing. From the perspective of graph learning,
it can be regarded as a simple 𝐷 = 2 model, where only the features
of driving cells and loading cells can be aggregated to the node
embedding of the target cell. Thus, the model proposed in [6] cannot
encode global path timing features and structure in node embeddings,
which causes inaccurate timing prediction results. For collecting
timing information on paths, the number of layers should be equal
to the maximum timing depth, where the number is about 100 for
circuits with millions of cells [9]. More importantly, there are just
additional 2 neighbors in each hop on timing path graph and the
number of neighbors of a node scales linearly as the hop-count
increases, which is totally different from exponential increment of
existing EDA works [8–11]. The over-smoothing problem in deep
graph learning is solved through residual connections and identity
matrix inspired by GCNII [12].
3 PBA Predictor Based on Deep EdgeGAT

Given critical paths represented with an edge-featured graph G =

{V,E,𝑿 ,𝑯 }, we predict PBA timing results from GBA timing results
based on node and edge features using deep EdgeGAT and calculate
path arrival time for critical paths with ignorable additional runtime.
As shown in Figure 2, the prediction process is composed of node
embedding, cell slew/delay predicting and path delay calculation.
We overcome the issue of the limited consideration of edge features
in conventional graph learning models by using node and edge
attention aggregator during node embedding. Thus, our predictor
has high explainability and strong generalization power since it fully
learns path information, including cell features, net features and
path structure. Our trained work can predict PBA timing results
accurately and reduce pessimism in GBA.
3.1 Data Representation
Original Node Features and Edge Features: Before leveraging
deep EdgeGAT to generate better node embedding, we define an

EdgeGAT Layer 1 Merge Layer

Nonlinear Transformer

Node Attention

Aggregator

Edge Attention

Aggregator

Encoder

EdgeGAT Layer d EdgeGAT Layer D

Residual

Connections

Figure 3: The architecture of node embedding framework, in-
cluding 𝐷 EdgeGAT layers and merge layer. A single Edge-
GAT layer is composed of nonlinear transformer, node atten-
tion aggregator, edge attention aggregator and encoder.

initial node feature vector 𝒙𝑖 for each cell and an initial edge fea-
ture vector 𝒉𝑝 for each net as shown in Table 1. In total, the 18
features in Table 1 are extracted from technology files, SPEF files,
and PrimeTime GBA timing reports. These features are chosen based
on circuit knowledge and parameter-sweeping experiments. How-
ever, the predicted PBA timing results are not accurate just based
on these manually engineered features. We leverage deep EdgeGAT
to perform graph learning to achieve better node embedding.
Labels: The real cell slew 𝑆PBAr and delay 𝐷PBA

r for each cell on
critical paths under PBA mode, which is generated via golden com-
mercial STA tool PrimeTime [1].

3.2 Node Embedding
To predict the cell slew and delay accurately, EdgeGAT layers

and merge layer in deep EdgeGAT are used to generate new node
embedding 𝑭 : {𝒇𝑖 ,∀𝑖 ∈ V} for cells in circuit which is based on node
(cell) features 𝑿 : {𝒙𝑖 ,∀𝑖 ∈ V}, edge (net) features 𝑯 : {𝒉𝑝 ,∀𝑝 ∈ E},
and timing path structural information. Since the node embedding
is expected to aggregate the information from multiple hop neigh-
bors for getting more accurate representations. According to the
principles of graph neural networks, 𝐷 EdgeGAT layers are used
to aggregate 𝐷-hop neighborhoods in our work, as shown in Fig-
ure 3. In our work, 𝐷 = 100 according to the number of timing
path logic depths. Next, we introduce how the global node and edge
information are aggregated and achieve node embedding without
over-smoothing in 𝑑-th EdgeGAT layer at details.
3.2.1 EdgeGAT Layers. Figure 3 gives an detailed illustration of 𝑑-
th EdgeGAT layer, it takes node feature matrix 𝑿𝑑−1: {𝒙𝑑−1

𝑖
,∀𝑖 ∈ V}

and edge feature matrix 𝑯𝑑−1: {𝒉𝑑−1𝑝 ,∀𝑝 ∈ E} generated in (𝑑-
1)-th EdgeGAT layer as inputs and outputs 𝑿𝑑 : {𝒙𝑑

𝑖
,∀𝑖 ∈ V},

𝑯𝑑 : {𝒉𝑑𝑝 ,∀𝑝 ∈ E} and 𝑴𝑑 : {𝒎𝑑
𝑖
,∀𝑖 ∈ V}. For the first EdgeGAT

layer, the input is the original node feature matrix𝑿 and edge matrix
𝑯 defined in Section 3.1. In order to alleviate the over-smoothing

3

issue in deep EdgeGAT layers, the input of the first layer should be
concatenated with each layer as residual connections, which ensures
the final representation of each node retains the input layer even
if many layers are stacked. A single EdgeGAT layer contains four
different modules: nonlinear transformer, node attention aggrega-
tor, edge attention aggregator, and encoder. Each EdgeGAT layer is
designed in a symmetrical scheme; thus, the node and edge embed-
dings can update themselves in a parallel and equivalent way. We
will introduce four different modules in detail as follows.
Nonlinear Transformer: To achieve nonlinear transforming in
the 𝑑-th EdgeGAT layer, two learnable matrices,𝑾𝑑

𝑋
∈ R𝐾𝑑

𝑋
×𝐾𝑑−1

𝑋 ,
𝑾𝑑
𝐻
∈ R𝐾𝑑

𝐻
×𝐾𝑑−1

𝐻 and a hyper-parameter 𝑙𝑑 , are used to transform
the input node features {𝒙𝑑−1

𝑖
∈ R𝐾𝑑−1

𝑋 ,∀𝑖 ∈ V} and edge features
{𝒉𝑑−1𝑝 ∈ R𝐾𝑑−1

𝐻 ,∀𝑝 ∈ E} into latent representations 𝒏𝑑
𝑖
and 𝒆𝑑

𝑖
:

𝒏𝑑𝑖 = ((1− 𝑙𝑑)𝑰 + 𝑙𝑑𝑾𝑑
𝑋) · 𝒙

𝑑−1
𝑖 , 𝒆𝑑𝑝 = ((1− 𝑙𝑑)𝑰 + 𝑙𝑑𝑾𝑑

𝐻) ·𝒉
𝑑−1
𝑝 , (1)

where the identity matrix 𝑰 is easy to extend as an augmented ma-
trix of an identity matrix with a zero matrix if𝑾𝑑

𝑋
and𝑾𝑑

𝐻
are not

square matrices. Compared with linear transformer used in tradi-
tional GAT, the matrix 𝑰 and hyper-parameter 𝑙𝑑 help to overcome
over-smoothing issue in deep graph learning.
Node Attention Aggregator: The node attention aggregator in 𝑑-
th EdgeGAT layer accepts the transformed node and edge represen-
tations generated through liner transformer as inputs, {𝒏𝑑

𝑖
,∀𝑖 ∈ V}

and {𝒆𝑑
𝑖
,∀𝑝 ∈ E}, and produces aggregated node representations

{𝒈𝑑
𝑖
,∀𝑖 ∈ V}. For generating aggregated node representations, we

aggregate the node representations from the node’s neighbors via
node attention coefficients 𝛼𝑑 which indicate the importance of
neighborhood information to the target node.

𝛼𝑑𝑖 𝑗 =

exp
(
LeakyReLU

(
(𝒂𝑑)⊤

[
𝒏𝑑
𝑖
∥𝒏𝑑

𝑗
∥𝒆𝑑
𝑖 𝑗

]))
∑
𝑘∈N𝑖

exp
(
LeakyReLU

(
(𝒂𝑑)⊤

[
𝒏𝑑
𝑖
∥𝒏𝑑
𝑘
∥𝒆𝑑
𝑖𝑘

])) , (2)

where 𝑖 is the target node and the 𝑗 is its neighbor belongs to neigh-
borhood set 𝑁𝑖 . ·⊤ represents transposition and ∥ is the concatena-
tion operation. The node attention coefficient is parametrized by a
weight vector 𝒂𝑑 ∈ R2𝐾

𝑑
𝑋
+𝐾𝑑

𝐻 with the LeakyReLU nonlinear func-
tion (negative input slope equals to 0.2). And all the node attention
coefficients of node 𝑖 are normalized with 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 function.

Based on the normalized coefficients for each neighborhood, we
can perform a weighted sum on these node representations of neigh-
bors in N𝑖 to get aggregated node representation 𝒈𝑑

𝑖
for node 𝑖:

𝒈𝑑𝑖 =
∑
𝑗 ∈N𝑖

𝛼𝑖 𝑗𝒏
𝑑
𝑗 , ∀𝑖 ∈ V. (3)

Edge Attention Aggregator: The node representations are aggre-
gated in the node attention aggregator to acquire better node embed-
dings, while the original edge features are necessary to be updated
during the weight computation. Thus we update edge representa-
tions to help learn global edge information while node embedding.
We propose an edge attention aggregator in 𝑑-th EdgeGAT layer,
which accepts the same input as node attention aggregator, including
{𝒏𝑑
𝑖
,∀𝑖 ∈ V} and {𝒆𝑑𝑝 ,∀𝑝 ∈ E}. Different from node attentionmodule,

edge-attention module produces aggregated edge representations

{𝒛𝑑𝑝 ,∀𝑝 ∈ E} based on edge attention coefficients 𝛽 .

𝛽𝑑𝑝𝑞 =

exp
(
LeakyReLU

(
(𝒃𝑑)⊤

[
𝒆𝑑𝑝 ∥𝒆𝑑𝑞 ∥𝒏𝑑𝑝𝑞

]))
∑
𝑘∈N𝑝

exp
(
LeakyReLU

(
(𝒃𝑑)⊤

[
𝒆𝑑𝑝 ∥𝒆𝑑𝑘 ∥𝒏

𝑑
𝑝𝑘

])) , (4)

where 𝑝 is the target edge and the 𝑞 is its neighbor edge which
belongs to neighborhood set 𝑁𝑝 . The edge attention coefficient
parametrized by a weight vector 𝒃𝑑 ∈ R2𝐾

𝑑
𝐻
+𝐾𝑑

𝑋 with the LeakyReLU
nonlinear function (negative input slope equals to 0.4). We can get
the aggregated representation 𝒛𝑑𝑝 for edge 𝑝:

𝒛𝑑𝑝 =
∑
𝑞∈N𝑝

𝛽𝑝𝑞𝒆
𝑑
𝑞 , ∀𝑝 ∈ E. (5)

Encoder: A non-linear transformation 𝜎 is performed to encode the
aggregated node and edge representations in this module. In our
work, 𝑅𝑒𝐿𝑈 function is used. After encoding, we can get new node
feature matrix 𝑿𝑑 : {𝒙𝑑

𝑖
,∀𝑖 ∈ V}, edge feature matrix 𝑯𝑑 : {𝒉𝑑𝑝 ,∀𝑝 ∈

E}, and edge-integrated feature matrix 𝑴𝑑 : {𝒎𝑑
𝑖
,∀𝑖 ∈ V}.

𝒙𝑑𝑖 = 𝜎 (𝒈𝑑𝑖 ∥𝒙𝑖),𝒉
𝑑
𝑝 = 𝜎 (𝒛𝑑𝑖 ∥𝒉𝑖),𝒎

𝑑
𝑖 = 𝜎

©«
∑
𝑗 ∈N𝑖

𝛼𝑖 𝑗
(
𝒏 𝑗 ∥𝒆𝑖 𝑗

)ª®¬ . (6)

3.2.2 Merge Layer. After the process of EdgeGAT layers, we can
get the final node embedding results 𝑭 : {𝒇𝑖 ,∀𝑖 ∈ V} in merge layer
based on each edge-integrated feature matrix 𝑴𝑑 : {𝒎𝑑

𝑖
,∀𝑖 ∈ V}

generated through each EdgeGAT layer.

𝒇𝑖 = ∥𝐷𝑑=1 (𝒎
𝑑
𝑖), ∀𝑖 ∈ V. (7)

3.3 Predicting Cell Slew and Delay
Based on the final node embedding results 𝑭 : {𝒇𝑖 ,∀𝑖 ∈ V}, we

use a multilayer perceptron module (𝑀𝐿𝑃) to predict the cell slew
and delay in PBA mode. The objective of 𝑀𝐿𝑃 can be expressed
as minimizing Mean-Squared Error (MSE) between the predicted
slew/delay and the PBA slew/delay. Thus, the loss function of𝑀𝐿𝑃

can be divided into two parts. For predicting PBA cell slew, the loss
function is shown in Equation (8), where 𝑭 is the node embedding
results generated in Section 3.2, 𝑁 is the number of nodes (cells) in
given circuit, 𝑆PBAcell is the cell slew prediction result of multilayer
perceptron layer, 𝑆PBAr is the real PBA slew of cells in label matrix 𝒚,
𝜽 is trainable parameter set of for PBA cell slew predicting.

Lslew (𝜽 | 𝑭 , 𝑆PBAr) = 1
𝑁

∑
𝑖∈V
(𝑆PBAi − 𝑆PBAr_i)

2 . (8)

Additionally, cell delay prediction is the other task of the multi-
layer perceptron module (𝑀𝐿𝑃). Equation (9) shows the objective to
minimize Mean-Squared Error (MSE) between predicted cell delay
and the ground truth, where 𝐷PBA

cell is the cell delay prediction result
of multilayer perceptron layer, 𝐷PBA

r is the ground truth PBA delay
of cells in label matrix 𝒚, and 𝝓 is trainable parameter set for PBA
cell delay predicting. This step helps the prediction model to learn
the cell delay computation progress in PBA mode based on cell slew
and other GBA timing results.

Ldelay (𝝓 | {𝑭 , 𝑆PBAcell }, 𝐷
PBA
r) = 1

𝑁

∑
𝑖∈V
(𝐷PBA

i − 𝐷PBA
r_i)

2 . (9)

4

Finally, we can get the overall loss function by combining cell slew
and delay predicting, as shown in Equation (10). The two components
are minimized simultaneously and help improve prediction accuracy.

Ltot (𝜽 , 𝝓 | {𝑭 , 𝑆PBAcell }, 𝑆
PBA
r , 𝐷PBA

r) = Lslew + Ldelay . (10)

3.4 Parallel Training and Inference
Algorithm 1 summarizes the overall training process of PBA cell

slew/delay predictor using open-source cases. Lines 1-13 illustrate
the node embedding process for each node 𝑣 ∈ V𝑡 , including nonlin-
ear transformer, node attention aggregator, edge attention aggrega-
tor, and encoder. When maximum depth 𝐷 is reached, the final node
embedding results are obtained and fed to𝑀𝐿𝑃 for predicting cell
slew and delay. Based on the results, we calculate the loss function
Ltot, then leverage a gradient descent optimizer named Adam [13]
to update the parameters in our work by minimizing the loss. All
parameters𝑾 that need to be trained include parameters in 𝐷 Edge-
GAT layers {𝑾𝑑

𝑋
and𝑾𝑑

𝐻
,∀𝑑 ∈ {1, ..., 𝐷}} and parameters in 𝑀𝐿𝑃

𝜽 and 𝝓. More importantly, all the parameters in the work can be
trained end-to-end.𝑀𝐿𝑃 is implemented with 3 hidden layers.

However, the training process is time-consuming. We leverage
a parallel training scheme by partitioning critical paths over multi-
GPUs. Each GPU processes one graph in our parallel framework
with a complete and dependent edge representation matrix and node
representation matrix. Similar to the training process, we achieve
parallel inference to speedup predicting process on critical paths.

Algorithm 1 Training Methodology.
Input: Edge-featured graph: G = {V,E,𝑿 ,𝑯 }; Node feature matrix:

𝑿 : {𝒙𝑖 ,∀𝑖 ∈ V}; Edge feature matrix: 𝑯 : {𝒉𝑝 ,∀𝑝 ∈ E}; Real PBA
cell slew 𝑆PBAr and delay 𝐷PBA

r ; Search depth 𝐷=100; Parameters
in the LeakyReLU nonlinear function.

Output: Trainable parameters𝑾 : {𝑾𝑑
𝑋
and𝑾𝑑

𝐻
,∀𝑑 ∈ {1, ..., 𝐷}} in

EdgeGAT layers; \ and 𝜙 in𝑀𝐿𝑃

1: for 𝑑 ← 1 to 𝐷 do
2: for 𝑖 ∈ V do
3: 𝑙𝑑 ← log(1/𝑑 + 1)
4: 𝒏𝑑

𝑖
← ((1 − 𝑙𝑑)𝑰 + 𝑙𝑑𝑾𝑑

𝑋
)𝒙𝑑−1
𝑖

,
5: 𝒆𝑑𝑝 ← ((1 − 𝑙𝑑)𝑰 + 𝑙𝑑𝑾𝑑

𝐻
)𝒉𝑑−1𝑝 ; ⊲ Transformer

6: Compute 𝛼𝑑
𝑖 𝑗
via Equation (2), 𝑗 ∈ N𝑖 ;

7: 𝒈𝑑
𝑖
← ∑

𝑗 ∈N𝑖

𝛼𝑖 𝑗𝒏𝑑𝑗 ⊲ Node Attention Aggregator

8: Compute 𝛽𝑑𝑝𝑞 via Equation (4), 𝑞 ∈ N𝑝 ;
9: 𝒛𝑑𝑝 ←

∑
𝑞∈N𝑝

𝛽𝑝𝑞𝒆𝑑𝑞 ⊲ Edge Attention Aggregator

10: Compute 𝒙𝑑
𝑖
, 𝒉𝑑𝑝 and 𝒎𝑑

𝑖
via Equation (6); ⊲ Encoder

11: end for
12: end for
13: for 𝑖 ∈ V do
14: 𝒇𝑖 ← ∥𝐷𝑑=1

(
𝒎𝑑
𝑖

)
; ⊲ Node embedding

15: 𝑆PBAi ← 𝑀𝐿𝑃 (𝜽 | 𝑭); ⊲ Predicting cell slew
16: 𝐷PBA

i ← 𝑀𝐿𝑃 (𝝓 | 𝑭 , 𝑆PBAi); ⊲ Predicting cell delay
17: end for
18: Compute Ltot via Equation (10);
19: Minimize Ltot via Adam [13] and update all parameters𝑾

Table 2: Benchmark statistics.

Benchmark #Cells #Nets #FFs #CPs

Train

PCI_BRIDGE 1234 1598 310 456
DMA 10215 10898 1956 1475
B19 33785 34399 3420 5093

SALSA 52895 57737 7836 9648
RocketCore 90859 93812 16784 12475
VGA_LCD 56194 56279 17054 8761

ECG 84127 85058 14,018 13189
TATE 184601 185379 31,409 27931
JPEG 219064 231934 37,642 36489

NETCARD 316137 317974 87,317 46713
LEON3MP 341000 341263 108,724 50716

Total 1390111 1075068 326470 212766

Test

WB_DMA 40962 40664 718 9619
LDPC 39377 42018 2048 7613

DES_PERT 48289 48523 2983 10976
AES-128 113168 90905 10686 24973
TV_CORE 207414 189262 40681 33706
NOVA 141990 139224 30494 39341

OPENGFX 219064 231934 37,642 47831
Total 810264 782530 125252 221890

Table 3: Cell slew/delay prediction accuracy (R2 score)

Benchmark Cell Slew/Delay Prediction Accuracy (R2 score)
𝑀𝐿𝑃 GCNII[12] GraphSage[7] GAT[14] EGNN[15] Deep EdgeGAT

WB_DMA 0.795/0.761 0.875/0.861 0.881/0.846 0.883/0.876 0.915/0.907 0.996/0.971
LDPC 0.762/0.732 0.842/0.832 0.865/0.814 0.877/0.871 0.921/0.916 0.991/0.987

DES_PERT 0.766/0.727 0.896/0.887 0.847/0.826 0.906/0.900 0.963/0.960 0.989/0.987
AES-128 0.731/0.712 0.801/0.792 0.821/0.810 0.856/0.816 0.938/0.921 0.977/0.970
TV_CORE 0.756/0.717 0.838/0.817 0.847/0.837 0.856/0.844 0.957/0.944 0.982/0.979
NOVA 0.725/0.718 0.826/0.812 0.824/0.818 0.864/0.855 0.905/0.871 0.974/0.971

OPENGFX 0.699/0.681 0.819/0.802 0.809/0.798 0.834/0.816 0.862/0.840 0.982/0.974

Average 0.748/0.721 0.843/0.829 0.842/0.821 0.868/0.854 0.923/0.909 0.984/0.977

3.5 Path arrival Time Calculation
PBA arrival time of a critical path 𝐴𝑇 PBA

CP is estimated by cumu-
lative addition of the predicted PBA cell delay 𝐷PBA

cell using trained
model and GBA wire delay 𝐷GBA

wire from GBA results on it. VCP and
ECP are the cell (node) and wire (edge) sets on the critical path.

𝐴𝑇 PBA
CP =

∑
i∈VCP

𝐷PBA
i +

∑
p∈ECP

𝐷GBA
p . (11)

According to our experimental results, the path delay pessimism
in GBA is reduced obviously without significant runtime overhead.

4 Experimental Results
We implement our models using PyTorch and develop deep Edge-

GAT based on the proposed graph learning framework. Our models
are trained on a Linux machine with 32 cores and 4 NVIDIA Tesla
V100 GPUs in parallel. The total memory used in training is 128GB.
PBA and GBA are performed using PrimeTime [1] on a 72-core
2.6GHz Linux machine with 1024 GB memory. We use R2 score [10]
to evaluate the relative cell slew/delay and path arrival time accuracy
on the testing benchmarks. The maximum absolute error of path
arrival time for different designs is reported.

In this work, we train and evaluate deep EdgeGAT model based
predictors using open-source designs. Specifically, we generated PBA
and GBA timing reports for 18 open-source circuits with TSMC28nm
technology using STA tool PrimeTime [1] while the timing constraint
is set to 0.5ns (The value of clock period). The critical paths (CPs)
in open-source circuits are split into training and testing cases as
shown in Table 2.

5

Table 4: Path arrival time prediction accuracy based on GBA timing results, including R2 score / MAE (ps), and runtime (s)
comparison. “MAE” represents maximum absolute error and 𝐷 represents number of EdgeGAT layers used.

Benchmark
Path Delay Prediction Accuracy: R2 score /MAE(ps) Runtime(s)

Commercial STA Tool [1] Prior Work Ours PBA Ours Comparison
PBA GBA CART [6] 𝐷=25 𝐷=50 𝐷=100 Full GBA Predictor Total Speedup

WB_DMA 1.000/0.00 0.549/64.91 0.732/21.34 0.881/10.74 0.928/3.23 0.998/0.89 276.7 12.1 1.197 13.297 20.81×
PCI_BRIDGE 1.000/0.00 0.471/89.23 0.694/41.01 0.896/14.65 0.901/9.51 0.993/1.46 365.9 15.3 0.798 16.098 22.73×
DES_PERT 1.000/0.00 0.452/50.84 0.702/37.86 0.891/25.17 0.931/10.92 0.997/1.02 386.3 16.4 1.614 18.014 21.44×
AES-256 1.000/0.00 0.393/130.92 0.511/80.75 0.702/22.94 0.822/9.37 0.977/3.94 593.7 31.2 2.731 33.931 17.50×
TV_CORE 1.000/0.00 0.424/91.27 0.651/57.93 0.825/29.36 0.897/19.34 0.984/6.81 614.6 22.1 2.410 24.51 25.08×
NOVA 1.000/0.00 0.419/88.64 0.673/36.59 0.839/23.83 0.904/14.37 0.983/4.11 1133.8 30.5 4.276 34.776 32.60×

OPENGFX 1.000/0.00 0.378/267.91 0.571/147.03 0.793/53.74 0.851/27.89 0.987/5.84 1185.4 36.3 4.432 40.732 29.10×
Average 1.000/0.00 0.441/111.96 0.647/60.36 0.832/25.78 0.891/13.52 0.988/3.44 642.3 23.4 2.494 25.894 24.80×

4.1 Cell Slew and Delay Prediction Accuracy
We compare the cell slew and delay prediction performance based

on deep EdgeGAT with the state-of-the-art classical graph learn-
ing methods, including𝑀𝐿𝑃 without GNN, GCNII [12], GrapgSage
[7], GAT [14] and EGNN [15]. Note that we overcome the over-
smoothing issue in these models like our work. Open-source cases
in Table 2 are used for training and testing. All graph learning mod-
els are used to perform node embedding with search depth 𝐷=100,
and𝑀𝐿𝑃 modules are used to predict PBA cell slew/delay based on
different node embedding results.

Table 3 shows all the cell slew/delay prediction accuracy (R2 score)
results of different methods. Compared with using the graph learn-
ing method, the accuracy of𝑀𝐿𝑃 predictor is extremely limited. For
the rest work, the performance of the proposed method is signifi-
cantly better than other graph learning methods. The average R2
scores of deep EdgeGAT which represent cell slew and delay pre-
diction accuracy reach 0.984 and 0.977, which outperforms GCNII
by 0.142/0.147, GraphSage by 0.141/0.156, and GAT by 0.116/0.123.
Since they consider only node features and path structure informa-
tion, these methods suffer bottlenecks for post-layout designs with
limited learning ability. Compared with EGNN which also considers
the edge features, our work achieves average gains of 0.062/0.069 on
the seven industrial designs.

The model training progress is timing-consuming, with about 12
hours on a single GPU. However, the parallel training method on
multiple GPUs achieves 6× speedup on our servers.

4.2 Path arrival Time Calculation Performance
Table 4 shows the path arrival time prediction accuracy through

our workflow and conventional machine learning method proposed
in [6]. Note that the baseline results of path arrival time in PBA
mode are from the golden timing analysis tool, PrimeTime [1]. In
Table 4, there is an obvious difference between PBA and GBA timing
results. For GBA mode, the average R2 score is 0.441 and the maxi-
mum absolute error reaches 111.96ps, which is extremely pessimistic.
According to the R2 scores, the accuracy of our work reaches 0.832,
0.891, and 0.988 on average when 𝐷=25,50 and 100. And the average
maximum absolute error of our results is just 3.44ps.

More importantly, the predictor runtime costs 2.494s on average
when 𝐷=100 for different designs scaling from 40k to 210k cells, as
shown in Table 4. Combined with GBA timing analysis, the average
runtime of our workflow to get accurate PBA timing results costs
25.894s, which achieves 24.80× speedup compared with PrimeTime.

5 Conclusion
In this work, we are the first to apply graph learning techniques

to predict PBA timing results based on GBA results, addressing an
important accuracy-runtime tradeoff in STA. Our work is composed
of node embedding based on proposed EdgeGAT layers, predicting
cell slew/delay synergistically based on node embedding results
and calculating path arrival time through cumulative addition of
predicted PBA cell delay values on timing path. Compared with
conventional graph learning method, deep EdgeGAT can learn global
path information. Experimental results on open-source designs with
different scales demonstrate that our predictor is both accurate and
fast. The inductive model can be shared across different designs
without loss of accuracy even if they are unseen.

Acknowledgment
This work is supported by the National Natural Science Founda-

tion of China under Grant 62274034 and 61904030 and The Research
Grants Council of Hong Kong SAR (Project No. CUHK14209420).

References
[1] Synopsys, “Primetime user guide,” http://www.synopsys.com/Tools/

Implementation/SignOff/Documents/primetime_ds.pdf, 2015.
[2] Cadence, “Tempus user guide.” https://www.cadence.com/content/

cadencewww/global/enUS/home/tools/digital-design-and-signoff/silicon-
signoff/tempustiming-signoff-solution.html, 2015.

[3] Z. Zhang, Z. Guo, Y. Lin, R. Wang, and R. Huang, “Eventtimer: fast and accurate
event-based dynamic timing analysis,” in Proc. DATE, 2022, pp. 945–950.

[4] R. Molina, “EDA vendors should improve the runtime performance of path-based
timing analysis,” Electronic Design, vol. 20136, 2013.

[5] A. B. Kahng, “Machine learning applications in physical design: Recent results and
directions,” in Proc. ISPD, 2018, pp. 68–73.

[6] A. B. Kahng, U. Mallappa, and L. Saul, “Using machine learning to predict path-
based slack from graph-based timing analysis,” in Proc. ICCD, 2018, pp. 603–612.

[7] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” Proc. NIPS, vol. 30, 2017.

[8] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu, “High perfor-
mance graph convolutional networks with applications in testability analysis,” in
Proc. DAC, 2019, pp. 1–6.

[9] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine inspired
graph neural network model for pre-routing slack prediction,” in Proc. DAC, 2022,
pp. 1207–1212.

[10] T. Chen, Q. Sun, C. Zhan, C. Liu, H. Yu, and B. Yu, “Deep H-GCN: Fast analog IC
aging-induced degradation estimation,” IEEE TCAD, 2021.

[11] S. Sun, Y. Jiang, F. Yang, B. Yu, and X. Zeng, “Efficient hotspot detection via graph
neural network,” in Proc. DATE, 2022, p. 1233–1238.

[12] M. Chen, Z.Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolutional
networks,” in Proc. ICML, 2020, pp. 1725–1735.

[13] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[14] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph
attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[15] L. Gong and Q. Cheng, “Exploiting edge features for graph neural networks,” in
Proc. CVPR, 2019, pp. 9211–9219.

6

 http://www.synopsys.com/Tools/Implementation/Sign Off/Documents/primetime_ds.pdf
 http://www.synopsys.com/Tools/Implementation/Sign Off/Documents/primetime_ds.pdf
 https://www.cadence.com/content/cadencewww/ global/en US/home/tools/digital-design-and-signoff/silicon-signoff/tempustiming- signoff-solution.html
 https://www.cadence.com/content/cadencewww/ global/en US/home/tools/digital-design-and-signoff/silicon-signoff/tempustiming- signoff-solution.html
 https://www.cadence.com/content/cadencewww/ global/en US/home/tools/digital-design-and-signoff/silicon-signoff/tempustiming- signoff-solution.html

