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Abstract—Graph coloring, a classical NP-hard problem, is
the problem of assigning connected nodes as different colors as
possible. In this work, we aim to solve the coloring problem by
graph neural networks (GNNs). However, we observe that state-
of-the-art GNNs are less successful in the graph coloring problem.
We analyze the reasons from two perspectives. First, most GNNs
fail to generalize the task under homophily to heterophily, i.e.,
graphs where connected nodes are assigned different features.
Second, GNNs are bounded by the network depth, making them
possible to be a local method, which has been demonstrated to
be non-optimal in Maximum Independent Set (MIS) problem.
In this paper, we focus on the aggregation-combine GNNs (AC-
GNNs), a popular class of GNNs. Instead of learning when
AC-GNNs assign local equivalent node pairs to the same node
embedding, which is designed for the task under homophily,
we study the power of a GNN in the coloring problem by
analyzing its ability to assign nodes different colors. Through
the analysis, we find some specific settings/architectures that may
harm the performance. Furthermore, we demonstrate the non-
optimality of AC-GNNs due to their local property, and prove
the positive correlation between model depth and its coloring
power. Following the discussions above, we summarize a series of
rules that make a GNN powerful in the coloring problem. Then,
we propose a simple AC-GNN variation based on these rules.
We empirically validate our theoretical findings and demonstrate
that our simple model substantially outperforms state-of-the-art
heuristic algorithms in both quality and runtime.

INTRODUCTION

Graph neural networks (GNNs) have shown overwhelming
success in various fields, such as molecules, social networks,
and web pages[1]. The main idea behind GNNs is a neighbor-
hood aggregation scheme (or called message passing), where
each node aggregates feature vectors from its neighbors and
combines them with its own feature vector to produce a new
one. GNNs following such a scheme are called aggregation-
combination GNNs (AC-GNNs) [2]. After finite iterations of
aggregation and combination, the corresponding feature vector
of each node is called node embedding to represent the node.

In this work, we try to study the performance of GNNs
for the coloring problem because 1) Graph coloring and its
variations have a great demand in industry. while the target
graph size is exploding nowadays. For example, the netlist
graph in a commercial chip contains millions of gate nodes;
the size of the user graph in the Internet company is also at
a million level. These graphs are too large to be processed by
transitional algorithms within an acceptable time, and therefore
motivate us to apply the power of highly parallelable GNNs.

2) However, in our motivating experiment, most of existing
GNNs even cannot beat the simplest heuristic algorithm.
Therefore, we try to find the reason for the low performance so
that we can provide some theoretical guidance on a powerful
GNN for the coloring problem. 3) Graph problems under
heterophily are the ones where connected nodes are expected
to have different labels/features/colors instead of a similar
one (homophily), and graph coloring problem is the most
representative task under heterophily. Although some rules
are shown to be able to enhance the expressive power of
GNNs in previous work, whether these rules still hold under
heterophily is still an open question. For example, in previous
study under homophily, deeper GNNs often suffer from over-
smooth problem (Zhao and Akoglu 2019) and it is believed
that deepening GNNs do not improve (or sometimes worsen)
their performance (Oono and Suzuki 2019). We will try to find
the answer during our explorations in the coloring problem.

We study the problem by investigating the power of GNNs
for the graph coloring problem. Some recent works [3], [2],
[4], [5], [6], [7] study the power of a GNN by analyzing when
a GNN maps two nodes to the same node embedding. In their
study, a maximally powerful GNN with depth L should map
two L-local equivalent nodes to the same node embedding
[4], [3]. However, when applied in the graph coloring problem,
such a definition raises some problems. First, the coloring task
is not under homophily but heterophily. Therefore, two local
equivalent nodes are not necessarily assigned the same node
embedding. One example can be found in Figure 1(a), where
the node pair {c, d} is local equivalent but should be assigned
different colors to avoid the conflict. Second, every AC-GNN
is bounded by its depth L. Therefore, the maximally powerful
GNN is identified by L-local equivalence instead of a global
equivalence. This constraint makes an AC-GNN possible to
be a local method, which has been demonstrated to be non-
optimal in many NP-hard problems such as MIS [8], [9].

Motivated by these limitations, we define the power of AC-
GNNs in the coloring problem as its ability to assign nodes
different colors. We then observe and theoretically prove a
set of conditions that may harm/contribute to the coloring
performance. Based on these observations, we develop a series
of rules to design powerful AC-GNNs specifically for the
graph coloring problem. We make the following contributions:
(1): We show that AC-GNNs cannot be optimal in the coloring
problem and demonstrate the positive correlation between
model depth and its power in the coloring problem. (2) We
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Fig. 1: Examples of graph structures in which some AC-GNNs fail to discriminate the equivalent node pair {c, d}. (a) left:
the input graph with the same node attribute; right: the coloring results by the most powerful AC-GNN. (b) left: the input
graph with different node attributes (represented by the gray scale); right: the coloring results by the most powerful integrated
AC-GNN. The aggregation for any integrated AC-GNN in both c and d are the same since N (c) ∪ {c} = N (d) ∪ {d}. Here,
the most powerful is an ideal object, and refers to a virtual integrated AC-GNN that has the most powerful ability to assign
node pairs to different colors.

give simple but effective rules about the GNN architecture
for the coloring problem, some of which are contrary to
previous research under homophily. (3) Combining these rules,
we develop a simple GNN-based approach by un-supervised
learning. (4) We validate our findings by extensive empirical
evaluation including three datasets from different subjects. Our
method shows substantially superior performance compared
with other existing AC-GNN variations and even outperforms
state-of-the-art heuristic algorithms with a significant effi-
ciency improvement.

PRELIMINARIES

Graph Terminology: Here we list the following graph
theoretic terms encountered in our work. Let G = (V, E) and
G′ = (V ′, E ′) be graphs on vertex set V and V ′, we define
• isomorphism: we say that a bijection π : V → V ′ is an

isomorphism if any two vertices u, v ∈ V are adjacent in
G if and only if π(u), π(v) ∈ V ′ are adjacent in G′, i.e.,
{u, v} ∈ E iff {π(u), π(v)} ∈ E ′.

• isomorphic nodes: If there exists the isomorphism be-
tween G and G′, we say that G and G′ are isomorphic.

• automorphism: When π is an isomorphism of a vertex
set onto itself, i.e., V = V ′, π is called an automorphism
of G.

• topologically equivalent: We say that the node pair {u, v}
is topologically equivalent if there is an automorphism
mapping one to the other, i.e., v = π(u).

• equivalent: {u, v} is equivalent if it is topologically
equivalent by π and xw = xπ(w) holds for every w ∈ V ,
where xw is the node attribute of node w.

• r-local topologically equivalent: The node pair {u, v} is
r-local topologically equivalent if πr is an isomorphism
from BG(u, r) to BG(v, r).

• r-local equivalent: {u, v} is r-local equivalent if it is r-
local topologically equivalent by πr and xw = xπr(w)

holds for every w ∈ BG(u, r).
• r-local isomorphism: A bijection πr is an r-local isomor-

phism that maps u to v if πr is an isomorphism that maps
BG(u, r) to BG(v, r).

• other local graph terminology: For every positive integer
r and every node u ∈ V , we define BG(u, r) as the

subgraph of G induced by node u with distance at most
r from u.

One example is given in Figure 1(a).
Graph coloring.: Let k be the number of available

colors, G = (V, E) be the input graph and each vertex
v ∈ V be associated with an attribute xv , a coloring function
fk : (v,G,xv) → {1, ..., k} returns a color of v indexed by
colv ∈ {1, ..., k}. In the following pages, k follows the same
definition if not specified and f(G) represents the coloring
solution on G by f for simplification. Given a graph G
colored by fk, a conflict function c : (u, v, fk) → {0, 1} is
used to measure the performance of fk on G. Specifically,
c(u, v, fk) = 1 when u and v are connected and assigned the
same color:

c(u, v, fk) =


1, if fk(v,G,xv) = fk(u,G,xu)

and {u, v} ∈ E ;
0, otherwise.

(1)

The edge e = {u, v} is called a conflict if c(u, v, f) = 1. The
objective of the graph coloring problem is widely formulated
in two ways: 1) k-coloring problem: Given k, minimize the
number of conflicts as in Equation (2); 2) Given a conflict
constraint cmax, minimize the number of used colors as in
Equation (3).

min
∑
{u,v}∈E

c(u, v, fk). (2)

min k, s.t.
∑
{u,v}∈E

c(u, v, fk) ≤ cmax. (3)

When we set cmax as 0, i.e., no conflict is introduced
by fk, we refer the obtained minimum color number as the
chromatic number of G, which is often represented by X .
The corresponding coloring function fX is called an optimal
function.

Graph neural networks (GNNs).: GNNs are to learn the
node embeddings or graph embedding based on the graph
G = (V, E) and node features {xv : v ∈ V}. We follow the
same notations in [2] to formally define the basics for GNNs.
Let {AGG(i)}Li=1 and {COM(i)}Li=1 be two sets of aggregation
and combination functions. An aggregation-combine GNN
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(AC-GNN) computes the feature vectors h
(i)
v for every node

v ∈ V by:

h(i)
v = COM(i)(h(i−1)

v ,AGG(i)({h(i−1)
u : u ∈ N (v)})), (4)

where N (v) denotes the neighborhood of v, i.e., N (v) = {u :

{u, v} ∈ E} and h
(0)
v is the node attribute xv . Finally, each

node v is classified by a node classification CLS(·) applied to
the node embedding h

(L)
v . When the AC-GNN is used for the

graph coloring problem, CLS(·) returns a colv ∈ {1, ..., k}.
Then, an AC-GNN A with L layers is also called L-AC-GNN
and defined as A = ({AGG(i)}Li=1, {COM(i)}Li=1, CLS(·)).
Here, we define A(v,G,xv) as the color of v assigned by A.

simple AC-GNN: The properties of aggregation, combina-
tion and classification functions are widely studied and many
variations of these functions are proposed. Among various
function architectures, we say an AC-GNN is simple if the
aggregation and combination functions are defined as follows:

AGG(i)(X) =
∑
x∈X

x, (5)

COM(i)(x,y) = σ(xC(i) + yA(i) + b(i)), (6)

where C(i), A(i), and b(i) are trainable parameters, σ is an
activation function.

integrated AC-GNN: The aggregation and combination
functions can also be integrated such as networks explored
in [10], [3]. We say that such AC-GNN is integrated when
aggregation and combination functions are integrated as fol-
lows:

h(i)
u = COM(i)(AGG(i)({h(i−1)

w : w ∈ N (u) ∪ {u}})). (7)

In integrated AC-GNNs, aggregation functions aggregate fea-
tures from neighborhood and the node itself simultaneously,
which means they treat the neighborhood information and ego-
information (information from the node itself) equally.

POWERFUL GNNS FOR GRAPH COLORING

In this section, we focus on the question: What kinds
of designs make a GNN more/less powerful in the graph
coloring problem? Although GNNs demonstrate their power
in various tasks, most of them even cannot beat the simplest
heuristic algorithms in the coloring problem. One motivating

TABLE I: Solved ratio of existing GNNs (GCN [10],
SAGE [11], GIN [4], GAT [12]) and the simplest greedy
algorithm on layout dataset over three runs. The node attributes
are set to all-one vectors. d: depth.

d = 2 d= 10
GCN 0.55 ±0.01 0 ±0
SAGE 0 ±0 0 ±0
GIN 0.59 ±0.01 0.58 ±0.01
GAT 0 ±0 0 ±0

Greedy 0.962

experiment is shown in Table I, where the solved ratio is
one minus the ratio between the number of conflicts and
the number of edges. For example, given a graph with 100
edges and colored with 10 conflicts, then the solved ratio is

calculated by 1 − 10/100 = 0.9. The Greedy method colors
nodes in the order of node IDs. We observe that all tested
GNNs do not work in the coloring problem. We analyze the
reason from the perspective of heterophily and homophily:
That is, linked nodes should be assigned different colors rather
than the same one. However, previous studies define the power
of GNNs as the capability to map two equivalent nodes to the
same embedding. Under the heterophily, it is critical to rethink
the definition of a GNN’s power specifically for the coloring
problem. After the power is formalized, the next question is:
What factors may enhance or harm such a power? Here, we
discuss the power of GNNs for graph coloring by answering
the questions raised above. We leave all proofs in Appendix
due to the page limit.

Discrimination power under heterophily

Q: How to determine whether a GNN is powerful in the
coloring problem?

In the graph coloring problem, connected nodes are assigned
to different colors. Therefore, a powerful GNN should map
the two connected nodes to node embeddings as differently
as possible. Intuitively, we can study the power of a GNN in
the coloring problem by analyzing its ability to assign nodes
different colors. Here, we refer to the power as the discrimina-
tion power of GNNs to differ from previous expressive power
under homophily. Formally, we define that a coloring method
f discriminates a node pair (u, v) as follows:

Definition 1 (discriminate). A coloring method f discrimi-
nates a node pair (u, v) if f assigns u and v different colors,
i.e., f(u,G,xu) 6= f(v,G,xv).

Following the definitions, we can answer the question
above: the more powerful a GNN is, the more node pairs it
will discriminate. In the following context, we consider the
case where the number of colors k is the chromatic number
X . Ideally, an optimal GNN should be able to discriminate all
node pairs.

Given the definition above, one may try to build an optimal
AC-GNN which colors all graphs without conflict through
discriminating all node pairs:

Q: Can we design an AC-GNN which discriminates any node
pair?

The following Property 1 refutes the existence of such a
“perfect” AC-GNN:

Property 1. All AC-GNNs cannot discriminate any equivalent
node pair.

One example is given in Figure 1(a), where node pair {c, d}
is equivalent. Since the equivalent node pair have the same
subgraph structure with the same node attribute distributions,
the AC-GNN always return the same results in each layer.
Hence, AC-GNNs are not optimal for any graph that contains
these node pairs, i.e., connected and also equivalent pairs.

To avoid such a non-optimal case, we can break the equiva-
lence between two nodes by assigning different node attributes
such as random features [13] or one-hot vectors [2]. The
solution also aligns with the conclusion in [3], which proves
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that with different attributes GNNs become significantly more
powerful. Indeed, making nodes different purposely strength-
ens the AC-GNN by eliminating the equivalent node pairs
(although the topological equivalence is preserved). However,
the superficial methods on the node attributes cannot influence
and solve the underlying defects of some specific AC-GNNs,
for example, integrated AC-GNN. In an integrated AC-GNN,
the node and its neighbors are aggregated into the same
multi-set, making it more difficult for integrated AC-GNNs
to discriminate the node with its neighbors. Property 2 points
out that an integrated AC-GNN cannot be optimal since there
always exists a set of graphs in which at least one node pair
is not discriminated by the integrated AC-GNN:

Property 2. If nodes u and v in a graph G are connected
and share the same neighborhood except each other, i.e.,
N (u)\{v} = N (v)\{u}, then an integrated AC-GNN cannot
discriminate {u, v}.

The property points to the deficiency of integrated AC-
GNN even if nodes are differentiable by their attributes. One
example is given in Figure 1(b), where the node pair {c, d}
cannot be discriminated by any integrated AC-GNN even the
node attributes are different.

Locality

Local methods are widely used in the combinational opti-
mization problems such as maximum independent set (MIS)
and graph coloring. The formal definition of the local method
for the coloring problem is described as follows, which is a
direct rephrasing in [9]:

Definition 2 (local method [9]). A coloring method f is r-
local if it fails to discriminate any r-local equivalent node
pair. A coloring method f is local if f is r-local for at least
one positive integer r.

Along with the study of the local methods, the upper bound
of a local method for the MIS problem is investigated. David
et al. [9] gives an upper bound 1/2 + 1/(2

√
2) of an MIS

produced by any local method in the random d-regular graph
as d → ∞ and [8] strengthens the bound to 1/2. A random
d-regular graph is a graph with n nodes and the nodes in each
node pair are connected with a probability d/n. Starting from
the upper bound of any local method for the MIS problem,
we may try to figure out:

Q: Whether a local method is also non-optimal in the graph
coloring problem?

The answer is given by following corollary:

Corollary 1. A local coloring method is non-optimal in the
random d-regular tree as d→∞.

We finish the proof by making use of the upper bound
studied in the MIS problem and bridging the connection be-
tween a local method for MIS problem and coloring problem.
Due to the localized nature of the aggregation function in
GNNs, an AC-GNN with a fixed number of layers, say L
layers, cannot detect the structure or information of nodes at
a distance further than L. Considering the non-optimality of a

local coloring method stated in Corollary 1 and the localized
nature of GNNs, we can reduce our analysis of whether there
exists an optimal AC-GNN for graph coloring to whether an
AC-GNN is a local coloring method? Corollary 2 answers the
question as yes:

Corollary 2. L-AC-GNN is an L-local coloring method and
thus a local coloring method.

Corollary 1 and Corollary 2 directly lead to the following
theorem:

Theorem 1. AC-GNN is not optimal, specifically for the
random d-regular tree as d→∞.

Based on the analysis above, we can see that the locality
of AC-GNN makes it infeasible to to be an optimal coloring
function. To solve the problems raised by locality of AC-
GNNs, which inhibits AC-GNNs from detecting the global
graph structure, many efforts have been made to devise a
global scheme such as global readout functions [2], random-
ness [14], [15] and deeper networks [16], [17], [18]. Among
all global techniques, a deep architecture is believed to be
global as long as it covers the full graph. Given a graph with
diameter R, a R-AC-GNN is able to detect the information
from the whole graph. However, it is impossible to find an
AC-GNN which is able to cover all graphs: any AC-GNN is
always bounded by its depth. Then, if we cannot develop an
optimal AC-GNN by simply stacking layers, does this method
contribute to the discrimination power? Formally:

Q: Is deeper AC-GNN more powerful in the coloring problem?
We answer the question as yes, and give a more specific

statement:

Property 3. Let {u, v} be a node pair in any graph G, and L
be any positive integer. If a L-AC-GNN discriminates {u, v},
a L+-AC-GNN also discriminates it.

A L+-AC-GNN is an AC-GNN by stacking injective layers
after L-AC-GNN (before CLS(·)). An injective layer includes
a pair of injective aggregation function and injective combi-
nation function.

OUR METHOD

Based on the discussions above, we summarize a series of
rules that make a GNN A powerful in the coloring problem
as follows:

1) The input graph contains no equivalent node pair (Prop-
erty 1);

2) A does not integrate the aggregation and combination
function (Property 2);

3) A should be as deep as possible (Property 3);
4) Layers in A should be injective (Property 3);
With the guidance of the rules above, we propose a very

simple architecture, Graph Discrimination Network (GDN)
based on simple AC-GNN. Note that there is not solely one
architecture that satisfies all the rules above. We select GDN
as an example considering the balance between efficiency and
performance. We describe GDN as follows:
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Fig. 2: (a) Solved ratio by different AC-GNN variations; (b) Fixed color ratio by different AC-GNN variations.

Forward Computation.: For a k-coloring problem, the
node attribute is the centered probability distribution of k
colors and is initialized randomly to eliminate the equivalent
node pairs (rule 1).

The aggregation function is the same as Equation 5 (rule
2,4). Let m(i)

v ∈ Rk be the result returned by AGG(i) for the
node v in the i-th layer, the aggregation layer is organized as
follows:

m(i)
v =

∑
u∈N (v)

h(i−1)
u . (8)

In the combination function, we define the COM(i) as
follows to make GDN color equivariant. For the details of
color equivariance, please refer to the Appendix.

h(i)
v = h(i−1)

v (λ
(i)
C + γ

(i)
C (11>))

+m(i)
v (λ

(i)
A + γ

(i)
A (11>)) + β(i)1, (9)

where λ, γ, β are trainable scalars. Finally, the classification
function CLS(·)) in GDN is defined as an argmax function,
since the final node embedding is still a probability distribution
of colors.

Loss Function.: Considering that the permutation of col-
ors cannot influence the result quality, it is not an easy job to
develop a supervised training scheme since there are multiple
optimal solutions. Here, we use an un-supervised margin
loss, motivated by the fact that the final node embeddings
of connected nodes should be as different as possible, and
formulated by:

min
∑
{u,v}∈E

max{m− d(hu,hv), 0}, (10)

where hu ∈ Rk is the probability distribution obtained by A.
d is the Euclidean distance between the node pair. m is the
pre-defined margin.

Preprocess & Postprocess.: Our method also contains
preprocess and postprocess procedures, which are widely used
in other coloring methods [19], [20]. In the preprocess part,
the node with a degree less than k is removed iteratively.
In the postprocess part, we iteratively detect 1) whether a
color change in a single node will decrease the cost or
2) whether a swap of colors between connected nodes will
decrease the cost. We implement the two additional steps
by tensor operations, which significantly boost the efficiency.

The experiments on the two steps and detailed algorithms are
shown in the Appendix D.

Combining with Other methods.: As stated in Theorem
1, any AC-GNN cannot be optimal in the coloring problem.
Therefore, we may combine with other optimal methods to ob-
tain better quality in a sacrifice of efficiency. Here, we propose
a simple combination with ILP-based method. Specifically,
after we obtain the color distribution of each node by GDN,
if there is conflict(s) after CLS(·) , we can set up a threshold
for the final color distributions to get a partial coloring result.
The partial result is then passed to a ILP solver to obtain the
final result. The details can be found in the Appendix.

EXPERIMENTS

Experimental setup

Detailed settings, dataset introduction, more experiments
and analysis are shown in the Appendix. We evaluate our mod-
els and baselines on three datasets here, the basic information
on these datasets are shown in Table II, where column X (k)
is the chromatic number except layout dataset, which is set to
3 in the real-world circuit design.

We mainly compare our models with three previous works
(the results of other methods such as ILP and simple heuristics
can be found in the Appendix): (1) GNN-GCP [21], combing
GNN, RNN, and MLP to obtain the node embedding and using
a k-means method to color the node. We obtain models from
the author and directly obtain the results. (2) Tabucol [22], a
well-known heuristic algorithm using Tabu search. We follow
the original setting with an iteration limit of 1000 (or the time
limit of 24 hours) and the number of uncolored node pairs
is returned if the algorithm fails to find a perfect coloring
assignment within the limit. (3) HybridEA [23], the state-of-
the-art evolutionary algorithm for the coloring problem. We
also compare different variants of AC-GNN in the previous
works: GCN [10], GIN [4], and GraphSAGE [11]. All AC-
GNN variations are only tested in the layout dataset since
AC-GNN variations require a fixed number of colors to make
output shape keep the same. To make the comparison fair, we
use the same CPU to test all methods.

Comparison with other AC-GNN variations

The results are shown in Figure 2(a). “GDN-k” represents
GDN with a depth of k. According to the results, we observe
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TABLE II: Graph datasets information and results by different coloring methods.

Dataset Graph |V| |E| d% X (k)
GNN-GCP Tabucol HybridEA GDN

Cost Time Cost Time Cost Time Cost Time
Layout 35158 641202 787242 - 3 386009 3896 2392 82301 1562 133285 1557±45 5.84 ±0.23
ratio 247.9 667.1 1.54 14092 1.00 22822 1.0 1.0

Citation
Cora 2708 5429 0.15 5 1291 3.90 31 15410 0 18921 0 ±0 0.81 ±0.08
Citeseer 3327 4732 0.09 6 1733 2.74 6 44700 0 24230 0 ±0 1.42 ±0.15
Pubmed 19717 44338 0.03 8 4393 4.50 - >24h - >24h 21 ±4 1.41 ±0.12

ratio 353.2 3.06 - - - - 1.0 1.0

COLOR

jean 80 254 8 10 76 0.06 0 0.95 0 0.01 0 ±1 0.13 ±0.02
anna 138 493 5 11 87 0.08 0 3.23 0 0.02 0 ±0 0.17 ±0.03
huck 74 301 11 11 117 0.05 0 0.15 0 0.01 0 ±0 0.06 ±0.02
david 87 406 11 11 - - 0 4.83 0 0.01 0 ±0 0.19 ±0.01
homer 561 1628 1 13 1628 1.09 0 274 0 0.06 0 ±1 0.29 ±0.02
myciel5 47 236 22 6 35 0.04 0 0.20 0 0.01 0 ±0 0.12 ±0.01
myciel6 95 755 17 7 94 4.33 0 0.79 0 0.01 0 ±0 0.21 ±0.02
games120 120 638 9 9 301 0.07 0 0.93 0 0.01 0 ±1 0.08 ±0.01
Mug88 1 88 146 4 3 146 0.33 0 0.12 0 0.01 0 ±0 0.01 ±0
1-Insertions 4 67 232 10 2 42 0.05 0 0.16 0 0.01 0 ±0 0.07 ±0
2-Insertions 4 212 1621 7 4 360 0.09 1 255 1 101.1 1 ±0 60.08 ±0.01
Queen5 5 25 160 53 5 37 0.03 0 0.13 0 0.07 0 ±0 0.05 ±0.01
Queen6 6 36 290 46 6 290 0.38 0 4.93 0 1.89 0 ±0 0.08 ±0
Queen7 7 49 476 40 7 126 0.04 10 36.9 9 51.8 9 ±1 0.38 ±0.08
Queen8 8 64 728 36 8 188 0.05 8 61.3 5 74.1 2 ±0 0.13 ±0.03
Queen9 9 81 1056 33 9 296 0.07 5 97.8 6 126.9 6 ±1 0.09 ±0.01
Queen8 12 96 1368 30 12 260 0.10 10 139 3 92.9 0 ±0 0.58 ±0.09
Queen11 11 121 3960 55 11 396 0.10 33 213 22 141.3 21 ±3 0.07 ±0.01
Queen13 13 169 6656 47 13 728 0.20 42 401 37 213 33 ±2 2.38 ±0.32

ratio - - 1.51 22.63 1.15 12.10 1.0 1.0

the following: (1) GCN, the most representative integrated AC-
GNN, is much worse than other AC-GNNs, which demon-
strates our rule 1. (2) Most AC-GNNs benefit from a deeper
network, which aligns with our rule 3. (3) Although some
non-integrated AC-GNN achieve an acceptable solved ratio,
our method is still far better than other AC-GNNs.

We also validate the color equivariance of models by
simulating the pre-color constraint in the layout decomposition
problem. For each instance, we randomly select one node and
set its color by changing the node attribute, known as the color
distribution. We measure the color equivariant capability by
checking the fixed color ratio, defined as the ratio between
the number of successfully fixed graphs and the number of
total graphs. A successfully fixed graph is the graph whose
selected node is colored as expected with the pre-assigned
one . From the results shown in Figure 2(b), we can see that
the fixed color ratio of our GDN is much higher than other
variations, matching with our analysis.

Comparison with other graph coloring methods

The comparison with other graph coloring methods is
conducted on all collected datasets. We combine with ILP for
the complex dataset, i.e., the COLOR dataset. The results are
shown in Table II, where k is the number of available colors
and cost is the number of conflicts in the coloring result.
GNN-GCP gives “-” if it fails to find a chromatic number
prediction. Tabucol and HybridEA give “-” if they fails to color
the graph within 24 hours. According to the results, we observe
the following: (1) Our method outperforms the state-of-the-
art algorithms with a better result quality and 10× speedup.
(2) Our method is more advantageous for complex and large
graphs (Citation and Queen), which are more beneficial for
industrial demand.

CONCLUSION

In this paper, we established theoretical foundations for
reasoning about the discrimination power of GNNs for the
graph coloring problem. We identified the node pairs that a
popular class of GNNs, AC-GNNs fail to discriminate and
gave conditions on how an AC-GNN can be more discrimi-
natively powerful. Moreover, we built the connection between
the locality study in graph theory and the local property of
AC-GNNs, and proved the non-optimality of AC-GNN due to
the locality. Furthermore, we analyzed the color equivariance
in the graph coloring problem and proposed a scheme to
make AC-GNN color equivariant. Combining all the analysis
above, we designed a simple variation of AC-GNN for the
graph coloring problem, which proves to be discriminatively
powerful and color equivariant. To complete the picture, it
would be interesting to analyze the global terms for enhancing
the discrimination power of GNNs.
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