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ABSTRACT
Design rule checking (DRC) is a critical step in integrated circuit
design. DRC requires formatted scripts as the input to the design
rule checker. However, these scripts are always generated manually
in the foundry, and such a generation process is extremely ineffi-
cient, especially when encountering a large number of design rules.
To mitigate this issue, we first propose a deep learning-based key
information extractor to automatically identify the essential argu-
ments of the scripts from rules. Then, a script translator is designed
to organize the extracted arguments into executable DRC scripts.
In addition, we incorporate three specific design rule generation
techniques to improve the performance of our extractor. Experimen-
tal results demonstrate that our proposed method can significantly
reduce the cost of script generation and show remarkable superiority
over other baselines.
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1 INTRODUCTION
Design rule checking (DRC) is an important step in electronic design
automation (EDA) flow to check whether the layout conforms to a
set of design rules. Rules usually specify certain geometric and con-
nectivity restrictions to ensure sufficient margins for variability in
semiconductor manufacturing processes, so as to ensure the proper
function and reliability of layout designs. As shown in Figure 1,
the completed DRC process includes two phases. (1) Rule making:
manufacturers first specify the essential design rules based on their
manufacturing capability and then convert them into the executable
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Figure 1: Entire design rule checking flow.
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Figure 2: Script languages vary in different checkers.

DRC scripts manually, which is illustrated in the first phase of Fig-
ure 1. (2) Rule checking: these scripts are provided to the designer
and will be input into a design rule checker, such as KLayout [1], to
verify the correctness of the layout design.

Despite the importance of DRC, the whole process is always
time-consuming and error-prone. There are mainly three aspects
of reasons. Firstly, with the rapid development of semiconductor
technology and the shrinking size of integrated circuits, the number
of rules has grown from a few hundred in 65𝑛𝑚 nodes to thousands of
rules in 7𝑛𝑚 nodes. Secondly, as shown in Figure 2, different checkers
require different script languages, which means all scripts must be
re-implemented when transferring to other checkers. Thirdly, some
design rules can be very complicated, i.e., with complex logic, which
may easily lead to misunderstanding.

In the last few years, advanced deep learning techniques have
spawned many frameworks for effectively and efficiently solving
EDA problems, including physical design [2–4], mask synthesis [5–
7] and testing [8–10], etc. DRC, which demands highly efficient
solutions, also greatly benefits from the development of deep learn-
ing. Due to the slow execution of the design rule checker, deep
learning-based methods try to replace it with an artificial neural
network, showing satisfactory efficiency and acceptable accuracy.
For example, Tabrizi et al. [11] propose a neural network to extract
features from a placed netlist and then detect detailed routing short
violations. Islam et al. [12] develop the ensemble random forest al-
gorithm to predict DRC violations before global routing, which is
always the most time-consuming procedure in VLSI design flow.

These previous works for rule violations detection try to over-
come the low-efficiency drawback of DRC by accelerating the rule
checking process. But considering the real-world scenarios where
industrial designs still rely on checkers along with the executable
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phase in Figure 1.

scripts, we consider optimizing the rule making process, which is
also extremely slowwhen encountering a vast number of rules. Some
research works [8–10] from the testing area try to adopt language
models to generate assertion statements from specifications for func-
tional verification of the fabricated chips. Inspired by these works,
we consider that the DRC script generation process can also achieve
automation to substantially ease the manual workload, achieving
higher efficiency than the traditional manual flow, the first phase
in Figure 1. Compared with testing specifications, design rules are
more complicated and detailed, so they require well-designed meth-
ods to process.

We customize a brand new script generation flow depicted in Fig-
ure 3, which is totally different from natural language processing
methods in [8–10]. In our flow, we design a deep learning-based key
information extractor to automatically identify the essential argu-
ments of the scripts, which can be regarded as a key information
extraction process. The following script translator will organize the
extracted arguments into the final scripts. Dividing the script gener-
ation flow into two stages makes it applicable to various checkers.
The reason is as follows: The script translator in our flow conducts
rule-based tasks, i.e., deciding which function to call and how to pass
the extracted key information to the function. When switching to
other checkers, we can keep the extractor unchanged and only need
to modify the translator, which is convenient to implement once the
script grammar is determined.

In addition, manual work is essential to correct potential errors in
final scripts, since deep learning-based key information extractor in
the generation flow can not guarantee absolute accurate results. But
it should be noted that such manual correction work is much more
relaxed in contrast to the traditional flow. The correction workload is
mainly determined by the accuracy of the extracted key information,
so the focus of our work is to design a powerful extractor.

To the best of our knowledge, our work is the first to investigate
methods for automatic script generation to achieve DRC acceleration.
The main contributions are listed as follows:

• Wepropose an efficient DRC script generation flow and design
dedicated deep learning techniques based on the state-of-the-
art natural language processing model to accurately extract
key information from design rules.

• We develop data generation techniques based on the special
language structures of design rules to expand the dataset, over-
coming the dilemma of lacking design rule data for academic
research.

None
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Design Rule

PRO PRO None OBJ None LOW LOW

Word Classification

Key Information

  {
   “Object”: “ACT”,
   “Property”: “vertical 
     width”,
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     nm”
  }

Figure 4: Key information extraction process (PRO means
Property, OBJ means Object and LOWmeans Lower Bound).

• Experimental results on 7nm technology node demonstrate
that our extractor achieves 85.3% precision and 88.0% recall
on the key information extraction task.

• It only takes 5.46ms on average for our flow to generate the
script of a single design rule.

2 PRELIMINARIES
2.1 Design Rule Key Information Extraction
Extracting key information from natural language design rules can
be converted to such a problem that a specific word should be classi-
fied into a particular category, termed as a semantic role, such as the
property to be checked or a specified minimum value. Hence, the
problem can be considered as a word classification problem. We pro-
vide an example as shown in Figure 4 to illustrate the whole process
and all specified semantic roles will be further explained in Sec-
tion 3.1. After finishing the word classification task, the categories
and related words can be paired and then stored into a data structure,
which is exactly the key information extracted from design rules.
The following script translator simply organizes the extracted infor-
mation into the final scripts; therefore, the accuracy of the generated
scripts mainly depends on the extractor performance.

To quantitively evaluate the performance of the extractor, we
adopt three metrics, precision, recall, and F1 score. In our task, given
a semantic role “S”, words that actually belong to this category are
represented asG andwords predicted by ourmodel as “S” are marked
as H. Then precision is defined as the ratio between #(G ∩ H) and
#(H), and recall is calculated as the ratio between #(G ∩ H) and
#(G), where #(·) computes the number of collection elements. F1
score is the harmonic mean of precision and recall. An optimal key
information extractor should get H close to G for each category and
achieve high performance on all evaluation metrics.

2.2 Transformer and BERT
Recently, Transformer [13] has made much progress in sequence-to-
sequence tasks [14–16]. Transformer consists of two parts, encoder
and decoder. BERT [15] is one of the most famous models built with
the Transformer Encoder and has been widely used as a backbone to
extract features from sentences to solve many NLP problems such as
Question Answering [17], Machine Translation [18], etc. To illustrate
BERT [15], we first introduce the structure of Transformer Encoder.

As shown in Figure 5(a), Transformer Encoder consists of mul-
tiple layers, of which the most important one is the multi-head
self-attention, allowing the model to attend to information at differ-
ent positions globally [13]. In Transformer Encoder, given the input
representation of a sequence {𝒙1, 𝒙2, . . . , 𝒙𝑛} and packed together
as a matrix 𝑿 ∈ R𝑛×𝑑𝑚 , where 𝑑𝑚 is the dimension for each element
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Figure 5: (a) Transformer Encoder; (b) Multi-Head Self-
Attention; (c) BERT.

𝒙𝑖 , the multi-head self-attention layer first projects the input matrix
𝑿 onto three subspaces, which can be represented as:

{𝑸,𝑲 , 𝑽 } = {𝑿𝑾𝑄 ,𝑿𝑾𝐾 ,𝑿𝑾𝑉 }, (1)

where 𝑸,𝑲 , 𝑽 are called Query, Key and Value as named in Trans-
former [13], and𝑾𝑄 ,𝑾𝐾 ,𝑾𝑉 ∈ R𝑑𝑚×𝑑𝑚 . Then the output of multi-
head self-attention layer can be formulated as:

MultiHead(𝑸,𝑲 , 𝑽 ) = Concat (𝑯1, . . . ,𝑯ℎ)𝑾𝑂 , (2)

where 𝑯𝑖 , 𝑖 ∈ {1, 2, . . . , ℎ} is the output of a single scaled dot-product
attention head as shown in Figure 5(b) and ℎ is the number of heads.
To illustrate the dimension of 𝑯𝑖 and𝑾𝑂 , we first give the formula-
tion of 𝑯𝑖 as follows:

𝑯𝑖 = Attention
(
𝑸𝑾𝑄

𝑖
,𝑲𝑾𝐾

𝑖 , 𝑽𝑾𝑉
𝑖

)
= softmax

[
𝑸𝑾𝑄

𝑖

(
𝑲𝑾𝐾

𝑖

)⊤
/
√
𝑑𝑘

]
𝑽𝑾𝑉

𝑖 .

(3)

For each attention head, the original input 𝑸,𝑲 , 𝑽 are further pro-
jected onto different subspaces via projection matrices𝑾𝑄

𝑖
,𝑾𝐾

𝑖
∈

R𝑑𝑚×𝑑𝑘 ,𝑾𝑉
𝑖

∈ R𝑑𝑚×𝑑𝑣 so that different heads deal with different
input to learn richer information [13]. The attention head then com-
putes the similarity between projected Query and Key via scaled dot-
product and a softmax function is applied to obtain the weights on
projected Value. As represented in Equation (2), the multi-head self-
attention concatenates all the outputs 𝑯𝑖 ∈ R𝑛×𝑑𝑣 , 𝑖 ∈ {1, 2, . . . , ℎ}
from different heads and then reduces the high dimension feature to
low dimension via another matrix𝑾𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑚 .

As for BERT, the architecture in Figure 5(c) is based on stacked
Transformer Encoder blocks [13] and hence incorporates the supe-
riority of multi-head self-attention. In addition, another significant
advantage of BERT [15] is that it has been fully pretrained by two
complex tasks, Cloze and Next Sentence Prediction. Since these two
tasks do not require any manual annotations, the model can be
trained on two huge datasets, BooksCorpus (800M words) [19] and
English Wikipedia (2500M words). As a result, the pertrained model
has been equipped with strong language representation ability and
can be easily fine-tuned for other language tasks.

3 METHODOLOGIES
3.1 Semantic Roles
As illustrated in Section 2.1, extracting key information from de-
sign rules is inherently a word classification problem. In our task,
categories of words are determined based on their semantic roles
in sentences. Design rule data for training our deep learning-based
model is from an open-source design kit, FreePDK15 [20]. To clearly
classify different words, we first clarify all essential semantic roles
for rules in FreePDK15 [20].

Some prior works for semantic role labeling studies [21, 22] have
defined roles for universal natural languages. However, semantic
roles to be considered are relatively different for rule sentences in
EDA. For example, numerical expressions are less frequent in these
studies and usually not attributed to a separate category. In contrast,
they exist in most design rules and are core components of the
extracted key information. Moreover, semantic roles of numerical
expressions are supposed to be further divided into three categories,
i.e., “Lower Bound”, “Upper Bound” and “Exact Value”, in order to
flexibly adapt to different design rules and avoid confusion. We list
all customized semantic roles for our task with their meanings and
examples in Table 1.

3.2 Rule Data Generation
Open-source design rules for academic research are relatively rare.
Our training dataset, FreePDK15 [20], only includes around 130 rules.
To help the key information extractor avoid overfitting as well as
generalize better on those unseen rule data, we are supposed to
expand the dataset before training.

However, rule generation for our task is heavily restricted. On
one hand, since the extractor receives the design rule sentences, we
are supposed to guarantee that all generated rules are both syntacti-
cally and semantically correct. On the other hand, as our task is a
classification task, semantic role labels need to be assigned to each
word, which is extremely expensive. Considering these drawbacks,
we propose three customized generation techniques in this section.

Word Order Adjustment. Inspired by the rotation technique for
image data augmentation, we propose to change the word order of a
rule without modifying its meaning. For example, we can settle the
conditional adverbial clauses at the start or the end of the sentence.
For the human, the reordered sentence can be regarded the same
as the original one. However, from the perspective of the extractor,
the input rule is a sequence [𝑤1,𝑤2, . . . ,𝑤𝑛] where𝑤𝑖 stands for a
word. If the word order is changed, the input will be totally different.
Moreover, adjusting the order will not affect the semantic role labels
of words, and thus no extra annotations need to be done.

Paraphrasing. In contrast toWord Order Adjustment, paraphras-
ing can produce a new rule that does not change the meaning but
has different expressions. To paraphrase design rules, we can re-
place some words with synonyms or change the sentence structure,
e.g., from passive to active voice. Although paraphrasing will mod-
ify some words, which requires extra annotations, there are still
many words not replaced, whose semantic roles also stay unchanged.
Hence, the annotation workload can be reduced remarkably.

Template Filling. The generated design rules from the previ-
ous two methods are still confined to the meaning of original ones,
making it challenging to generate enough training data. To take a
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Table 1: Explanations of all semantic roles defined in our work. The bold parts belong to the roles defined in their rows.

Semantic Roles Meanings Examples

Object Target layer of checking rules. Minimum vertical width of ACT is 48 nm.

Relation Object Additional layer that have relationships
with target layer . Minimum extension of GATEAB past ACT is 38 nm.

Property Property to be checked of the target layer. Minimum vertical width of ACT is 48 nm.

Condition Logical conditions for particular layers. GATEC shape bottom or top must be aligned
if distance is less than 192 nm.

Restriction Geometric restrictions that layers should follow. GIL may not bend.
Lower Bound Minimum value of the property to be checked. Minimum vertical width of ACT is 48 nm.

Upper Bound Maximum value of the property to be checked. Maximum distance of GATEAB to neighboring
shape is 236 nm.

Exact Value Exact value of the property to be checked. Exact horizontal spacing of ACT is 80 nm.

Minimum Property of Object is Lower Bound nm

Area, width, 
length 

(any property)

ACT, GATE, 
M1 (any layer 

name)

38, 48, 80 
(any numerical 

expression)

Figure 6: Design Rule Template.
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Figure 7: Key Information Extractor.

further step, we propose the third method, Template Filling. After
applying the previous two generation methods, we can obtain a
series of design rules with diverse sentence structures, from which
multiple templates with different structures can be acquired. A typ-
ical template is given as shown in Figure 6, where the bold parts
are semantic roles specified in Section 3.1. With such a template,
any suitable words associated with these prescribed roles, whether
from previous rules or not, can be filled. By filling in the designed
templates via different combinations, a large amount of design rules
can be collected for training, which benefits the generalization abil-
ity of the extractor dramatically. More importantly, we do not need
to annotate the data manually since the semantic roles have been
specified in advance.

3.3 Key Information Extractor
To classify all words from design rules into their corresponding
semantic roles, we build up a deep learning-based language model.
The overall architecture of our framework is illustrated in Figure 7.

Input Preprocessing Module. Before feeding the design rules
into our extractor, some preprocessing operations need to be con-
ducted. The first one is to split the rule into a list of words for the
later word classification task. Besides, since different rules vary in
sentence length, we extend the word list length to 𝐿 by padding a
special word “[PAD]”. The whole procedure is formulated as:

[𝑤1,𝑤2, . . . ,𝑤𝑙𝑒𝑛 (𝒓 ) , [PAD], . . . , [PAD]︸                ︷︷                ︸
𝐿−𝑙𝑒𝑛 (𝒓 )

] = Preprocess(𝒓), (4)

where 𝒓 is the input design rule.𝑤𝑖 , 𝑖 ∈ {1, 2, . . . , 𝑙𝑒𝑛(𝒓)} represents
each word of 𝒓 and 𝑙𝑒𝑛(𝒓) is its sentence length.

Backbone. Following the design paradigm of the deep learning
model, we first need a backbone module to obtain a good feature
representation from the input information. Determining the seman-
tic role of each word is closely related to its sentence, and one word
may have different semantic roles in different rules like “ACT” in the
first and second example in Table 1. Therefore, the backbone should
have strong abilities to capture the context information.

Instead of designing a backbone from scratch, we adopt a powerful
language model, BERT [15], as the feature extractor, which proves to
have prominent feature extraction ability according to many works
like [17, 18]. As explained in Section 2.2, based on the self-attention
mechanism, BERT is able to model interactions between any two
different words in a sequence; therefore, the extracted feature of each
word is closely correlated with the contexts. Besides, BERT has been
fully pretrained, and thus we can fine-tune it from the pretrained
parameters, which can notably speed up the training procedure.

Given the word list after preprocessing, the backbone will first en-
code words into vectors and then feed them into stacked Transformer
Encoder layers. The output feature is represented as 𝑭𝑜 ∈ R𝐿×𝑑𝑏 ,
where 𝑑𝑏 is the dimension of the extracted feature of each word.

WordClassificationHead.With the purpose of classifying each
word, we feed 𝑭𝑜 into a word classifier, which is a simple feed-
forward neural network composed of two fully connected layers.
The output is represented as 𝑷𝑤𝑐 ∈ R𝐿×𝑁𝑤𝑐 , where 𝑁𝑤𝑐 is the
number of categories, and the element 𝑷𝑤𝑐

𝑖,𝑗
stands for the score of

the word𝑤𝑖 belonging to label 𝑗 .
However, such a prediction head does not take the relationships

between different labels into consideration. We can further force
the word classification head to effectively avoid those impossible
prediction sequences. For example, according to the common nat-
ural language expression habits, “Relation Object” is impossible to
directly follow “Object”, since there must exist some conjunctions be-
tween them. As a result, the extractor performance can be improved
by evaluating the rationality of the entire prediction sequence. To
achieve this, we build a probability model, condition random field
(CRF) [23], on top of the word classifier, whose parameters are a
label transition matrix, represented as 𝑲 ∈ R(𝑁𝑤𝑐+2)×(𝑁𝑤𝑐+2) . The
element of the label transition matrix 𝑲𝑖, 𝑗 describes the score of
transitioning from label 𝑖 to 𝑗 . Two additional states included in 𝑲
stand for the “start” and “end” of the sequence. In such case, given a
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design rule 𝒓 , the probability of a prediction sequence𝒚 is calculated
from softmax function as:

𝑝 (𝒚 |𝒓) = exp 𝑆 (𝒓,𝒚)∑
�̂�∈𝒀𝒓

exp 𝑆 (𝒓 , �̂�) , (5)

where 𝒀𝒓 represents all prediction sequence results given the rule 𝒓 .
𝑆 (𝒓,𝒚) is used to measure the score of prediction 𝒚, which can be
formulated as:

𝑆 (𝒓,𝒚) = (𝑲𝑠𝑡𝑎𝑟𝑡,𝒚1 +
𝐿−1∑
𝑖=1

𝑲𝒚𝑖 ,𝒚𝑖+1 + 𝑲𝒚𝐿,𝑒𝑛𝑑 ) +
𝐿∑
𝑖=1

𝑷𝑤𝑐𝑖,𝒚𝑖 . (6)

In this way, 𝑆 (𝒓,𝒚) is able to measure the reasonableness of the label
sequence itself.

Model Training. After constructing the whole architecture, we
need to specify the loss function to train our key information ex-
tractor. In the CRF module, we should maximize the groundtruth
probability 𝑝 (𝒈 |𝒓), where 𝒈 is the actual label sequence for the rule
𝒓 . Based on this maximization objective, the loss function can be
formulated in the negative log-likelihood format as follows:

L𝑐𝑟 𝑓 = − log𝑝 (𝒈 |𝒓) = −𝑆 (𝒓,𝒈) + log(
∑
�̂�∈𝒀𝒓

exp 𝑆 (𝒓, �̂�)) . (7)

The objective of training is to minimize the loss calculated in Equa-
tion (7), which is successfully solved by Adam [24] optimizer, a
widely-used gradient descent optimization algorithm.

3.4 Script Translator
The script translator in the second stage of our proposed flow is
used to translate the extracted key information into the DRC scripts.
When transferring to other checkers, we can preserve the extractor
and simply replace the translator. The translator design is similar
and simple for different checkers, and here we take the Guardian
checker [25] as an example.

DRC script is composed of function calling statements. When
given the key information, the functions to be called mainly depend
on the checking properties. To conveniently search the required
function, we can pair the properties and functions together, as shown
in Figure 8. In addition, to automatically pass the key information
to the function, we also need to connect the parameters of different
functions with our semantic roles. As we clearly define the fine-
grained semantic roles in Table 1, the relationships can be easily
established. For example, parameters that receive the layer name
correspond to “Object” or “Relation Object”, and parameters that
receive the checking value correspond to “Lower Bound” or “Upper
Bound” or “Exact Value”.

To better illustrate the entire script translation process, we take
the translation process of an overlap rule as an example, which is
shown in Figure 8. Layer is a regular function for each Guardian
script and receives the layer names alongwith their identifiers, which
depend on the specific layout design. InDistance function re-
ceives two layer names and the value to check the overlap. It can
be observed that all the required arguments passed to these two
functions can be easily obtained from the extracted information. By
automatically filling them into the corresponding placeholders, we
obtain the final script for overlap checking. It can be seen that the
entire translation process is very efficient.

Guardian 
Function

Width

Indistance

Outdistsance

……
  {
   “Object”: “M1A”,
   “Relation Object”:          
   “M1B” ,
   “Property”:“overlap”,
    “Lower Bound”: “1   
     um”
  }

Checking 
Property

width

overlap

spacing

……

Layer:
  <LayerName1> (<LayerID1>)
  <LayerName2> (<LayerID2>)

InDistance:
  Layer1 = <LayerName1>
  Layer2 = <LayerName2>
  limits <Value>

Layer:
  M1A (1, 0),
  M1B (2, 0)

InDistance:
  layer1 = M1A,
  layer2 = M1B,
  limits >= 1

Extracted Key Information

Functions and their checking properties

Parameters of overlap checking script

Overlap checking script

Figure 8: Script translator.

4 EXPERIMENT RESULTS
We implement our entire framework in Python and test it on a plat-
form with the Xeon Silver 4114 CPU processor and NVIDIA TITAN
Xp Graphic card. The dataset used for training our key information
extractor contains 2970 design rules, 2840 of which are obtained via
our proposed rule generation methods, and the rest are the original
data from FreePDK15 [20]. To evaluate the performance, another
design kit, ASAP7 [26], including 200 design rules on the 7𝑛𝑚 node,
acts as the test set. Due to the advanced technology node, rules in
ASAP7 are more complex compared with our rules on the 15𝑛𝑚
node for training. Therefore, the evaluation performance on ASAP7
will convincingly reflect the generalization ability of our framework.
We summarize the statistics of the datasets in Table 2. It can also
be observed from Table 2 that the “None” category words account
for nearly 40 percent, which further demonstrates that a key infor-
mation extractor can filter a lot of unnecessary information and
contribute to the design rules script generation.

Due to the various structure of scripts for different rules, it is
not convenient to directly measure the accuracy of the generated
scripts. In Section 2.1, we discuss that the script accuracy can be
reflected by the extractor performance, and we also explain that
the key information extraction task is essentially a word classifica-
tion task. To evaluate the comprehensive performance, we test the
word classification accuracy, inference time of the whole generation
process, and robustness ability of the extractor.

Word Classification Results. Table 3 shows the word classifica-
tion performance of our extractor and two other language models on
the test set. Since our work is the first one to investigate key informa-
tion extraction methods from design rules, no other state-of-the-art
work in DRC area can be referred to for comparison. Therefore, we
implement two baseline models, bidirectional RNN (Bi-RNN) and
bidirectional LSTM (Bi-LSTM). Similar to BERT, Bi-RNN [27] and
Bi-LSTM [28] are commonly used for learning word features com-
bined with context information and output the category prediction
results, which match the objective of our extractor.

The comparison results illustrate that our customized extractor
achieves the best performance on each category. It averagely outper-
forms Bi-RNN with 20.4% and 12.1% improvement in precision and
recall and 17.8% rise in F1 score. Moreover, it surpasses Bi-LSTM
with an average precision, recall and F1 score of 15.0%, 12.4% and
14.4%.
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Table 2: Semantic roles distribution of dataset

Semantic Roles Training Set Test Set
# Percent (%) # Percent (%)

Object 6054 15.68 491 14.74
Relation Object 2561 6.63 181 5.43

Property 4705 12.18 300 9.01
Condition 5061 13.10 596 17.89
Restriction 1404 3.64 159 4.77

Lower Bound 2482 6.43 326 9.79
Upper Bound 1144 2.96 8 0.24
Exact Value 1430 3.70 40 1.20

None 13778 35.68 1230 36.93

Total 38619 100 3331 100

Table 3: Comparison with two other language models

Categories Bi-RNN [27] Bi-LSTM [28] Ours
Precision Recall F1 Precision Recall F1 Precision Recall F1

Object 0.609 0.666 0.636 0.774 0.662 0.714 0.853 0.804 0.828
Relation Object 0.436 0.674 0.529 0.422 0.674 0.519 0.849 0.896 0.872

Property 0.879 0.970 0.922 0.894 0.953 0.923 0.892 0.900 0.896
Condition 0.786 0.767 0.776 0.669 0.757 0.710 0.818 0.838 0.828
Restriction 0.389 0.453 0.419 0.538 0.403 0.460 0.789 0.704 0.744

Lower Bound 0.947 0.871 0.907 0.960 0.883 0.920 0.967 0.907 0.936
Upper Bound 0.500 1.000 0.667 0.429 0.750 0.545 0.889 1.000 0.941
Exact Value 0.371 0.650 0.473 0.750 0.900 0.818 0.741 1.000 0.851

None 0.874 0.714 0.775 0.893 0.825 0.858 0.892 0.894 0.893

Average 0.649 0.759 0.685 0.703 0.756 0.719 0.853 0.880 0.863
Ratio 0.761 0.863 0.794 0.824 0.859 0.833 1.000 1.000 1.000

Inference Time. In addition to the satisfactory accuracy, our
flow also shows superior efficiency. We first test the inference time
of the extractor on ASAP7 dataset, which contains 200 design rules.
The total runtime result is 1.0s, from which we can calculate that
our model averagely takes only 5.0ms to process a single rule. As
for the translator, since it is simply responsible for deciding which
function to call and passing the extracted key information to the
function, the translation process is also high-efficient. According
to our measurement, the script translator spends around 0.46ms
processing one item of key information. In conclusion, by combining
the extractor and translator, our framework can generate a single
script in 5.46ms on average, indicating that our proposed DRC script
generation flow is extremely efficient.

5 CONCLUSION
In this paper, we propose an automatic DRC scripts generation flow.
We first build up a deep learning-based extractor that efficiently
recognizes the key information from design rules and then utilize
a script translator to organize the extracted information into the
scripts. To implement a high-performance extractor, we propose
three rule generation methods to expand the volume of rule data,
which is beneficial for improving the generalization ability of our
extractor. As for the architecture design, we utilize the pretrained
powerful language model BERT as our backbone to extract effective
representations from the input rules. Experimental results have con-
firmed the satisfactory performance on both accuracy and efficiency
of our framework. We hope that our work can provide some prelim-
inary solutions for automating the generation of DRC scripts and
help reduce the manual workload.
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