

Efficient Design Rule Checking Script Generation via Key Information Extraction

Binwu Zhu¹, Xinyun Zhang¹, Yibo Lin², Bei Yu¹, Martin Wong¹

¹The Chinese University of Hong Kong ²Peking University

Sep. 12, 2022

Background and Motivation

- **Rule making**: Manufacturers first specify the essential design rules based on their manufacturing capability and then convert them into executable DRC scripts manually.
- **Rule checking**: These scripts are provided to the designer and will be input into a design rule checker, such as KLayout, to verify the correctness of the layout design.

- With the continuous scaling-down of circuit feature size, rules to be checked for layout are increasing, i.e., thousands of rules should be checked for 7nm design. The whole process is very time-consuming.
- Some design rules can be very complicated, i.e., with complex logic, which may easily lead to misunderstanding.
- Different checkers require different script languages, which means all scripts must be re-implemented when transferring to other checkers.

• Current DRC related works have tried to replace the traditional DRC checker with CNN based models to make a performance prediction.

Violation Detection Framework¹

• However, practical industrial designs still rely on design rule checkers, which requires DRC scripts converted from natural language rules.

¹Aysa Fakheri Tabrizi et al. (2018). "A Machine Learning Framework to Identify Detailed Routing Short Violations from a Placed Netlist". In: 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6.

An Overview of Our Proposed Solution

- A deep learning based key information extractor is designed to automatically identify the essential arguments of the scripts.
- The followed script translator will organize the extracted arguments into the final scripts. When switching to other checkers, we can keep the extractor unchanged and only need to modify the translator.
- The final manual correction is to ensure the complete correctness of the scripts.

Method

LCAD•

- Extracting key information from natural language design rules can be converted to such a problem that a specific word should be classified into a particular category.
- The category is closely related to its semantic role in rules.

• Key information extraction is converted to a word classification problem.

• All semantic roles are illustrated as follows:

Semantic Roles	Meanings	Examples			
Object	Target layer of checking rules.	Minimum vertical width of ACT is 48 nm.			
Relation Object	Additional layer that have relationships with target layer	Minimum extension of GATEAB past ACT is 38 nm.			
Property	Property to be checked of the target layer.	Minimum vertical width of ACT is 48 nm.			
Condition	Logical conditions for particular layors	GATEC shape bottom or top must be aligned			
	Logical conditions for particular layers.	if distance is less than 192 nm.			
Restriction	Geometric restrictions that layers should follow.	GIL may not bend .			
Lower Bound	Minimum value of the property to be checked.	Minimum vertical width of ACT is 48 nm.			
Upper Bound	Maximum value of the property to be shocked	Maximum distance of GATEAB to neighboring			
	Maximum value of the property to be checked.	shape is 236 nm.			
Exact Value	Exact value of the property to be checked.	Exact horizontal spacing of ACT is 80 nm.			

- Open-source design rules for academic research are relatively rare. Our dataset, FreePDK15², only includes around 130 rules, which is not enough for model training.
- Different from image data augmentation techniques such as rotation and clipping, we are supposed to ensure all generated rules are both syntactically and semantically correct.
- As our task is a classification task, semantic role labels need to be assigned to each word, which is extremely expensive.

²Kirti Bhanushali (May 2014). "Design Rule Development for FreePDK15: An Open Source Predictive Process Design Kit for 15nm FinFET Devices". PhD thesis.

• Word Order Adjustment

Original	V0 shape must be rectangular if enclosing M1[A B] wire width is equal or greater than 40nm
Reordered	If enclosing M1[A B] wire width is equal
	or greater than 40nm, V0 shape must be rectangular

• Paraphrasing

Original	Minimum vertical width of ACT is 48 nm.
Synonym replacement	Vertical width of ACT is at least 48 nm.

• Template Filling

Minimum	Property	of	Object	is	Lower Bound	nm
---------	----------	----	--------	----	----------------	----

Fist Stage of Our Flow - Key Information Extractor

- Objective: Identify the essential arguments from design rules to generate the final scripts.
- Extractor Architecture

Preliminary: Transformer and Multi-Head Attention

• Recently, Transformer³ has made much progress in language processing tasks.

(a) Transformer Encoder; (b) Multi-Head Self-Attention.

- $\mathbf{X} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n} \in \mathbb{R}^{n \times d_m}, {\mathbf{Q}, \mathbf{K}, \mathbf{V}} = {\mathbf{X} \mathbf{W}^Q, \mathbf{X} \mathbf{W}^K, \mathbf{X} \mathbf{W}^V}$
- MultiHead($\mathbf{Q}, \mathbf{K}, \mathbf{V}$) = Concat ($\mathbf{H}_1, \dots, \mathbf{H}_h$) \mathbf{W}^O , where $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{n \times d_m}$

•
$$\mathbf{H}_{i} = \operatorname{Attention}\left(\mathbf{Q}\mathbf{W}_{i}^{Q}, \mathbf{K}\mathbf{W}_{i}^{K}, \mathbf{V}\mathbf{W}_{i}^{V}\right) = \operatorname{softmax}\left[\mathbf{Q}\mathbf{W}_{i}^{Q}\left(\mathbf{K}\mathbf{W}_{i}^{K}\right)^{\top} / \sqrt{d_{k}}\right]\mathbf{V}\mathbf{W}_{i}^{V}$$

³Ashish Vaswani et al. (2017). "Attention is all you need". In: *Advances in neural information processing systems*. Vol. 30.

• **Preprocessing:** Split the rule *r* into a list of words and extend list length to *L* by padding a special word "[PAD]", since different rules vary in length.

$$[w_1, w_2, \dots, w_{len(r)}, \underbrace{[PAD], \dots, [PAD]}_{L-len(r)}] = \operatorname{Preprocess}(r)$$

• **Backbone:** Determining the semantic role of each word is closely related to its sentence, and one word may have different semantic roles in different rules.

Bidirectional Encoder Representations from Transformers (BERT)

• BERT⁴ is a strong language representation model constructed from Transformer and it has been fully pretrained by various language tasks on large datasets.

⁴Jacob Devlin et al. (2018). "Bert: Pre-training of deep bidirectional transformers for language understanding". In:

• Word Classification Head is composed of a two-layer MLP and a condition random field (CRF) module.

 $\boldsymbol{P}^{wc} = \mathrm{MLP}(\boldsymbol{F}^{o}) \in \mathbb{R}^{L \times N_{wc}}$

• Although a two-layer MLP can finish the classification task, it does not consider the label relationship within the rule.

Minimum extension of **GATEAB** past **ACT** is 38 nm.

• CRF is a probabilistic model with parameter $K \in \mathbb{R}^{(N_{uv}+2) \times (N_{uv}+2)}$, which describes the probability of transiting from *i* to *j*. Two additional states represent "Start" and "End". Relying on CRF, the probability of a sequence is computed as follows:

$$S_{\boldsymbol{r}}(\boldsymbol{y}) = \sum_{i=0}^{L} K_{y_i, y_{i+1}} + \sum_{i=0}^{L} \boldsymbol{P}_{i, y_i}^{wc}$$
$$p(\boldsymbol{y}|\boldsymbol{r}) = \frac{\exp S_{\boldsymbol{r}}(\boldsymbol{y})}{\sum_{\boldsymbol{\hat{y}} \in \boldsymbol{Y}_{\boldsymbol{r}}} \exp S_{\boldsymbol{r}}(\boldsymbol{\hat{y}})},$$

Second Stage of Our Flow - Script Translator

- Objective: Organize the extracted arguments into the final scripts.
- Translator Architecture

Functions and their checking properties

- DRC script is composed of function calling statements. To conveniently search the required function, we can pair the properties and functions together.
- To automatically pass the key information to the function, we need to connect the parameters of different functions with our semantic roles.

Experimental Results

• Training Set: FreePDK15⁵ and augmented data. Test Set: ASAP7⁶

Somantic Polos	Tra	ining Set	Test Set		
Semantic Roles	#	# Percent (%)		Percent (%)	
Object	6054	15.68	491	14.74	
Relation Object	2561	6.63	181	5.43	
Property	4705	12.18	300	9.01	
Condition	5061	13.10	596	17.89	
Restriction	1404	3.64	159	4.77	
Lower Bound	2482	6.43	326	9.79	
Upper Bound	1144	2.96	8	0.24	
Exact Value	1430	3.70	40	1.20	
None	13778	35.68	1230	36.93	
Total	38619	100	3331	100	

⁵Kirti Bhanushali (May 2014). "Design Rule Development for FreePDK15: An Open Source Predictive Process Design Kit for 15nm FinFET Devices". PhD thesis.

⁶Lawrence T Clark et al. (2016). "ASAP7: A 7-nm finFET predictive process design kit". In: *Microelectronics Journal* 53, pp. 105–115.

• Since there are almost no prior related works, we implement two widely used models for NLP tasks, Bi-RNN⁷ and Bi-LSTM⁸, as baseline.

Catagorias	Bi-RNN			Bi-LSTM			Ours		
Categories	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
Object	0.609	0.666	0.636	0.774	0.662	0.714	0.853	0.804	0.828
Relation Object	0.436	0.674	0.529	0.422	0.674	0.519	0.849	0.896	0.872
Property	0.879	0.970	0.922	0.894	0.953	0.923	0.892	0.900	0.896
Condition	0.786	0.767	0.776	0.669	0.757	0.710	0.818	0.838	0.828
Restriction	0.389	0.453	0.419	0.538	0.403	0.460	0.789	0.704	0.744
Lower Bound	0.947	0.871	0.907	0.960	0.883	0.920	0.967	0.907	0.936
Upper Bound	0.500	1.000	0.667	0.429	0.750	0.545	0.889	1.000	0.941
Exact Value	0.371	0.650	0.473	0.750	0.900	0.818	0.741	1.000	0.851
None	0.874	0.714	0.775	0.893	0.825	0.858	0.892	0.894	0.893
Average	0.649	0.759	0.685	0.703	0.756	0.719	0.853	0.880	0.863
Ratio	0.761	0.863	0.794	0.824	0.859	0.833	1.000	1.000	1.000

⁷Jie Zhou and Wei Xu (2015). "End-to-end learning of semantic role labeling using recurrent neural networks". In: pp. 1127–1137.

⁸Matthew E Peters et al. (2018). "Deep contextualized word representations". In: *Proceedings of NAACL-HLT*, pp. 2227–2237.

- The key information extractor averagely takes only **5.0ms** to process a single rule from ASAP7 dataset.
- The script translator is simply responsible for deciding which function to call and passing the arguments. It spends only **0.46ms** processing one item of key information.
- In conclusion, by combining the extractor and translator, our framework can generate a single script in **5.46ms** on average.

THANK YOU!