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ABSTRACT
Optical proximity correction (OPC) is a widely-used resolution en-

hancement technique (RET) for printability optimization. Recently,

rigorous numerical optimization and fast machine learning are

the research focus of OPC in both academia and industry, each of

which complements the other in terms of robustness or efficiency.

We inspect the pattern distribution on a design layer and find that

different sub-regions have different pattern complexity. Besides,

we also find that many patterns repetitively appear in the design

layout, and these patterns may possibly share optimized masks. We

exploit these properties and propose a self-adaptive OPC frame-

work to improve efficiency. Firstly we choose different OPC solvers

adaptively for patterns of different complexity from an extensible

solver pool to reach a speed/accuracy co-optimization. Apart from

that, we prove the feasibility of reusing optimized masks for re-

peated patterns and hence, build a graph-based dynamic pattern

library reusing stored masks to further speed up the OPC flow.

Experimental results show that our framework achieves substantial

improvement in both performance and efficiency.

1 INTRODUCTION
Over the past few decades, VLSI technology node has been contin-

uously shrinking, resulting non-neglectable lithography proximity

effect, which affects the real manufacturability [1]. Resolution en-

hancement techniques (RETs) are utilized to improve the printabil-

ity in the lithography process. Optical Proximity Correction (OPC)

is one of the widely used RETs to optimize mask printability by

compensating for the diffraction effect in the lithography process.

OPC approaches can be categorized into: (1) rule-based OPC

[2], (2) model-based OPC [3–5], (3) inverse lithography technique

(ILT)-based OPC [6–8] and (4) machine learning (ML)-based OPC

[9–12]. Rule-based methods solve the problem heuristically, which

is simple and fast but only suitable for less aggressive designs.

Model-based OPCs mathematically model the lithography process

and move/shift the edge fractures accordingly, ensuring mask fi-

delity but restricted by the solutions space in advanced technology
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Figure 1: Visualization of a real design layer. Two discoveries
motivated our OPC framework design: 1. Patterns scattered
unevenly along the design layout with different complexity.
We denote complicated patterns as critical and simple pat-
terns as non-critical. 2. Patterns have large ratio of repeti-
tion on a full layout.

nodes. ILT-based methods solve the inverse problem of the imag-

ing system through optimizing an objective function, which is the

most performant analytical method to tackle the OPC problem. As

recent years witnessed the rapid development of machine learning

algorithms and hardware, ML-based OPCs have shown remark-

able speed-up in the OPC flows and are prevailing in design for

manufacturing (DFM) academia. [9] and [13] use deep learning

models for initial mask generation to reduce the iterations number

of ILT. [14] uses a deep learning model to simulate the conventional

ILT correction process. A lethal drawback is that machine learning

model is a data-driven black box. Such methods are not guaranteed

to work for some critical patterns. In summary, no approach is

flawless and shows absolute superiority over others. Patterns with

different complexity require different approaches.

Achieving desired OPC results with high efficiency on real de-

signs require a systematic analysis on pattern distribution and

complexity. By inspecting a real design, we come up with a few

properties that can be leveraged to assist the analysis. Firstly, we

notice that there exists a diversity of pattern density, which indi-

cates that some regions are dense while some regions are sparse, as

visualized in Figure 1, which implicates different kinds of OPC solu-

tions are required. Moreover, as we take a closer observation of each

sub-region, there also exists a similarity of the pattern distribution

in different sub-regions. Many patterns are repeatedly placed on the

full design layer. These patterns have similar geometric shapes and
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are placed at different locations. Such pattern repetition enables us

to utilize their shared geometric characteristics, which motivates

the idea that the OPC solution of a pattern can be reused in a similar

pattern for efficiency improvement. Motivated by these observa-

tions, we propose a self-adaptive framework, namely AdaOPC, for

conducting OPC on real designs.

Firstly, AdaOPC is equipped with pattern analysis that can clas-

sify a sub-region as critical or non-critical, such that the proper

OPC solver can be selected. More specifically, for densely scattered

sub-regions, not only the diffraction effect but also the optical in-

terference of incident light caused by neighboring components will

jointly affect the final printed image. Such complex patterns for

OPC are regarded as critical and more suitable for robust yet rigor-

ous numerical optimization methods for higher manufacturability.

In contrast, sub-regions with sparsely scattered patterns are simpler,

and the mask optimization process is more suitable for machine

learning models to learn with superior inference speed.

Secondly, given that many patterns are repetitive on the design

layer with the same geometric shape, as shown in Figure 1, we

investigate the feasibility of reusing the optimized masks of repeat-

ing patterns to avoid redundant iterations of OPC. There are three

obstacles standing in the way of our idea: (1) As shown in Figure 2,

slicing the large design layout into small patterns inevitably re-

sult in a location shift of patterns with the same geometric shape.

Whether and how can an optimized mask with location shift be

reused? (2) Given the query pattern, how to match a same pattern

from a large number of stored ones accurately within an acceptable

time? (3) How to measure the geometric similarity of patterns with

location shift? In response to the mentioned three questions, we

build a dynamic pattern library with online updating to store

and reuse repeating patterns and optimized masks by construct-

ing a dynamic hierarchical graph. We mathematically prove the

shift equivariance property of the lithography process to show the

feasibility of mask reuse by calculating the shift of design pattern

and calibrating the mask. A graph-based approximation nearest

neighbor search for pattern matching within a short query time.

We summarize the contributions of this paper as follows:

• We propose a self-adaptive workflow for flexible OPC solver

selection.

• We prove the feasibility of mask resue to speed up the OPC

process for real design patterns and provide an efficient mask

shift calibration method in practice.

• We generate design patterns embedding by supervised con-

trastive learning for similarity measurement and pattern

matching.

• We construct a dynamic pattern library using a hierarchical

graph with online update along with a greedy graph-based

nearest neighbor search for fast matching.

• With experiments on different pattern cases from a real

design layout, we proved our framework can reduce over 90%

runtime while still preserving the optimal OPC performance.

2 PRELIMINARIES
2.1 Lithography Simulation Model
During the lithography process, an input mask M is projected

through layers of optical lens onto a wafer plane. The intensity

Full layout slicing

Repeating patterns with shift

Figure 2: Slicing repeating full layout inevitably causes some
location shift on repeating patterns.

after optical system I, namely the aerial image, leaves a coating on

the wafer with photoresist to form the resulting pattern Z. The con-
ventional simulation of the lithography process is composed of 2

consecutive components: optical projection model and photoresist

model.

For the projection process, Hopkins diffraction model [15] has

been widely used to analyze coherent imaging system mathemati-

cally. To avoid the computation complexity of the Hopkins model,

a singular value decomposition model (SVD)-based approximation

has been proposed by [16] and became the mainstream fashion. In

the SVD model, the Hopkins diffraction model can be decomposed

into a sum of coherent systems based on eigenvalue decomposition:

I(𝑥,𝑦) =
𝑁 2∑
𝑘=1

𝑤𝑘 |M(𝑥,𝑦) ⊗ ℎ𝑘 (𝑥,𝑦) |2, 𝑥,𝑦 = 1, 2, ...𝑁 (1)

where ℎ𝑘 is the 𝑘-th kernel and 𝑤𝑘 is the corresponding weight

of the coherent system. "⊗" denotes the convolution operator. [17]

indicates the 𝐾-th order approximation:

I(𝑥,𝑦) ≈
𝐾∑
𝑘=1

𝑤𝑘 |M(𝑥,𝑦) ⊗ ℎ𝑘 (𝑥,𝑦) |2, (2)

We pick 𝐾 = 24 in our experiment. After optical simulation, the

lithography intensity I is sent to the photoresist model to generate

the final binary pattern Z with an exposure resist threshold 𝐼𝑡ℎ :

Z(𝑥,𝑦) =
{
1, if I(𝑥,𝑦) ≥ 𝐼𝑡ℎ,
0, if I(𝑥,𝑦) < 𝐼𝑡ℎ,

(3)

Several machine learning-based lithography simulation methods

have been proposed. [18] utilized a CNN network to perform a

function model determination for resist model simulation. [19] de-

veloped a GAN-based LithoGAN, to map the input mask and output

resist pattern. [20] proposed a two-stage DNN-based framework,

solving the mask-to-SEM prediction as a domain-transfer problem

and using CycleGAN [21] to learn the transferring process.

Although DNN models usually have the comparative speed ad-

vantage, we choose the Hopkins model for the reason of analyz-

ability. A white box model enables us to analyze the pattern shift

equivariance property mathematically during the lithography pro-

cess.
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Figure 3: OPC evluation creteria: (a) Visualization of EPE
measurement (b) Visualization of PVBand.

2.2 OPC Evaluation Criteria
2.2.1 Edge placement error (EPE).. After the lithography process,

the printed image on the wafer has an inevitable geometric dis-

tortion from the design target. Edge placement error (EPE) is a

common criterion to quantify distortion level. Measurement of EPE

is visualized in Figure 3(a): A series of measuring points are sampled

along the boundary of the target design pattern, including vertical

edges and horizontal edges. If the distance 𝐷 between printed im-

age and target is larger than threshold 𝑡ℎ𝐸𝑃𝐸 at a sample point, we

label it as a EPE violation.

𝐸𝑃𝐸_𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑥,𝑦) =
{
1, 𝐷 (𝑥,𝑦) ≥ 𝑡ℎ𝐸𝑃𝐸 ,
0, 𝐷 (𝑥,𝑦) ≤ 𝑡ℎ𝐸𝑃𝐸 ,

(4)

2.2.2 Process Variation Band (PV Band). In real lithography appli-

cations, process variation may cause deviation in the final printed

images, which possibly leads to printing failure. Given different

lithography conditions such as focus/defocus depth and incident

light intensity, printed images have various contour results. Process

Variation Band (PV Band) is defined as discrepant (XOR) region

of innermost and outermost contours as shown in Figure 3(b) to

evaluate printing robustness.

𝑃𝑉𝐵𝑎𝑛𝑑 =

𝑁 2∑
𝑥,𝑦

|Z𝑜𝑢𝑡 − Z𝑖𝑛 |, (5)

where 𝑁 is the size of pattern. Z𝑜𝑢𝑡 denotes the printed pattern of

outer contour and Z𝑖𝑛 denotes the inner contour.

3 ADAPTIVE FRAMEWORK
3.1 Workflow Overview
Our proposed workflow is visualized in Figure 4. In Section 3.2, we

firstly introduce the extensible solver selection module to choose

OPC solver for different patterns. In Section 4 we will demonstrate

the dynamic graph-based Pattern library, one of the key components

of AdaOPC framework for mask Optimization efficiency improve-

ment. An approximate nearest neighbor searching(ANNS) method

will be utilized to match similar patterns. Section 4.2 specified how

we embed patterns into high dimensional vectors for pattern match-

ing in the library using supervised contrastive learning. Section 5

will further discuss the mask reusability and requirement. A proof

of the shift equivariance during lithography is provided to validate

the feasibility, along with the solution by shift calibration.

3.2 Extensible OPC Solver Selection
Our framework maintains a flexible solver pool to select suitable

OPC solutions for different patterns based on their complexity. We

divide sliced design patterns into two groups: critical and non-

critical patterns. Then we use a solver selector to choose which

OPC solver to use. This Solver selector can be regarded as a 2-

class classifier and built with a simple deep learning classification

model. We use Resnet-18 [22] as backbone network with objective

to minimize the cross-entropy loss 𝐿:

𝐿 = − 1

𝑁

𝑁∑
𝑖

𝑦𝑖 log(𝑝𝑖 ) + (1 − 𝑦𝑖 ) log(1 − 𝑝𝑖 ), (6)

where 𝑦𝑖 is the 1/0 label for critical pattern of sample 𝑖 , 𝑝𝑖 is the

probability predicted by classifier model. The model is trained to

predict 𝑝𝑖 as close as 𝑦𝑖 . Without bells and whistles, such simple

network + loss combination is capable of performing a fast and

accurate prediction on pattern class.

For non-critical patterns, we build our ML-Solver using a gen-

erative neural network model, consistent with one of the SOTA

ML-based OPC solvers DAMO-DMG [12]. We also pick U-Net++

with residual blocks inserted in the bottleneck as our model struc-

ture and train the generative model with the same strategy as [12].

The only difference is the training data. We prepare our own train-

ing dataset with patterns from a real full-scale design and mask

generated by a robust OPC engine, of which the lithography model

is an authentic one instead of a DNN simulator as in [12]. Such

data preparation aligns with the real OPC scenario, where the only

ground truth we have is the lithography model.

For critical patterns, we use rigorous numerical optimization

method as [17] with GPU acceleration by CUDA, despite that deep

learning approaches already reached good performance for an over-

all evaluation on some test sets of patterns. Data-driven black-box

deep learning model may learn to mimic and reverse the diffrac-

tion effect very well. Nevertheless, they might have difficulty deal-

ing with optical interference of incident light caused by complex

neighboring components. In that case, the rigorous numerical op-

timization solver provides an analytical solution regardless of the

geometric complexity of patterns. Moreover, in a real OPC scenario

with a new design and even possibly a new lithography engine,

patterns and optimized masks generated by robust methods can be

the dataset to train the machine learning model to adapt to new

settings.

Note that the solver pool is extensible. Any powerful OPC solu-

tion with certain strengths for certain patterns holds the possibility

to be imported as a replacement or complementary candidate. If

more than two solvers are in the solver pool, we can simply modify

the classifier loss:

𝐿 = − 1

𝑁

𝑁∑
𝑖

𝐶∑
𝑐=1

𝑦𝑖𝑐 log(𝑝𝑖𝑐 ), (7)

where 𝐶 is the number of pattern classes, the same as the number

of corresponding OPC solvers. 𝑦𝑖𝑐 is the 1/0 label for whether this

pattern belongs to class 𝑐 . In this way, we can simply transform the

problem into a multi-classification case.

3
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Figure 4: Overall workflow of AdaOPC. Colored blocks are functionalmodules. Red dashed lines represent library update flow.

4 DYNAMIC PATTERN LIBRARY
After filtering out simple cases, we need to apply a rigorous solver

for critical patterns. For further efficiency improvement, we build a

dynamic pattern library to store the pattern pairs: sliced pattern

P and their corresponding post-OPC mask MP, hence to reuse the

mask of repeating patterns to avoid the redundant time consump-

tion of iterations-from-scratch OPC process. The key idea is to

identify a stored repeating pattern before OPC. An online update

mechanism enables a brand new pattern and corresponding mask

to be inserted into the library.

We construct the pattern library with a graph structure as in-

spired by [23], where each node represents a pattern stored. Each

edge connecting two nodes shows they are neighbors of each other

with more similarity. Considering the number of patterns on a full

design layout, the size of the graph is gigantic. Naive search for

shortest distance requires pair-wise distance comparisons of nodes

in the graph, which is impractical. We improve the matching time

efficiency with:

• Sparse neighborhood graph structure, where nodes distant

from each other are sparsely connected.

• Graph is divided into hierarchical layers. Nodes have re-

stricted degree at each layer. more edges reside at lower

layers, enabling greedy search of nearest neighbor at each

layer.

The visualization of the hierarchical sparse graph structure is in

Figure 5.

4.1 Pattern Matching And Online Update.
The task of matching pattern with the most similar geometric shape

can be regarded as a nearest neighbor search problem (NNS). As

inspired by [23], we utilize the Hierarchical Navigate Small World

(HNSW) algorithm for fast matching. As shown in Figure 5, the

pattern matching follows a greedy strategy to traverse the graph

from higher layers to the bottom layer. A list of nearest pattern

node candidates is maintained through the top-down traversal. The

list is updated when a closer pattern appears during searching that

has a distance shorter than one of the candidates. Such matching

strategy is based on proximity graph nearest neighbors search. The

detailed pattern matching search strategy at each hierarchical layer

is illustrated in Algorithm 1.

After reaching the bottom layer, pattern candidates in list 𝐶

with a distance smaller than a threshold 𝜎 are regarded as matched

Algorithm 1 Graph-Based Pattern Matching Greedy Search

1: Input: query pattern P, starting nodes 𝑞𝑠 , number of nearest neighbor

to return 𝑘 ,layer number 𝑙 , distance measurement 𝑑 ( ·)
2: Output: nearest pattern candidates𝐶

3: 𝑉 ← 𝑞𝑠 // Visited nodes

4: 𝑊 ← 𝑞𝑠 // Waiting list of nodes to visit

5: 𝐶 ← 𝑞𝑠

6: while |𝑊 | > 0 do
7: 𝑞∗ ← nearest pattern from𝑊 to P
8: 𝑞𝑓 ← furthest pattern from𝐶 to P
9: if 𝑑 (P, 𝑞∗) > 𝑑 (P, 𝑞𝑓 ) then
10: break

11: end if
12: for 𝑒 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 (𝑞∗) in layer 𝑙 do
13: if 𝑒 ∉ 𝑉 then
14: 𝑉 ← 𝑉 ∪ {𝑒 }
15: 𝑞𝑓 ← furtherest pattern from𝐶 to P
16: if 𝑑 (P, 𝑒) < 𝑑 (P, 𝑞𝑓 ) or |𝐶 | < 𝑘 then
17: 𝑊 ←𝑊 ∪ {𝑒 }
18: 𝐶 ← 𝐶 ∪ {𝑒 }
19: if |𝐶 | > 𝑘 then
20: remove furthest pattern from𝐶 to P
21: end if
22: end if
23: end if
24: end for
25: end while

patterns. If the smallest distance in𝐶 is still larger than 𝜎 , we regard

it as a new pattern. This approach remains fast and accurate even

when the graph grows large with new patterns continuously being

inserted in the library.

The pattern library updates in an online style. For every new

pattern that comes with no matched ones, the mask is optimized

with from-scratch OPC iterations. The library will insert the pattern

and optimized mask as new node and update the edge hierarchy

of the graph to store the pattern. Algorithm 2 shows the library

online update step details.

As Algorithm 2 indicates, the new pattern will be inserted to

one of the hierarchical layers with decaying probability. Edges will

be added at the same layer between this pattern and top 𝑘 nearest

ones. As the neighbor nodes will have degree increase, an edge

re-connection of these neighbors will be conducted once degree is

above the upper bound 𝑘 . Therefore, the degree of each node in the
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Figure 5: Visualization of the graph-based pattern matching
flow. Query design pattern P greedily traversing the hier-
archical graph. The nearest node reached at layer 0 corre-
sponds to amatch pattern P′which has themost similar geo-
metric shape with P.

Algorithm 2 New Pattern Insertion and Graph Update

1: Input:hierarchical graph𝐺 , new pattern P, total layer number 𝐿,𝐺 ’s

starting nodes 𝑞𝑠 , max degree𝑀

2: Output: updated hierarchical graph𝐺

3: 𝑙 ← 𝑟𝑎𝑛𝑑𝑜𝑚 (0, 𝐿) //exponentially decaying probability

4: for 𝑙𝑐 ← 𝐿, ..𝑙 do
5: 𝐶 ← 𝑠𝑒𝑎𝑟𝑐ℎ (𝑃,𝑞𝑠 , 𝑘, 𝑙𝑐 ) ⊲ Algorithm 1

6: 𝑞𝑠 ← nearest pattern of 𝑞 in𝐶

7: end for
8: for 𝑙𝑐 ← 𝑙, ..0 do
9: insert P to layer 𝑙𝑐 of𝐺 // add P into graph

10: C← 𝑠𝑒𝑎𝑟𝑐ℎ (𝑃,𝑞𝑠 , 𝑘, 𝑙𝑐 ) ⊲ Algorithm 1

11: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 ( (𝑃 )) ← top𝑀 nearest patterns in𝐶

12: for 𝑒 ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (P) do
13: add edge (𝑃, 𝑒)
14: if degree of 𝑒 > 𝑀 then
15: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑒) ← top k nearest patterns connecting 𝑒

16: remove all edges connecting 𝑒

17: create edges 𝑒 with each one in 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 (𝑒)
18: end if
19: end for
20: end for

graph is restricted by 𝑘 . Note that the number of edges results in

the matching complexity. Such a sparse hierarchical graph enables

a fast search when the size of graph grows up.

Since vectors of the same pattern are closer to each other, we

proposed some distance metrics to evaluate the similarity of vec-

tors. The inner product of two vectors can be used to evaluate the

direction difference of vectors:

𝐼𝑛𝑛𝑒𝑟 (VP1 ,VP2 ) = VP1 · VP2 =
𝑘∑
𝑖=0

𝑉P1,𝑖𝑉P2,𝑖 , (8)

where VP1 and VP2 are the embedded vectors of pattern P1 and P2.
𝑘 = 256 is the dimension of the embedded vector. Note that the

inner product violates the positivity property where an element

can be closer to some other element than to itself.

Consine similarity avoid the violation thus can be utilized to

measure the similarity between two vectors of an inner product

space:

𝑑𝐶𝑜𝑠𝑖𝑛𝑒 (VP1 ,VP2 ) = 1.0 −
VP1 · VP2

VP1



 

VP2


 ,

= 1.0 −
∑𝑘
𝑖=0𝑉P1,𝑖𝑉P2,𝑖√∑𝑘

𝑖=0𝑉
2

P1,𝑖

√∑𝑘
𝑖=0𝑉

2

P2,𝑖

,

(9)

Euclidean Distance is another approach where the embedding

metric space is regarded as a Euclidean Space. Each vector repre-

sents its position in the Cartesian coordinates. The similarity of

two vectors can be evaluated directly by calculating the squared -2

norm of the difference of the coordinates:

𝑑𝐸𝑢𝑐𝑙𝑖𝑑 (VP1 ,VP2 ) =


VP1 − VP2



2
2
=

√√√
𝑘∑
𝑖=0

(𝑉P1,𝑖 −𝑉P2,𝑖 )2 . (10)

All metrics abide by the rules of nearest neighbor search (NNS) are

feasible similarity measurement metrics, which leave possibility for

exploration of various metrics according to different embedding

space.

4.2 Embedding Space Construction
To reuse mask stored in library we need to match a pattern with

same geometric shape. However it is not straighforward to compare

geometric similarity of two patterns directly. We develop a embed-

ding metric space which reflects the geometric property using a

high-dimensional vector representation VP. Original ⟨P,MP⟩ pair
stored in library is replaced with ⟨VP,MP⟩ pair. In this way, a deci-

sion of whether two patterns are the same can be determination by

a similarity metric of two embedded vectors.

We transform the embedding space construction into a feature

extraction process by using deep learning model, and the metric

space is built through deep metric learning. The embedded vector is

the output of an embedding neural network. Deep learning model

for the embedding process is composed of two modules:

• Encoder, 𝐸𝑛𝑐 (·). For each input pattern P, the encoder will
encode the input pattern to a feature map F𝑃 ∈ Rℎ×𝑤×𝑐 ,
where ℎ,𝑤 are the spatial size of the feature map F𝑃 and 𝑐 is

the number of channels.

• Projector, 𝑃𝑟𝑜 𝑗 (·), which embeds feature map F𝑃 to a repre-

sentation vector VP ∈ R𝑘 . The output 𝑃𝑟𝑜 𝑗 (F𝑃 ) is normal-

ized to the unit hypersphere in R𝑘 at training stage for loss

calculation.

Therefore, the embedding process is formulated as:

VP = 𝑃𝑟𝑜 𝑗 (𝐸𝑛𝑐 (P)) ∈ R𝑘 . (11)

Previous deep learning-based OPC approaches [9, 12, 19] chose

UNet or special variant UNet++ as the backbone structure. A harsh

requirement of OPC problem strongly limits the selection of net-

work backbone structure: the output mask will necessarily remain

the same resolution as the input design.

Embedding process without such limitation leaves us the flexibil-

ity to more network structure candidates. We deliberately choose

one of the most common structures: Resnet-18 [22] as encoder.

Each input pattern P is a 2048 × 2048 2-D picture. In order to re-

strict the heavy computation caused time delay, we downsample
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the pattern in a greedy manner until 256*256 before sending it into

the neural network, without noticeable performance degradation.

After the original Resnet-18 structure, an extra 1 × 1 convolution
layer follows to shrink the feature channel size from 512 to 256. A

linear layer is put at the end of the neural network to transform

the 3-D feature into the final 1-D embedded vector VP. The size
of VP is a trade-off where larger size indicates higher matching

accuracy but slower similarity computation and matching speed.

We select 256 through experiments to guarantee good performance

with neglectable matching time.

The embedding space S is specially designed with certain objec-

tives: (1) patterns of the same shape share similar embedded vectors

with the shortest distance. (2) patterns of different shapes clustered

sparsely in the embedding space, far from each other. The train-

ing process of such embedding requires abundant data of different

patterns as well as data of the same patterns. During training, the

data from the same pattern is regarded as positive samples, and the

embedded vectors will be pushed as close as possible with higher

similarity, while the embedded vectors of different patterns are

regarded as negative samples pushed as far as possible. We crop a

great amount of patches of pattern from a real full-scale design for

the training dataset.

Data Preparation. The cropping process has two steps to gener-
ate positive samples and negative samples as required by the train-

ing objective. The first step is to randomize some anchor points

along the design layer. In the second step, with a random shift

around each anchor point, we crop a certain number of patches,

which will hold the same pattern within the square patch but with

different relative positions. For each batch of training data, pat-

terns will be labeled by their anchor point and thus abides by the

positive/negative samples requirement.

Supervised Contrastive Loss. As we draw the picture of train-

ing the neural network to learn how to embed patterns to represen-

tative vectors, the traditional cross-entropy loss is not sufficiently

sensitive to handle inter-class distance or noise labels. Among the

family of losses based on metric distance learning [24–26], Con-

trastive loss [27] is one of the most powerful losses for learning

representative embedding in the self-supervised learning domain.

Inspired by [28], we extend the contrastive loss to supervised con-

trastive loss as all the positive/negative samples are genuinely

generated and labeled at data preparation stage. As mentioned,

representation vector z are normalized from VP:

z = normalize(𝑃𝑟𝑜 𝑗 (𝐸𝑛𝑐 (P))) ∈ R𝑘 , (12)

Then the loss function is formulated as:

L𝑠𝑢𝑝𝐶𝑜𝑛 = −
∑
𝑖∈𝐼

1

|𝐽 (𝑖) |
∑
𝑗 ∈𝐽 (𝑖)

log

exp(z𝑖 · z𝑗/𝜏)∑
𝑎∈𝐴(𝑖) exp(z𝑖 · z𝑎/𝜏)

, (13)

where 𝑖 ∈ 𝐼 is anchor indices of the training batch. 𝑗 ∈ 𝐽 is the
anchor indices of the positive samples. 𝐴(𝑖) = 𝐼\{𝑖} is all anchor
indices except for 𝑖 in this batch and therefore 𝐴(𝑖)\{𝐽 (𝑖)} are
the anchor indices of negative samples. 𝜏 is a scalar temperature

parameter. Term exp(z𝑖 · z𝑗/𝜏) in numerator denotes similarity

of positive sample pairs z𝑖 and z𝑗 . exp(z𝑖 · z𝑎/𝜏) in denominator

denotes similarity of all sample pairs including negative ones. By

minimizing the loss, the training process enlarges the similarity of

positive samples and reduces the similarity of negative samples.

5 MASK REUSE WITH SHIFT CALIBRATION
5.1 Mask Reusability
We assume that repeating patterns can share mask for efficiency if

the query design pattern P has a matched design pattern P′ stored
in the library with the same shape. However, Figure 2 has shown

that when the whole design is sliced into small patterns, it is in-

evitable to find pattern location shift (Δ𝑥,Δ𝑦) between P and P′.
In real lithography and OPC flow, if no surrounding factors affect

lithography, the printed wafer image patch must have no distortion

but only an identical shift to the design pattern, as visualized in

Figure 6. Therefore, if we want to reuse the mask, the first require-

ment is to make sure that location shift during lithography will not

cause any geometric distortion.

We mathematically prove the location shift remains unchanged

before and after the lithography in order to show the feasibility

of the mask shift calibration approach, we denote the Hopkins

diffraction model through lithography in Section 2.1 as 𝐿𝑖𝑡ℎ𝑜 (·)
and the location shift as 𝛿Δ𝑥,Δ𝑦 (·), we show that:

Theorem 1 (Shift Equivariance). Given pattern P and mask MP
where

P = 𝐿𝑖𝑡ℎ𝑜 (MP). (14)

The following statement always holds:

𝛿Δ𝑥,Δ𝑦 (P) = 𝐿𝑖𝑡ℎ𝑜 (𝛿Δ𝑥,Δ𝑦 (MP)). (15)

Proof. For any position (x,y) on pattern P:

𝛿Δ𝑥,Δ𝑦 (P(𝑥,𝑦)) = P(𝑥 + Δ𝑥,𝑦 + Δ𝑦),

=

𝑁 2∑
𝑘=1

𝑤𝑘 |ℎ𝑘 (𝑥 + Δ𝑥,𝑦 + Δ𝑦) ⊗MP (𝑥 + Δ𝑥,𝑦 + Δ𝑦) |2 ,

=

𝑁 2∑
𝑘=1

𝑤𝑘 |
𝑁∑
𝑖=1

𝑁∑
𝑗=1

ℎ𝑘 (𝑖, 𝑗)MP (𝑥 + Δ𝑥 + 𝑖 −
𝑁

2

, 𝑦 + Δ𝑦 + 𝑗 − 𝑁
2

) |2,

=

𝑁 2∑
𝑘=1

𝑤𝑘 |
𝑁∑
𝑖=1

𝑁∑
𝑗=1

ℎ𝑘 (𝑖, 𝑗)MP (𝑥 + 𝑖 −
𝑁

2

+ Δ𝑥,𝑦 + 𝑗 − 𝑁
2

+ Δ𝑦) |2,

=

𝑁 2∑
𝑘=1

𝑤𝑘 |
𝑁∑
𝑖=1

𝑁∑
𝑗=1

ℎ𝑘 (𝑖, 𝑗)𝛿Δ𝑥,Δ𝑦 (MP (𝑥 + 𝑖 −
𝑁

2

, 𝑦 + 𝑗 − 𝑁
2

)) |2,

=

𝑁 2∑
𝑘=1

𝑤𝑘
��ℎ𝑘 (𝑥,𝑦) ⊗ 𝛿Δ𝑥,Δ𝑦 (MP (𝑥,𝑦))

��2 ,
= 𝐿𝑖𝑡ℎ𝑜 (𝛿Δ𝑥,Δ𝑦 (MP (𝑥,𝑦))).

(16)

Then Equation (15) is proved. □

Since mask shift will only result in a printing shift after lithogra-

phy, repeating patterns in design can share OPC-optimized masks

with a simple shift correction. We pick matched maskMP′ stored in
pattern library and add correction (−Δ𝑥,−Δ𝑦) to acquire the initial
maskMP for P.

6
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Shape unchanged

Figure 6: Printed wafer image must share identical location
shift to design pattern with no geometric shape distortion.

5.2 Pattern Shift Calibration
We calculate the shift by computing the pixel-level similarity of

two patterns P and P′. The pixel-wise cross-correlation of P and

P′ reflects the pixel-wise similarity where the pixel of highest re-

sponse value on the correlation map is the position shift of cen-

ter point (𝑥𝑐𝑡𝑟 , 𝑦𝑐𝑡𝑟 ). The cross-correlation computation of two

large 2-D pattern is time-comsuming. The calculation process of

cross-correlation equal to convolution of P and 𝑅𝑜𝑡𝑎𝑡𝑒 (P′), where
𝑅𝑜𝑡𝑎𝑡𝑒 (·) denotes rotation of 180

◦
:

𝐶𝑟𝑜𝑠𝑠𝐶𝑜𝑟𝑟 (P, P′) = 𝐶𝑜𝑛𝑣 (P, 𝑅𝑜𝑡𝑎𝑡𝑒 (P′)), (17)

We replace the calculation with Convolution and accelerate the

computation with Fast Fourier Transform (FFT) [29]. The pattern

shift can be calculated with:

𝑥∗, 𝑦∗ = argmax

𝑥,𝑦
𝐶𝑜𝑛𝑣_𝐹𝐹𝑇 (P, 𝑅𝑜𝑡𝑎𝑡𝑒 (P′)),

Δ𝑥 = 𝑥∗ − 𝑥𝑐𝑡𝑟 , Δ𝑦 = 𝑦∗ − 𝑦𝑐𝑡𝑟 ,
(18)

And the initial mask is corrected with:

MP = 𝛿−Δ𝑥,−Δ𝑦 (MP′) . (19)

In real application, we send calibrated mask into lithography model

to verify the mask and into ILT solver for one or two further itera-

tions if necessary, just in case of any noise caused by shift calibration

operation. We use the same pattern size as [9] 2048 × 2048. With

our implementation, the shift calculation time is less than 0.25s on

CPU.

6 EXPERIMENTAL RESULTS
Our framework is mainly developed in Python. All machine learn-

ing modules in our framework are implemented using PyTorch.

Lithography and ILT modules are developed in C/C++ with CUDA

toolkit. All performance and speed experiments are conducted on

CentOS-7 system with Intel i7-5930K 3.50GHz CPU and Nvidia

GTX Titan X GPU. We choose the public lithography engine from

ICCAD 2013 CAD Contest [30] with the 24 optical kernels. The

photoresist intensity threshold is set at 0.055. We adopt lithography

wavelength 193𝑛𝑚 with defocus range of ±25𝑛𝑚 and dose range of

±2%. EPE violation threshold 𝑡ℎ𝐸𝑃𝐸 is set to 15𝑛𝑚.

In accordance with the authentic OPC scenario, all data used

in our experiments is from a real design which we extracted from

a gds file generated by the open-source layout generation tool

OpenROAD [31]. We sliced patterns of size 2048×2048 in alignment

with previous work [8, 9, 12] from a full scale via layer with more
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Figure 7: (a) EPE convergence comparison (b) Runtime
breakdown of AdaOPC on critical patterns

Library Size 128-D 256-D 512-D

100 0.9ms 1.3ms 1.5ms

500 3.4ms 5.7ms 8.8ms

1000 9.0ms 13.3ms 22.2ms

2000 20.4ms 31.2ms 52.2ms

5000 59.8ms 93.0ms 156.6ms

10000 130.1ms 206.5ms 413.6ms

Table 1: Pattern matching speed Analysis on different em-
bedding dimension.

than 1.9 × 10
6
vias, where each pixel represents 1𝑛𝑚2

. For the

training dataset of ML-Solver, we randomly slice 4000 patterns off

the design layer with masks optimized by ILT Solver. We use the

same patterns to train the pattern classifier. As for critical/non-

critical labels, we directly apply lithography and label them by

EPE number, which is intuitive as it reflects the mask optimization

difficulty. For the training data of Metric Space embedding, we

follow the steps in Section 4.2, using 400 random anchor points

and shift around each anchor point within ±10% pattern width for

400 repeating patterns. The number of positive samples for each

point should be equal to or larger than the number of anchors to

guarantee a positive/negative ratio of each training batch.

6.1 Performance Analysis
In the begining, we validate the effectiveness of mask reuse by

observing EPE descending trend. Firstly we present a demo experi-

ment on a pattern, recording the EPE descending trend of the mask

during ILT iterations with a calibrated optimized mask as the initial

state. In comparison, we also record the trend with no initial mask

and start the ILT process from scratch. As Figure 7(a) shows, EPE

number with an initial mask starts at nearly optimal 23, and the

descending trend converged at 1st iteration. In contrast, ILT from

scratch gives 37 EPEs initially and takes six iterations to reach the

initial EPE number with mask reuse, and overall 12 iterations to

converge to 22.

To verify the efficiency of our framework, we experiment with

the runtime analysis. Since non-critical patterns are handled by

extremely fast machine learning-based methods, we mainly focus

on critical patterns. Figure 7(b) visually demonstrates the time

cost proportion of each step for critical pattern OPC in AdaOPC.

We can see that 91.7% running time is spent on lithography and
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Table 2: Comparisons of baseline approaches

Test Case DAMO-DGS [12] ILT-GPU [17] AdaOPC

ID #EPE PVB (𝑛𝑚2
) RT (s) #EPE PVB (𝑛𝑚2

) RT (s) #EPE PVB (𝑛𝑚2
) RT (s)

1 22 23323 5.20 23 23329 41.15 22 23232 5.50

2 26 26729 5.26 25 26762 48.5 24 26580 5.41

3 27 26938 5.22 24 26720 55.92 24 26718 5.37

4 36 27975 5.18 29 28127 70.57 25 27934 5.40

5 35 28805 5.32 30 28925 66.89 30 28927 5.44

6 30 26960 5.31 25 26762 55.81 24 26775 5.38

7 33 26382 5.23 28 26453 59.47 28 26281 5.43

8 32 30646 5.38 25 29450 54.88 27 29341 5.42

9 25 24054 5.25 24 24053 70.62 23 24022 5.43

10 24 21939 5.29 23 21701 37.59 22 21644 5.53

Avg. 29.0 26375 5.26 25.6 26228 56.14 24.9 26145 5.43

Ratio 1.165 1.009 0.970 1.028 1.003 10.340 1.000 1.000 1.000

ILT OPC iterations while the time overhead of pattern matching

and shift calibration combined is only 8.3%, which is trivial to the

whole process. This also verifies the extensibility of our framework,

leaving room for new powerful and fast OPC tools or litho-model

to be imported for further speed up. Moreover, we also considered

the condition when the pattern library gets larger. Although we

cannot generate too many "ground-truth" masks due to time and

computation resource limits, we can test the patternmatching speed

with a large number of synthesized pattern vectors. Table 1 has

shown the matching speed of different pattern library sizes and

embedding vector dimension combinations, from which we can

see that even with the pattern library enlarged to 10000 stored

patterns with dimension 512, the query and matching can still be

finished in 0.4s. The time overhead is fast enough to be ignored in

the whole process. Figure 8 shows the time comparison for mask

convergence speed with or without pattern, 10 cases were tested

after 800 patterns were inserted into the pattern library. Iterations

of mask updates required can be significantly reduced by 93.6% on

average.

At last, we need to verify the overall performance of our AdaOPC

framework by comparing it with two baseline methods that we

used in different branches for critical/non-critical patterns. After

inserting 800 patterns with optimized masks into the library, we

randomly tested 10 patterns, and Table 2 shows that AdaOPC can

achieve comparable EPE/PVBand performance with ILT-GPU ap-

proach with 10× acceleration and no accuracy loss. On the other

hand, when compared with DAMO-DMG with 1 round lithogra-

phy verification, AdaOPC shows much better performance with

comparable speed. Notice that in our case, the embedding vector di-

mension is 256. As shown in Table 1, even if the library gets large to

10000 patterns, the matching time is still around 0.2s, which is mar-

ginal to the complete OPC process time cost shown in Table 2. To

summarize, the AdaOPC framework achieves performance-speed

dual optimization.

7 CONCLUSION
In this paper, we proposed a self-adaptive OPC framework for mask

optimization for real designs by inspecting the characteristics of

a full design. We proposed an extensible OPC solver selector to

choose an appropriate solver for patterns with different complex-

ity. Additionally, we also built a dynamic pattern library to reuse

optimized masks for repeating patterns with the same geometric

shape. We use supervised contrastive learning to embed patterns

into vectors and propose a graph-based search strategy for fast

pattern matching. At last, we validate the mask reusability by prov-

ing pattern shift equivariance property and proposed a practical

shift calibration tool. Extensive experiments have shown our frame

can achieve OPC speed-robustness co-optimization for real design

patterns.
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