
GTuner: Tuning DNN Computations
on GPU via Graph Attention Network

Qi Sun
CUHK

Xinyun Zhang
CUHK

Hao Geng
ShanghaiTech University

Yuxuan Zhao
CUHK

Yang Bai
CUHK

Haisheng Zheng
SmartMore

Bei Yu
CUHK

Abstract
It is an open problem to compile DNN models on GPU and im-

prove the performance. A novel framework, GTuner, is proposed to
jointly learn from the structures of computational graphs and the
statistical features of codes to find the optimal code implementations.
A Graph ATtention network (GAT) is designed as the performance
estimator in GTuner. In GAT, graph neural layers are used to prop-
agate the information in the graph and a multi-head self-attention
module is designed to learn the complicated relationships between
the features. Under the guidance of GAT, the GPU codes are gen-
erated through auto-tuning. Experimental results demonstrate that
our method outperforms the previous arts remarkably.

1 Introduction
The great successes of deep learning algorithms in this AI era

stimulate the fast development of high-performance computing for
deep neural networks. Many techniques have been developed to op-
timize the on-chip inference performance, tackle heavy workloads,
and bridge the gap between hardware designs and algorithm devel-
opments. Some representative arts include algorithm compression
and pruning [1, 2], hardware/algorithm co-optimization [3], etc.

Some compilation frameworks have been proposed to optimize the
model inference onGPU. Halide [4] and TVM [5] propose to decouple
the model analysis and backend code optimization and use the auto-
tuning algorithms to tune the optimal deployment configuration for
DNN models. The models are analyzed and partitioned into some
small subgraphs. Each subgraph is implemented as a kernel on GPU
and some parameters in these kernels are tuned to achieve the best
performance. Candidate values of these parameters are termed knobs
[6], or annotations [7]. The genetic algorithm (GA) and simulated
annealing (SA) are the typical parameter-tuning algorithms.

Based on TVM, many techniques are proposed to help tune the
kernel implementations. AutoTVM [8] provides some fixed optimiza-
tion rules and code templates for the DNN operations on GPUs and
encodes the parameters in the templates as fixed-length feature vec-
tors. These features contain the numbers of on-device threads, virtual
threads, blocks, etc. In the genetic algorithm process, AutoTVM in-
teracts with GPU to collect the on-device performance and trains an

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9142-9/22/07. . . $15.00
https://doi.org/10.1145/3489517.3530584

XGBoost model as the performance estimator of the feature vectors
to guide the search for optimal parameters. The optimization process
is slow, and no historical tuning data are utilized. Based on AutoTVM,
an advanced active learning method [9] is designed to learn repre-
sentative parameters in the optimization process. CHAMELEON [6]
introduces reinforcement learning to learn the searching strategies
from the history tuning data and adapts the searching space during
optimization. Guided Genetic Algorithm (GGA) [10] improves Au-
toTVM by using some heuristic rules to guide the genetic algorithm.
The similarities between new deployment tasks and the history tun-
ing data are computed to measure the performance of new knobs.
DGP-TL [11] proposes to use deep Gaussian process models to learn
the history data and use transfer learning with fine-tuning to guide
the new DNN deployment tasks. These methods prove the effec-
tiveness of the learning-based methods. Further, Ansor [7] designs
some complicated rules to generate code “sketches” for the computa-
tional subgraphs in models to break the shackles of fixed templates.
The sketches are high-level program structures and leave billions
of low-level parameters as “annotations”. The features representing
these codes are statistical which are more complicated, including
parallelism in multiple programming levels, type of memory access,
the number of touched cache lines, the number of floating/integer
multiplication-add operations, etc. With the advantages of flexible
sketches and annotations, Ansor outperforms the AutoTVM-based
previous arts significantly.

Despite the advancements, existing frameworks are still unsatis-
fying. Firstly, the structural information of the computational sub-
graphs is underutilized. Existing techniques rely on the statistical
information of codes to train a cost model as the performance es-
timator [6–8, 10, 11], while the structural information is discarded.
The structures reflect the topological relationships and scheduling
information of the operations, which greatly influence the infer-
ence performance, while the statistical features fail to characterize
the structures. Modern DNN models contain different structures.
Learning-based techniques which only rely on statistical information
are incapable of measuring these diversities. Secondly, the feature
items in the statistical feature vectors are treated equally, despite
their physical meanings and relationships related to the implementa-
tion details. Each statistical feature vector is usually directly passed
to the learning models to predict its performance. Therefore, the
complicated but implicit relationships between the feature items are
not taken into considerations.

To tackle the above problems, a novel method, GTuner, is built
based on TVM and Ansor to tune the computations of deep neural
networks on GPU. The structural information of the computational
graphs and statistical code features are utilized. The complicated

https://doi.org/10.1145/3489517.3530584

relationships between the features are learned automatically. The
contributions are summarized as follows:

• A novel method, GTuner, is proposed with a graph attention
network (GAT) as the performance estimator. GAT comprises
a graph neural network (GNN) module to aggregate structural
information and a multi-head self-attention (MHSA) module
to mine inter-feature relationships.

• Structural information of the computational subgraphs is ex-
tracted from the intermediate representations of the compila-
tion flow with the help of our code parser and analyzer. Then
the information is propagated and aggregated via the graph
neural layers to learn high-quality features for the graphs.

• The MHSA module is designed to learn the complicated but
implicit relationships between the structural and code statisti-
cal features via the self-attention mechanism. The drawbacks
of losing structural information and long-range dependencies
between the features are overcome.

• With the GAT, GTuner optimizes the kernel codes for GPU
efficiently. The results demonstrate the remarkable perfor-
mance of GTuner compared with the baselines.

2 Preliminaries
2.1 Computational Graphs

The deep neural network models are usually represented as com-
putational graphs, with layers (operators) as nodes and the edges
representing communications in the models and reflecting the topo-
logical information. These computational graphs are mapped to the
hardware accelerators (e.g., FPGA [12], GPU [13], and ASIC [14])
through some deep learning frameworks and libraries (e.g., cuDNN,
oneDNN). The implementation details for the FPGA or ASIC are
available for the designers, such as the allocations of theMAC engine,
systolic array, cache behavior, and computation patterns [14, 15].
Therefore, accurate models, even analytical formulations, can be
built to measure the performance. In contrast, for GPU, the com-
plexities of the hardware and programming model and the lack of
implementation details make this problem challenging.

Existing compilation techniques partition the graphs into small
subgraphs. Each subgraph contains several neighboring layers, e.g.,
softmax, pooling, linear layers, and convolutions [5, 7]. Each sub-
graph is implemented as a kernel on GPU. Many code templates
with some parameters to be determined are designed to implement
the computations of a kernel. Some parameters are loop boundaries,
splits, cache read steps, inlines, etc. The final executable kernel codes
are generated according to these parameters. As mentioned above,
in Ansor, the code templates and parameters are termed sketches
and annotations, respectively. Figure 1 is an example of one sketch
and its two annotations. Sketches for the same subgraph may have
distinct structures with various numbers and orders of loops and
computations. Implementing a unified encoding method to represent
the different sketches and annotations is difficult. Therefore, Ansor
extracts statistical features for each code annotation via static code
analyses, e.g., number of touched cache lines, touched memory in
bytes, number of floating multiplication operations, sizes of allocated
buffer in bytes, etc. Some important concepts are clarified here:

• Computational graph and subgraph: thewhole DNNmodel
is represented as a computational graph, and the graph is split
into some subgraphs by the DNN compilers.

]

for i 0 in range(32):

for j 0 in range(64):

for ic 2 in range(16):

for jc 2 in range(4):

for k.1 in range(16):

for k.2 in range(2):

for i.3 in range(2):

for j.3 in range(2):

for k.0 in range(2):

C = …

Annotation 1:

[Placeholder: A, B

]

for i 0 in range(2):

for j 0 in range(1024):

for ic 2 in range(32):

for jc 2 in range(2):

for k.0 in range(2):

for k.1 in range(8):

for k.2 in range(4):

for i.3 in range(4):

for j.3 in range(4):

C = …

Annotation 2:

[Placeholder: A, B

for i 0 in range(None):

for j 0 in range(None):

for ic 2 in range(None):

for jc 2 in range(None):

for k.0 in range(None):

for k.1 in range(None):

for k.2 in range(None):

for i.3 in range(None):

for j.3 in range(None):

C = …

Generated Kernel Code Sketch:

[Placeholder: A, B

]

Figure 1: A sketch and two annotations of this sketch.

• Sketch: the code templates designed by compilers to imple-
ment the computations of a subgraph are termed sketches.
Each subgraph has many templates, i.e., many sketches.

• Annotation: the combinations of the parameters to be deter-
mined in each sketch are termed annotations, i.e., each sketch
has many annotations, as shown in Figure 1.

• Structural feature: each node in a subgraph has some struc-
tural features. The nodes’ features are aggregated as the struc-
tural features of the subgraph.

• Statistical feature: each annotation of the subgraph has a
statistical feature vector reported by Ansor via static program
analyses.

2.2 Graph Neural Networks and Attention
Mechanism

Graph neural networks (GNNs) have been widely used in mod-
eling graph data, achieving impressive results in the prediction, re-
gression, and classification tasks of nodes and graphs [16, 17]. GNNs
follow a recursive neighborhood aggregation scheme, where each
node aggregates feature vectors from its neighbors. After several
iterations of aggregations, each node is represented by a new feature
vector. The new feature vectors capture the structural information
within the neighborhood [17–19]. The feature representation of the
whole graph (aka., graph embedding) is obtained via graph pooling.
Mean pooling is a typical and widely used pooling method.

Transformers [20] have achieved great success and become the
de facto choice for many natural language processing (NLP) tasks.
Further, inspired by NLP successes, many works [21, 22] unveiled the
potential of multi-head attention (MHA), which plays a crucial role
in transformers for computer vision tasks. The attention operation
has three inputs: query, key, and value vectors. Each query vector
can attend to all the key vectors and compute the attention scores
with respect to these key vectors. The final output is the weighted
sum of the value vectors, with the attention scores as the weights.
A significant advantage of MHA is that it can learn the long-range
dependencies and complicated relationships between the inputs. The
MHA stacks the attention modules to achieve outstanding perfor-
mance. The readers may refer to [20] for more details on attention
mechanisms and transformers.

3 Algorithms
3.1 Overall Flow of GTuner

The flow graph is shown in Figure 2. Graph-level optimizations
are conducted on the DNN model, e.g., operator fusion, constant-
folding, memory planning, data layout transformation, combinations
of dense convolutions and linear operations, and operation canoni-
calizations. Then the optimized model is split into some subgraphs,
i.e., subtasks. GPU codes are optimized for each of these subgraphs
independently. The final model deployment strategy is achieved by
deploying these subgraphs sequentially [5].

2

DNN

Model

Graph Optimization

KernelData

Out

Conv
Pool

Act

Con

Data

Kernel

Bias

Data

Out

Pad

Conv

Sum

Act

…
Optimized

Computational

Subgraphs

DAG Parser

& Analyzer

Intermediate

Representations (IR)

Generate

Kernel Codes

…

Extract Graph
Structural Features

(GNN)

Extract Code
Statistical Features

Genetic Algo.

OptimizatorSample Code

Annotations

MHSA

GPU
Optimal

Code

Kernel Code

Sketches

GAT

MLP

Conv

LocalRespNorm

MaxPool

Conv Conv Conv Conv

Conv Conv MaxPool

DepthConcat

Conv Conv Conv Conv

Conv Conv MaxPool

DepthConcat

Conv

MaxPool

LocalRespNorm

Conv

for i 0 in range(None):

for j 0 in range(None):

for ic 2 in range(None):

for jc 2 in range(None):

for k.0 in range(None):

for k.1 in range(None):

for k.2 in range(None):

for i.3 in range(None):

for j.3 in range(None):

C = …

Generated Kernel Code Sketch 1:

[Placeholder: A, B

]

for i 0 in range(None):

for j 0 in range(None):

for ic 2 in range(None):

for jc 2 in range(None):

for k.0 in range(None):

for k.1 in range(None):

for k.2 in range(None):

for i.3 in range(None):

for j.3 in range(None):

C = …

Generated Kernel Code Sketch 2:

[Placeholder: A, B

]

Figure 2: The overall flow of our GTuner.

After the graph optimizations, subgraphs are represented as inter-
mediate representations (IRs) in the compilation tool. We implement
a directed acyclic graph (DAG) parser and analyzer (lexical analysis
and syntactic analysis) to analyze the IRs and construct the DAG
representations for the subgraphs. Nodes in the DAG are compu-
tation and data nodes. Structural features are extracted for these
nodes, including node types, shapes, operation types, etc. The node
structural features are passed to a graph neural network to learn a
unified embedding for the graph (i.e., graph structural features). This
embedding reflects this graph’s scheduling and topological informa-
tion, distinguishes different graphs, and improves the generalization
to new tasks with various graphs structures.

Some rule-based kernel code templates (i.e., sketches) are gen-
erated for each computational subgraph. The code sketches with
parameters (i.e., annotations) comprise the code design space of
this subgraph. The statistical features are extracted via Ansor and
concatenated with the graph structural features for each sampled
code. The concatenated features are then passed to the multi-head
self-attention to learn the complicated relationships to predict the
inference latency.

The genetic algorithm (GA) is adopted as the optimization method
to explore the code design space to find the optimal code. Our GAT
model predicts the inference latencies for the codes and guides the
exploration of the GA algorithm. In each optimization iteration
of the GA algorithm, codes sampled by GA are passed to GAT to
predict the performance. Then the codes with the best-predicted
performance are compiled and executed on GPU to get the actual per-
formance. The final optimal code is selected according to the actual
performance. The number of codes executed on GPU is also termed
measure trials. For example, 10000 code annotations are sampled by
GA and estimated by GAT. GAT selects the best 80 annotations and
compiles and deploys them on GPU. Therefore, the measure trial is
80. The final deployment solution is the code with the best actual
performance from these 80 codes.

In our framework, the graph level optimization, code generation,
and genetic algorithm-based optimization are from TVM [5] and
Ansor [7], and the other modules are ours.

Graph Attention Network (GAT) consists of the graph neural
network (GNN) module and the multi-head self-attention (MHSA)
module, as shown in Figure 3. Structural analysis is conducted on
the graph to get the structural features, including the types of oper-
ations, dimensions of data, etc. These features are the inputs to the
graph neural network layers which will be discussed in Section 3.2.
The output of the graph neural network is the structural features

Kernel

Bias

Data

Out

Pad

Conv

Sum

Act

Comp. Graph

Code

Analy.

Multi-head

Self-attention MLP

Concat.

Gen.

Kernel

Codes

Statistical

Features

Structural

Features

Perf.

DAG

Analy.

Graph Attention Network

Graph Neural

Network

Figure 3: Structure of our graph attention network (GAT).

for the subgraph. The multi-head self-attention module will be dis-
cussed in detail in Section 3.3. Then a multi-layer perceptron (MLP)
is appended to reduce the dimension and map to the performance.

3.2 GAT: Graph Neural Network Module
DNN models usually have different model structures, e.g., the

three structures shown in Figure 4. The distinctive model structures
result in different on-chip scheduling, communication, and compu-
tation patterns. These differences also help distinguish deployment
tasks while their statistical features have no structural information.
In other words, it is easy to identify the deployment tasks given
structural information while the statistical information is incapable.
In this section, the graph neural network is used to learn the repre-
sentations for the subgraphs. Therefore, this part is independent of
the sketches and annotations.

Conv-3

Conv-3

Max-Pool

VGG

Conv-3

Conv-3

ResNet

+

ReLU

FireConv-1

SqueezeNet

Conv-1

Conv-1 Conv-3

Concat

Figure 4: Typical diverse structures in VGG, ResNet (residual
block) and SqueezeNet (fire block). Conv-𝑥 denotes that the
kernel size is 𝑥 .

Each computational subgraph to be implemented as a kernel is
represented as G(V,E), with the node set V and edge set E. V has 𝑛
nodes, i.e., |V| = 𝑛. The neighborhood set is N, with N(𝑣) denoting
the neighbors of 𝑣 . The features for the graph are represented as 𝑿 .
Each vector 𝒙𝑖 ∈ 𝑿 with 𝑖 ∈ {1, . . . , 𝑛} denotes the features for node
𝑣𝑖 ∈ V. Denote the feature length as 𝑑𝑥 , i.e., 𝒙𝑖 ∈ R1×𝑑𝑥 . To learn the
structural information of the computational subgraph, we update
the representations of a node by aggregating information from its
neighbors. Let AGGREGATE(·) denotes the aggregation function,
and a function COMBINE combines the information from neighbors
and the features of the node itself. These functions take the following
common forms:

𝒂𝑘𝑖 = AGGREGATE(𝑘) ({𝒙𝑘−1𝑡 : 𝑣𝑡 ∈ N(𝑣𝑖)}),

𝒙𝑘𝑖 = COMBINE(𝑘) (𝒙𝑘−1𝑖 , 𝒂𝑘𝑖),
(1)

where 𝑘 represents the 𝑘-th iteration of aggregations in the graph
neural network. For 𝑘 = 0, 𝒙𝑘=0

𝑖
is the raw feature of node 𝑣𝑖 itself.

3

WL-GCN
Layers

Mean Pooling

…

Structural
Features

DAG
Analysis
Results

Figure 5: Graph neural network.

Researchers have proposed many aggregation and combination
functions for various applications [17–19]. An important target in
our problem is to distinguish the different model structures. There-
fore, the concept of the Weisfeiler-Leman (WL) test is of vital im-
portance. The WL test is to distinguish the isomorphic graphs via
information propagation and can identify the structural similarities
between graphs. Further, [23] demonstrated that GNNs could be
viewed as an extension of the WL test, which in principle have the
same power but are more flexible in their ability to adapt to the
learning task at hand and are able to handle complicated node fea-
tures. In this paper, we choose to use the graph convolutional layer
used by [23], denoted as WL-GCN, in which the AGGREGATE and
COMBINE steps are integrated. The function of the graph convolu-
tional layer takes the form as follows:

𝒙𝑘𝑖 =𝑾𝑘−1
1 𝒙𝑘−1𝑖 +𝑾𝑘−1

2

∑
𝑣𝑡 ∈N(𝑣𝑖)

𝒙𝑘−1𝑡 , (2)

where𝑾𝑘−1
1 and𝑾𝑘−1

2 denote the learnable weights. Then, the mean
pooling is used to achieve the feature embedding for the computa-
tional subgraph, i.e., the feature vectors of the nodes in the graph
are summed up and averaged as the feature for the graph:

𝑮 =
1
𝑛

∑
𝑣𝑖 ∈V

𝒙𝐾𝑖 , (3)

where 𝑮 denotes the feature embedding for the subgraph, 𝑛 is the
number of nodes, and 𝐾 is the maximum iteration of information
aggregation. The model structure is shown in Figure 5.

3.3 GAT: Multi-head Self-attention Module
The structural features learned by the graph neural network and

the statistical features of the annotations should be analyzed to un-
derstand the complicated relationships between features, enhance
the critical parts and fade out the unimportant parts. Unlike FPGA
and TPU, there are no low-level implementation details on GPU.
Therefore, determining which features are essential for the tasks
should be finished automatically. As discussed above, the statistical
features for GPU are weakly related to the computation patterns. In
Ansor, the statistical features can be briefly categorized into some
groups, i.e., buffer access features, buffer storage features, arithmetic-
related features, etc. Typical features include the number of touched
cache lines, touched memory in bytes, number of floating multi-
plication operations, number of unrolled iterators, etc. They are
unstructured data that are directly concatenated, with no informa-
tion related to the kernel structures. The orders of the features in
the vectors have no physical meanings. To build better performance
models, it is necessary to learn the implicit relationships between
the features while these are the prior knowledge for other types
of devices. For simplicity of notations, the statistical and structural
features after concatenation are briefly denoted as 𝒙 .

Linear

Concat

Scaled Dot-Product Attention

Linear Linear Linear

Multi-head Self-attention

MatMul

SoftMax

Scale

MatMul

heads

x

<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

x

<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

x

<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

x

<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

x

<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

x

<latexit sha1_base64="E+xWb622b2P97o+CO1oWwc/7ors=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYNRo9ELx4hkUcCGzI79MLI7OxmZtZICF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaLSPJb3ZpygH9GB5CFn1Fip/tQrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdlr1K+rFdK1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+AOjRjQQ=</latexit>

Figure 6: Multi-head self-attention with 𝒙 as the query (𝑸),
key (𝑲), and value (𝑽) simultaneously.

Inspired by self-attention mechanisms’ success in the computer
vision field, we propose to use the multi-head self-attention (MHSA)
module to learn the features. To formulate MHSA, we first introduce
the scaled dot-product attention Attn(·). Given queries 𝑸 ∈ R𝑛𝑞×𝑑𝑘 ,
keys 𝑲 ∈ R𝑛×𝑑𝑘 and values 𝑽 ∈ R𝑛×𝑑𝑣 , we have [20]:

Attn(𝑸,𝑲 , 𝑽) = softmax

(
𝑸𝑲⊤√
𝑑𝑘

)
𝑽 , (4)

where𝑛𝑞 ,𝑛,𝑑𝑘 ,𝑑𝑣 are the query number, key number, key dimension
and value dimension, respectively. Then we can define the multi-
head attention as:

MHA(𝑸,𝑲 , 𝑽) = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑯1,𝑯2, · · · ,𝑯ℎ)𝑾𝑂 , (5)

where 𝑯𝑖 is the output of the 𝑖-th attention head, ℎ is the number
of heads and 𝑾𝑂 is the learnable projection weight matrix. 𝑯𝑖 is
computed by:

𝑯𝑖 = Attn
(
𝑸𝑾𝑄

𝑖
,𝑲𝑾𝐾

𝑖 , 𝑽𝑾
𝑉
𝑖

)
, (6)

where 𝑾𝑄

𝑖
∈ R𝑑𝑘×𝑑𝑘 , 𝑾𝐾

𝑖
∈ R𝑑𝑘×𝑑𝑘 , 𝑾𝑉

𝑖
∈ R𝑑𝑣×𝑑𝑣 are learnable

projectionmatrices corresponding to the 𝑖-th head. Each query vector
of 𝑸 can attend to all the key vectors of 𝑲 and compute the attention
scores concerning these key vectors. The final output is the weighted
sum of the value vectors of 𝑽 , with attention scores as the weights.
The output projection matrix is𝑾𝑂 ∈ Rℎ𝑑𝑣×𝑑𝑜𝑢𝑡 , where 𝑑𝑜𝑢𝑡 is the
output dimensionality for the multi-head attention function.

To fit the inputs of MHA, we firstly reshape the original vector
𝒙 into several shorter vectors. Denote the original length of 𝒙 as 𝑙 .
Then the reshaped 𝒙 , denoted as 𝒙𝑅 , has the shape ℎ × 𝑙

ℎ
, where ℎ is

the number of heads in MHA. The 𝒙𝑅 is used as the query (𝑸), key
(𝑲), and value (𝑽) simultaneously. MHA becomes multi-head self-
attention (MHSA), which captures global dependencies among the
inputs, as shown in Figure 6 and Equation (7).

SelfAttn
(
𝒙𝑅𝑾𝑄

𝑖
, 𝒙𝑅𝑾𝐾

𝑖 , 𝒙
𝑅𝑾𝑉

𝑖

)
. (7)

According to Equation (4), the inner products between vectors in 𝒙
are computed. These products characterize the similarities between
the feature vectors. Further, these similarities reflect the implicit
relationships among the features, including the scheduling of the
subgraphs, memory patterns, which features are related to each other
or have similar influences on the performance, etc. The similarity
values are then used as the weight scores to sum the values, i.e.,
vectors in 𝒙𝑅 itself. The connections between MHSA and inference
latency are learned through model training. And the weights in

4

MHSA will be updated to enhance the critical parts of the features
and fade out the unimportant parts.

4 Experiments
In this section, we conduct experiments on our GTuner to vali-

date the performance. The experimental inference platform is Nvidia
GeForce RTX 3090 (Ampere architecture, SM86), with CUDA Driver
11.4, PyTorch 1.10, and TVM 0.8-dev. The CPU is 16 core Intel(R)
Xeon(R) Gold 6226R CPU @ 2.90GHz. Some public models defined
in TVM Relay library are tested, including ResNet-18, ResNet-34
[24], MobileNet V1 [25], and SqueezeNet V1.1 [26]. The representa-
tive DNN layers widely used in both industries and academia are
all covered in these models, including conventional convolutional
layers, shortcut layers, multi-branch layers, fully connected layers,
depth-wise convolutional layers, etc. The tuning history of Ansor
(with XGBoost as performance model) on Inception-V3 and VGG-11
is collected as the training data to train the models, in total about
170000 annotations. Some baselines are compared in the experiments
to prove the effectiveness of our method, including Ansor [7], Au-
toTVM [8], PyTorch, and PyTorch with JIT optimization [27]. The
performance metric is the end-to-end inference latency of the model.
We also show the results of Giga floating operations per second
(GFLOPS), which reflects the peak computation speed of a task on
the device.

4.1 Implementation Details
Our GATmodel has twoWL-GCN layers [23] to process the graph

features, a mean pooling layer, a concatenation layer (to concatenate
statistical and graph features), a fully-connected layer (downscale
the features to 512), a four-head multi-head self-attention layer (i.e.,
ℎ = 4), and an MLP regression module (with output dimensions:
200-100-20-1). In the benchmarks and Ansor, there are 136 elements
representing the types of nodes, inputs, outputs, data shapes, types
of operations, etc. The graph embedding has 136 elements after graph
pooling. The statistical features reported by Ansor have 656 elements
and are concatenated with the graph features and downscaled to 512
via the fully-connected layer.

The baseline multi-head self-attention (MHSA) comprises a four-
head multi-head self-attention layer (the same as ours) and an MLP
regression module (also the same as ours) without graph module
and structural features.

We train the models with Adam optimizer for 300 epochs with
a learning rate 1e-4 and batch size 512. The loss function is mean
square error (MSE). The regression target is inference latency. We
denote our method as GTuner (GNN + MHSA) in the result tables
for ease of explanation.

Our method’s genetic algorithm optimization process and the
baselines all follow the default settings of TVM. The different num-
bers of measure trials are compared in the ablation studies. Note that
except for the ablation studies on the measure trials, the measure
trials of other results are 80 trials per subgraph. In other words, for
a DNN model, the total number of measure trials is the product of
the number of subgraphs and 80 trials.

4.2 Ablation Studies on GAT Structure
We compare our method with some widely-used graph convolu-

tional layers, including spectral graph convolution (SpecGCN) [28],
masked attention convolution (MaskGAT) [29], and GraphSAGE
[30]. SpecGCN propagates information in the graph via a first-order

Table 1: Comparisons between Convolutional Layers

ResNet-18 Ansor GTuner (WL-GCN) SpecGCN MaskGAT GraphSAGE

Latency (ms) 1.073 0.923 1.016 1.105 1.168

Table 2: Performance without GNN or MHSA

ResNet-18 GTuner (GNN + MHSA) MHSA GNN + MLP

Latency (ms) 0.923 0.963 1.121

approximation of localized spectral filters on the graphs. Learned fil-
ters are used to represent the nodes in the Fourier domain. MaskGAT
introduces the attention-based architecture to compute the hidden
representations of the nodes by using masks during information ag-
gregation. GraphSAGE learns a function that generates embeddings
by sampling and aggregating features from a node’s local neighbor-
hood to improve the generalization abilities to unseen nodes.

We replace the WL-GCN layers in GAT with these three convo-
lutional layers. Under the same training and experimental settings,
the inference latencies of ResNet-18 are listed in Table 1. The results
show that these methods have poor performance in this problem. As
mentioned before, graph isomorphism is important in our context.
These methods fail to learn this kind of isomorphism and fall into
the trap of overfitting to the training set and therefore are incapable
of tackling new tasks and the isomorphic graphs with different vol-
umes of computations and communications. SpecGCN outperforms
Ansor (1.016 < 1.073, i.e., 5.31%). MaskGAT and GraphSAGE force
the model to ignore some information to improve the generalization.
It degrades the performance significantly since the important topo-
logical and scheduling knowledge is discarded. These techniques
achieve good results on big data problems, e.g., social networks and
recommendation systems with millions of nodes and edges. In our
problem, the structures of graphs are limited compared with these
applications, and it is unacceptable to forget information.

Further, to validate the performance of our proposed MHSA mod-
ule, we do the ablation study via dropping the MHSA module in
GAT. The outputs of the GNN module and the statistical features are
concatenated and then directly passed to a fully-connected layer to
achieve a feature vector with length 512. Then this feature vector
is passed to the same MLP regression module. This experiment is
denoted as GNN + MLP in Table 2. For comparison, the baseline
MHSA is also listed. Results show that the combination of our GNN
and MHSA achieves the best performance.

4.3 Ablation Studies on GPU Measure Trials

The genetic algorithm implemented by TVM is adopted as the de-
fault searching algorithm in Ansor and our method. Interacting with
GPU helps validate the designs found by the searching algorithms.
Therefore, more interactions (measure trials) will find better solu-
tions. Some experiments are conducted on ResNet-18 to reveal the
performance of our method under different measure trials, as shown
in Figure 7. The numbers of measure trials are 5, 10, 15, . . . , 60. The
ratios of latencies with respect to Ansor are shown in Figure 7(b).
With the increases in measure trials, both Ansor and our GTuner
can find better results, while our performance advantages compared
with Ansor are still remarkable (more than 10%).

5

5 30 60
0.0

2.5

5.0

Trials Per Subgraph

L
a
te
n
cy

(m
s)

Ansor GTuner

(a)

5 30 60

60

80

100

Trials Per Subgraph
R
a
ti
os

of
L
at
en
cy

(%
) Ansor GTuner

(b)

Figure 7: Results of different measure trials.

1 8 16 24
0.0

0.05

0.10

0.15

Subgraphs

L
a
te
n
cy

(m
s)

Ansor

(a)

1 8 16 24
0

100

280

Subgraphs

G
F
L
O
P
S
(%

)

GTuner

(b)

Figure 8: Detail results of subgraphs in ResNet-18.

Table 3: End-to-end Model Inference Latency (ms)

Model PyTorch PyTorch-JIT AutoTVM Ansor MHSA GTuner +

ResNet-18 27.180 4.119 1.056 1.073 0.963 0.923 (13.98%)
ResNet-34 48.988 5.929 1.180 0.968 0.907 0.872 (9.92%)
SqueezeNet 16.658 3.648 0.311 0.207 0.201 0.197 (4.83%)
MobileNet 30.324 6.972 0.513 0.242 0.252 0.227 (6.20%)
+ Ratios are performance improvements compared with Ansor.

Table 4: Time Costs (minutes) of the Optimization Processes

Model Ansor MHSA GTuner AutoTVM

ResNet-18 45.57 45.95 46.94 65.22
ResNet-34 46.66 48.89 50.71 54.86
SqueezeNet 43.53 44.40 45.91 63.90
MobileNet 42.88 43.80 44.20 61.60

4.4 Performance of the Whole framework
Detailed results of subgraphs in ResNet-18 are shown in Figure 8,

including the inference latencies and GFLOPS. The GFLOPS values
are represented as ratios to Ansor. It is shown that our method
reduces the latencies and improves the GFLOPS on most subgraphs.
The performance improvements on the difficult subgraphs (with
long latencies) are inspiring.

The end-to-end inference latencies of the DNN models are listed
in Table 3. The results demonstrate the significant advantages of
our method compared with the baselines. The proposed multi-head
self-attention module improves the performance based on Ansor.
The graph network module in our GTuner further improves the
performance. On the four models in Table 3, our method reduces
the latencies by 13.98%, 9.92%, 4.83%, and 6.20%, respectively, com-
pared with Ansor, and more than 30% on average compared with
AutoTVM. The two PyTorch-based methods are rule-based, and their
performance is not satisfying. The results also reveal that using the
graph structural features helps improve the generalization of the
performance model to new tasks that do not exist in the training set.
The time costs of the whole optimization processes of TVM-based
methods are listed in Table 4, including the searching processes of
the genetic algorithm, the compilations of codes, and the interactions
with GPU. It is shown that our performance improvements have no
extra overheads on the time costs.

5 Conclusion
This paper proposes a novel method GTuner to optimize the com-

putations of DNN models on GPU. The computational graphs are
learned via the WL graph isomorphism convolutional layers to ex-
tract high-quality features. The structural and statistical features are
jointly learned via the multi-head self-attention module to improve

the regression quality. Our results outperform the baselines and
prove the effectiveness of GTuner.

Acknowledgment
This work is partially supported by SmartMore and ITF Partner-

ship Research Programme (No. PRP/65/20FX).

References
[1] S. Han et al., “Deep Compression: Compressing deep neural networks with pruning,

trained quantization and huffman coding,” in Proc. ICLR, 2016.
[2] T. Chen et al., “An efficient sharing grouped convolution via Bayesian learning,”

IEEE TNNLS, 2021.
[3] X. Zhang et al., “Exploring HW/SW co-design for video analysis on CPU-FPGA

heterogeneous systems,” IEEE TCAD, 2021.
[4] T.-M. Li et al., “Differentiable programming for image processing and deep learning

in Halide,” ACM SIGGRAPH, 2018.
[5] T. Chen et al., “TVM: An automated end-to-end optimizing compiler for deep

learning,” in Proc. OSDI, 2018.
[6] B. H. Ahn et al., “CHAMELEON: Adaptive code optimization for expedited deep

neural network compilation,” in Proc. ICLR, 2020.
[7] L. Zheng et al., “Ansor: Generating high-performance tensor programs for deep

learning,” in Proc. OSDI, 2020.
[8] T. Chen et al., “Learning to optimize tensor programs,” in Proc. NeurIPS, 2018.
[9] Q. Sun et al., “Deep neural network hardware deployment optimization via ad-

vanced active learning,” in Proc. DATE, 2021.
[10] J. Mu et al., “A history-based auto-tuning framework for fast and high-performance

DNN design on GPU,” in Proc. DAC, 2020.
[11] Q. Sun et al., “Fast and efficient DNN deployment via deep Gaussian transfer

learning,” in Proc. ICCV, 2021.
[12] C. Hao et al., “FPGA/DNN co-design: An efficient design methodology for IoT

intelligence on the edge,” in Proc. DAC, 2019.
[13] Z. Song et al., “GPNPU: enabling efficient hardware-based direct convolution with

multi-precision support in GPU tensor cores,” in Proc. DAC, 2020.
[14] Y.-H. Chen et al., “Eyeriss v2: A flexible accelerator for emerging deep neural

networks on mobile devices,” IEEE JETCAS, 2019.
[15] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor processing unit,”

in Proc. ISCA, 2017.
[16] Z. Wu et al., “A comprehensive survey on graph neural networks,” IEEE TNNLS,

2020.
[17] K. Xu et al., “How powerful are graph neural networks?” in Proc. ICLR, 2019.
[18] J. Lee et al., “Self-attention graph pooling,” in Proc. ICML, 2019.
[19] J. Atwood et al., “Diffusion-convolutional neural networks,” in Proc. NeurIPS, 2016.
[20] A. Vaswani et al., “Attention is all you need,” in Proc. NeurIPS, 2017.
[21] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image

recognition at scale,” in Proc. ICLR, 2021.
[22] N. Carion et al., “End-to-end object detection with transformers,” in Proc. ECCV,

2020.
[23] C. Morris et al., “Weisfeiler and Leman go neural: Higher-order graph neural

networks,” in Proc. AAAI, 2019.
[24] K. He et al., “Deep residual learning for image recognition,” in Proc. CVPR, 2016.
[25] A. G. Howard et al., “MobileNets: Efficient convolutional neural networks for

mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017.
[26] F. N. Iandola et al., “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters

and < 0.5 mb model size,” arXiv preprint arXiv:1602.07360, 2016.
[27] A. Paszke et al., “Automatic differentiation in PyTorch,” in NIPS Workshop, 2017.
[28] T. N. Kipf et al., “Semi-supervised classificationwith graph convolutional networks,”

in Proc. ICLR, 2017.
[29] P. Veličković et al., “Graph attention networks,” in Proc. ICLR, 2018.
[30] W. Hamilton et al., “Inductive representation learning on large graphs,” in

Proc. NeurIPS, 2017.

6

