L-Shape Based Layout Fracturing for E-Beam Lithography

Bei Yu, Jhih-Rong Gao, and David Z. Pan
Dept. of Electrical & Computer Engineering
University of Texas at Austin

Supported in part by NSF and NSFC
Outline

- Introduction
- Problem Formulation
- Algorithms
 - Rectangular Merging (RM) Algorithm
 - Direct L-Shape Fracturing (DLF) Algorithm
- Experimental Results
- Conclusion
- **E-Beam lithography (EBL)**
 - Widely deployed in mask manufacturing
 - Promising candidates for sub-22nm
- **Conventional EBDW: variable shaped beams (VSB)**
Layout Fracturing

- Fundamental step before EBL writing
- Decompose layout pattern => non-overlapping rectangles
- Shot number dramatically increases for sub-22nm
 > More complicated OPC

E-beam Shot Count Estimates by Node
(note: all shot count numbers = billions)

<table>
<thead>
<tr>
<th>Node</th>
<th>M1 actual</th>
<th>M1 (2x scaling per node)</th>
<th>M1 (4x)</th>
<th>M1 (8x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>620</td>
<td>2480</td>
<td>9920</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>310</td>
<td>620</td>
<td>1240</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>155</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Courtesy IBM
L-Shape E-beam Shot

- One more aperture cf. rectangular shots
- Potentially reduce shot number by up to 50%
Previous Works

♦ Rectangular fracturing
 › ILP [Kahng, SPIE’04, SPIE’06] or heuristic methods [Dillon, SPIE’08; Ma+ SPIE’11]

♦ L-shape fracturing
 › Report w/o detail algorithms [Sahouria, SPIE’10]
 › In geometrical science, heuristic horizontal slicing
 › However, sliver minimization not considered
Problem Formulation

♦ Input:
 › Layout (a set of polygons)

♦ Output:
 › Fracture the layout into a set of non-overlapping L-shapes and rectangles

♦ Objective:
 › Minimize the shot count (L shapes or rectangles)
 › Minimize the silver length of fractured shots
Outline

- Introduction
- Problem Formulation
- Algorithms
 - Rectangular Merging (RM) Algorithm
 - Direct L-Shape Fracturing (DLF) Algorithm
- Experimental Results
- Conclusion
Two Approaches

- Rectangular Merging (RM) Algorithm
 - Re-use previous rectangular fracturing results
 - Merge rectangles into L-shapes

- Direct L-Shape Fracturing (DLF) Algorithm
 - Direct L-Shape Generation
 - Avoid redundant operations
 - Nice properties to reduce problem size/complexity
Rectangular Merging (RM)

- Given input rectangles (through conventional VSB fracturing)
- Construct graph to represent the relationships
- Edge selection through maximum matching $O(nm \log n)$

![Diagram of rectangular merging process]

Not optimal (3 shots)
Optimal (2 shots)
Direct L-Shape Fracturing

- **Concave vertex**: with internal angle is 270°
- **Cut**: a horizontal or vertical line segment where at least one of the two endpoints is a concave vertex
- **Odd-Cut**: a cut that has odd number of concave vertices on one or both sides of the cut

Lemma 1: A polygon with \(c \) concave vertices can be decomposed into L-shapes with upper bound \(N_{up} = \left\lceil c / 2 \right\rceil + 1 \)

In the diagram:
- An odd-cut
- Concave vertex
- Another odd cut
- \(c = 3 \Rightarrow \) this polygon can be decomposed into two L-shapes
Direct L-Shape Fracturing

- **Chord**: A special cut whose two endpoints are both concave
- **Odd-Chord**: A chord that is an odd-cut

Lemma 2: Dividing a polygon through a chord will not increase N_{up}

Lemma 3: Dividing a polygon with an even number of concave vertices through an odd-chord can reduce N_{up} by 1
Direct L-Shape Fracturing Algorithm

♦ Overall Flow

- Step 1: chord selection and division => independent sub-polygons
- Step 2: odd-cut detection and L-shape fracturing
Odd-Chord Detection and Selection

Odd-Chord Detection

- Check whether odd-chord, from $O(n)$ to $O(1)$
 - Each vertex is associated with parity value p

Theorem 1: In an even polygon, chord ab is odd iff $p_a = p_b$

- All odd-chords can be detected in $O(n \log n)$

Chord Selection

- Prefer odd-chords
 - To reduce shot count N_{up}
- Sliver minimization
- Maximum weighted matching problem
Odd-Cut Detection

- Check whether a cut is odd, in $O(1)$
- Each vertex is associated with (order number, parity)

Theorem 2: In an odd polygon, cut (a, bc) is an odd-cut iff

$$p_a = p_b, \quad \text{if } o_a > o_b$$
$$p_a \neq p_b, \quad \text{if } o_a < o_b$$

- Odd-cut detection can be finished in $O(n\log n)$
Effective Odd-Cut Info Update

- Only update one vertex and four edges, in O(1) time

Update may not be O(1) if odd-cut is a chord

That's why step 1: division by chords
L-Shape Fracturing through Odd-Cut

- After chord selection, initial polygon is divided into a set of sub-polygons
- Fracture each sub-polygon through odd-cuts

Algorithm 1 LShapeFracturing(P)

1: Find all odd-cuts;
2: Choose cut cc considering the sliver minimization;
3: if Cannot find legal odd-cut then
4: Generate an auxiliary cut cc;
5: end if
6: Cut P through cc into two polygons P1 and P2;
7: Update one vertex and four edges;
8: LShapeFracturing(P1);
9: LShapeFracturing(P2);

Runtime complexity $O(n^2 \log n)$
Speed-up Techniques

Select multiple independent odd cuts simultaneously

♦ For odd-polygon (odd # concave pts)

♦ For even-polygon

Practical runtime complexity can be reduced to $O(n \log n)$
Experimental Results

- Implement RM and DLF in C++
- 3.0GHz Linux machine with 32G RAM
- ISCAS 85&89 benchmarks
- Scaled to 28nm nodes
- Lithography simulations and OPC
- Implement rectangular fracturing in [Ma, SPIE’11]
- Sliver parameter $\epsilon = 5\text{nm}$
Compared with [SPIE’11], RM reduces shot no. by 37%

DLF: reduces 39%
Sliver Length Comparison

- DLF can reduce sliver by 82% cf. [SPIE’11], 67% cf. RM
DLF is very efficient, only 11% runtime cf. [SPIE’11]
Runtime Scalability

- DLF scales better than both [SPIE’11] and RM
Conclusion

- This work proposed the first systematic and algorithmic study in EBL L-shaped fracturing.
- Two algorithms are proposed: RM and DLF.
- Sliver minimization is explicitly considered.
- DLF obtained the best results in all metrics.
- EBL is under heavy R&D, including massive parallel EBDW.

 » More research needed on EBL-aware physical design.