Efficient Hotspot Detection via Graph Neural Network

Shuyuan Sun!, Yiyang Jiang!, Fan Yang!*, Bei Yu? and Xuan Zeng'*
LState Key Lab of ASIC & System, School of Microelectronics, Fudan University, China
2Department of Computer Science and Engineering, The Chinese University of Hong Kong, China

Abstract—Lithography hotspot detection is of great importance
in chip manufacturing. It aims to find patterns that may incur
defects in the early design stage. Inspired by the success of deep
learning in computer vision, many works convert layouts into
images, turn the hotspot detection problem into an image clas-
sification task. Traditional graph-based methods consume fewer
computer resources and less detection time compared to image-
based methods, but they have too many false alarms. In this paper,
a hotspot detection approach via the graph neural network (GNN)
is proposed. We also propose a novel representation model to map
a layout to one graph, in which we introduce multi-dimensional
features to encode components of the layout. Then we use a
modified GNN to further process the extracted layout features and
get an embedding of the local geometric relationship. Experimental
results on the ICCAD2012 Contest benchmarks show our proposed
approach can achieve over 10x speedup and fewer false alarms
without loss of accuracy. On the ICCAD2020 benchmark, our
model can achieve 2.10% higher accuracy compared with the
previous approach.

I. INTRODUCTION

With the continuous shrinking of feature size and the in-
creasing circuit complexity, it is extremely difficult to keep the
designed masks and the printed wafers consistent. Designers
may accidentally introduce layout patterns that could cause
fatal defects to the printed wafer because of effects incurred
by the lithography process, particularly in advanced technology
nodes. These patterns are called lithography hotspots, and the
tape-out design should be hotspot-free to ensure that the circuit
works correctly. Traditionally, it is required to perform the
lithography simulation over the whole chip after each design
adjustment to detect the hotspots. Because lithography simu-
lation is highly time-consuming, many approaches have been
proposed to replace lithography simulation in the early design
stage for hotspot detection. The hotspot detection approaches
can be classified into two categories: pattern matching-based
and machine learning-based approaches. These approaches may
not be as accurate as lithography simulation, but they can
significantly save time in the early design stage and speed up
the design cycle. Besides, they can narrow the search range for
subsequent accurate hotspot detection.

For pattern matching-based methods, a density-based lay-
out encoding scheme is proposed in [1]. Then, it applies
principal components analysis (PCA) to discriminate between
the hotspots and non-hotspots. In [2], a tangent space-based
distance metric is proposed to classify the patterns. Generally,
the pattern matching-based approach is faster but can only
detect hotspot patterns which are in the pre-defined library.

For machine learning-based methods, [3] integrates the in-
ception and attention modules into the detection flow. The
classification loss and embedding triplet loss are used together
to guide the learning procedure. In [4], the layout is transformed

*Corresponding authors: {yangfan, xzeng} @fudan.edu.cn.

to the frequency domain via discrete cosine transform (DCT).
The bias learning method is then used to alleviate the unbalance
in hotspot and non-hotspot clips numbers. In [5], inspired by the
truth that layout patterns are binary images and normal pictures
are three-channel colored images, the authors proposed to lever-
age the binary neural network (BNN) to do the classification.
Machine learning-based methods can achieve better accuracy
but may suffer from more false alarms compared to pattern
matching-based methods.

Hotspot detection approaches can also be classified based
on the type of input: image-based and graph-based approaches.
Most hotspot detection approaches, including all the previously
mentioned methods, are image-based, which would be compu-
tationally intensive. There are a few works based on the abstract
graph generated from the layout. In [6], Delaunay triangulation
is used to extract features of hotspot patterns. In [7], the layout
rectangles are represented as the graph nodes, and polygons
with complex shapes are decomposed into rectangles. The
shape of rectangles and the geometric relationship of layout
are all encoded into one weight matrix. In [8], embeddings
of critical patterns are represented as the eigenvector of the
Laplacian matrix of the graph. The experimental results of
[8] achieve 10x speeds up in the benchmark ICCAD2012
[9] compared with previous methods. Although graph-based
approaches are mostly faster than image-based, they all suffer
from unacceptable false alarms. We infer that the poor graph
encoding scheme can not fully capture the information of lay-
outs, which degrades the performance of graph-based models.

In this paper, we propose to obtain the embedding of layout
via a modified graph neural network (GNN). Message passing-
based GNNss iteratively transform and aggregate the neighbor-
hood information. The node can capture further knowledge
of the graph by stacking more layers of GNNs. The node
embedding incrementally accumulates the local information of
the graph. We use the multi-layer perceptron (MLP) to perform
transformation on the feature vectors. The major contributions
of this work are summarized as follows.

o We leverage a modified GNN to learn a better embedding
of the layout. It can significantly accelerate the hotspot
detection flow. Besides, it is more adaptable compared to
other deep learning-based methods. Traditional convolu-
tion neural networks must have fixed-size layout images
as input, but the proposed approach can take in any size
of layouts without adjustments to the GNN model.

o We build a graph model to represent the layout. Rectangles
are represented by nodes, and edges are created between
neighboring nodes. Node embeddings indicate the intrinsic
properties of rectangles. Edge embeddings describe the
relative position relationship between adjacent rectangles.
In this way, the constructed graph could maximumly
reserve the geometric information of one layout.

o We propose a graph neural network that can process both
multi-type and multi-dimensional edges inspired by [10],
[11].

e In the benchmark ICCAD2012 [9], our model can achieve
over 10x speedup and fewer false alarm without signifi-
cant loss of accuracy. In the more challenging benchmark
ICCAD2020 [3], our model achieves average 2.52% higher
accuracy compared with [3].

The rest of the paper is organized as follows. In Section II, we
will present the background of hotspot detection and graph neu-
ral network. In Section III, we propose the GNN-based hotspot
detection approach. In Section IV, the experimental results are
presented to demonstrate the efficiency of the proposed method.
In Section V, we conclude the paper.

II. BACKGROUND

In this section, we will present some preliminary knowledge
about hotspot detection and then review the background of
graph neural networks (GNNs).

A. Problem Formulation

Definition 1 (Accuracy): The ratio of correctly predicted
hotspots among the set of actual hotspots [9].
#TP

A = — 1

ccuracy TP + £FN ()

#TP denotes the number of clips that are truly positive

predicted. #FN denotes the number of actual hotspot clips
missed by the detector.

Definition 2 (False Alarm): the number of incorrectly pre-
dicted non-hotspots [9].

FalseAlarm = #FP.)

Problem 1 (Hotspot Detection): Given a collection of clips
that contains hotspot and non-hotspot patterns, our goal is to
train a classifier that can maximize the accuracy and minimize
the false alarm.

B. Graph Neural Networks

Graph Neural Networks (GNNs) iteratively apply aggrega-
tion and transformation on nodes to extract multi-scale local
information. Many variants of GNNs have been proposed
recently, such as graph convolutional network (GCN) [12],
RGCN [11] and EdgeConv [10].

GCN [12] applies one-order localized convolution for each
node in the graph. In every GCN layer, each node transforms
and aggregates the features of its neighboring nodes.

S WO+ w0)).

* \JeENG)

f(Ui)(lH) =
3

where, f (vi)(l) € R represents the feature of node v; in
the I* layer of the neural network, with d(*) being the dimen-
sionality of the feature of the I layer, W) e Ra‘™xd"
is the transformation matrix in [*" layer. N (i) denotes the
neighboring nodes of node i. o () represents the activation
function. ¢; is the normalization constant.

/;

@-- (D01
(@) (b)
0—@\‘ EEIGE
g D200 PO
W] [P0]
() @

Fig. 1: (a) is the original graph, (b), (c), and (d) respectively ex-
plain how the embedding generators of GCN [12], RGCN [11]
and EdgeConv [10]. In (b), W denotes the transformation
matrix. In (c), W, denotes the transformation matrix applied
in relation r. In (d), p(-) denotes the edge generation function.

As shown in Equation (3), GCN does not distinguish the
types of edges. In RGCN [11], different transformation matrices
are used for different types of edges.

F(vs) l+1) Z Z 7W(l

r€ER FEN (i,r) Ci,r

(03) ' + W5 £ ()"

“)
where N (i,7) denotes the set of neighboring nodes of node i
with edge type » € R. R denotes the set of types of edges. W
denotes the transformation matrix of previous node embedding.
¢;,r s the normalization constant for edge type r. W, is the
transformation matrix for edge type r.
In [10], the EdgeConv is proposed to further leverages the
feature of edges.

1) =p (1O @), 1 @), 5)

where f (eij)(l) denotes the feature vector of edge e;; in
Ih Jayer. p(-) is a function to generate the edge embedding
with the features of connected nodes as inputs. The features
of edges are then used to update the features of nodes. It use
‘max’ aggregation instead of ‘mean’.

NG (D) 6
J(vg) jr&}ll%f(em) (6)
An illustration of GCN [12], RGCN [11] and EdgeConv [10]
is shown in Figure 1.

III. PROPOSED GNN-BASED HOTSPOT DETECTOR

In this section, we will present our proposed GNN-based
lithography hotspot detector (GNN-HSD). We creatively pro-
pose a novel approach to map a layout to one graph. A
modified graph neural network (GNN) is adopted to further
process features of nodes and edges. In this way, we get a
good representation of the layout and use it to do the hotspot
classification.

A. Graph Representation of Layout

In Figure 2, we show a small cut from one actual layout clip.
Polygons represent all graphics on the layout. In Figure 2, the
rectangle a and rectangle b together form one polygon of the

Fig. 2: An example of the graph representation of layout: dashed lines denote edges of type r¢, and solid lines denote edges of
type r1. The situation in the right box explains how to construct edges of type r;. The situation in the left box explains how to
decompose long rectangles, which also can be seen as the creation process of edges of type 7¢.

layout. We use a graph G = (V| E, R) to represent the layout
pattern. Here, V' denotes the node set. Each node corresponds
to a rectangle in layout. For complex polygons, we decompose
them into rectangles. For rather long rectangles, we further
decompose them into small ones. Thus, there would not be
too much information of neighboring nodes that have to be
aggregated.

In the graph G = (V, E, R), E represents the edges between
the nodes. R denotes the type set of edges. There are two types
of edges, i.e., R = rg,r; in our built layout graph. The edges
of type ro connect rectangles belonging to the same polygon.
In other words, the decomposed rectangles are connected by
edges of type ro. Edges of type r; connect rectangles that are
adjacent but not fractured from the same polygon. A threshold
of distance hB is introduced here. If two rectangles overlap
after inflating distance of hB in all directions, an edge of type
r1 will connect this two rectangles. Rectangles that are too close
would affect each other during lithography, thus more possibly
resulting in lithography hotspots. The threshold 2B of distance
is determined by the technology. For example, we can set hB
to half of the feature size of the technology. In this way, we
can construct a layout graph with two types of edges. GNN can
identify these two types of neighbors and treat them differently
in the information propagation process.

We show an example of the graph representation in Figure 2.
We decompose all polygons in the layout and represent them
as nodes in the graph. In the left bottom box of Figure 2, the
long rectangle is decomposed into small rectangles g and h.
Then we create edges between adjacent rectangles (nodes). In
the right box in Figure 2, the distances between rectangles e, d,
and a are lower than the threshold A B. Thus, in the built layout
graph, nodes e and d are connected to node a through edges
of type r1. Note that rectangle c is far away from rectangle a,
so they are not connected.

Compared to [8], we further decompose long rectangles into
rectangles. It can efficiently represent the complex relationships
of patterns. Also, we introduce more features of edges and
nodes into the layout graph. In [8], a single weight value is used
to represent the connection between two rectangles. It only uses
a constant value to represent the connection between rectangles.
Our methods use multi-dimensional feature vectors of nodes
and edges, which may be more representative than the weight
encoding method. Since more features are introduced in our
proposed approach, the false alarms can be greatly suppressed,
as proved by the experimental results.

B. Features of Nodes and Edges

For graph node representation, we take five intrinsic features
of the rectangle to form a embedding of one node. The five

TABLE I: Notions in this paper.

G = (V,E,R) The graph generated from layout

er Edges that satisfied with relation r

O Edge relation, if the edge connect nodes from the
same polygon

1 Edge relation, if the edge connect nodes from differ-
ent polygons

V5 Node ¢ belong to the node set V'

N (v;) All neighboring nodes of v;

N(vi,T) Neighboring nodes of v;, connected by type r edges

) The feature vector of a node or an edge

h() The feature vector of a neighbor

features of the rectangle are stated as follows.

e x_range: the length of rectangles in the x-direction;

e y_range: the length of rectangles in the y-direction;

e min_dist: the minimum distance to the nearest connected
rectangle with the edge of type 71;

e shape_complexity: the number of edges of type r¢. It is
used to measure the complexity of the polygon it belongs
to. Note that edges generated by cutting long polygons are
not considered here;

e env_complexity: the number of edges of type r1. It is used
to measure the complexity of its local environment.

We concatenate the above five features into one vector, which
is taken as the embedding of one node. Unlike [10], we cannot
extract the features of nodes by simply adding or subtracting the
coordinates of the rectangles. Because rectangles, unlike points,
have shapes and more complex relationships. By only adding or
subtracting the center points of two rectangles, the information
of the shapes and relationships of rectangles is missing. We can
see from Figure 3, even though rectangles B and C share the
same center point, their spatial relationships to rectangle A are
different.

For edges of type ¢, their features are defined by positions
of the junction points of two rectangles. For edges of type 71,
their features are defined based on the ‘projection box’ of two
rectangles. Illustrated in Figure 3, the ‘projection box’ of two
rectangles A and B is the gray rectangle between them. Taking

™ -
8 e
b

Xg

! —q "
A @ x Ya
0 ‘/‘
0 drx R
XA

Fig. 3: Illustration of the edge feature. f(ea p)=(1, 1-d;/x 4,
1’ dy/yA)» f(eB,A):(15 O’ dw/‘rB’ ‘dy/yB)'

FUSION() @
€1.9 ve— h12 @
, ; 5
€13 Us—> hy 4 @

Fig. 4: The generation of neighboring feature vectors.

the edge of type 1 between rectangles A and B as an example,
its feature f(ea g r,) is defined as (fo, f1, f2, f3). A coordinate
system origin from the lower-left point of rectangle A is built.
fo denotes the projection relationship of two rectangles A and
B. One rectangle defines two intervals along the x and y
directions, respectively. If the x intervals of A and B overlap,
fo equals to 1. If the y intervals of A and B overlap, f equals
to 0. If both z and y intervals of two rectangles overlap, which
indicates these two rectangles overlap and they belong to the
same polygon. These two rectangles would be connected by an
edge of type r(instead of 1. f1 and f; denote the coordinates
of the overlap interval along = and y directions, respectively.
f3 denotes the projection distance between rectangles A and
B. And f, f5, and f3 are normalized by the length of rooted
rectangle in x and y directions. We show an example of how
to get features of an edge of type r; in Figure 3.

C. Embedding Generation

After obtaining the initial features of nodes and edges, we
use a modified graph neural network (GNN) to generate the
final representations of graph nodes. Note that the initial feature
vector x,, of a node only indicates the intrinsic properties of
one rectangle. To represent the local geometric relationships via
the generated node embeddings, we apply the message passing-
based GNN on the layout graph. At each layer of GNNs, each
graph node performs transformation and aggregation on feature
vectors of its neighboring nodes. By stacking K layers of GNN,
each graph node can learn a K-depth local knowledge of the
graph.

In GCN [12], edges can only take binary or scalar val-
ues to describe connections in the graph. While in the con-
structed graph, the feature vectors of edges f(e; ;) are multi-
dimensional. To fully capture the inner interaction between
graph edges and their connected nodes, a two-layer multi-layer
perceptron (MLP) with dropout rate is introduced, which is
denoted as the function FUSION (). Function FUSION(-)
injectively maps the combination of edge e; ; and its connected
node v; to a new feature vector h; j, as shown in Figure 4.
Because its output embeddings concerns both the edge and the
connected node, we call it the neighbor vectors.

After that, we take the elementwise mean of the vectors
in {h”,ij € N (v;,7)} to derive a general vector hlfv(vi,r)’
this operation is denoted as AGGR(-) in Algorithm 1. The
mean aggregator AGGR is proposed in [13]. The output of
AGGR() is denoted as h?\,(vm) which stands for a certain type
of neighbors. N (v;,r) denotes the set of neighbor indices of
node v; under relation r € R. As mentioned in Section III-A,
there are two types of edges corresponding to different con-
nections between rectangles in the constructed layout graph.
To distinguish them, we separately deal with these two types

of neighbors via two trainable networks FUSION,(-) and
respectively generate neighbor vectors. Finally, we concatenate

{hN(v r),Vr € R} and get the neighborhood
vector hy,, ;. which stands for all neighbors of v; in the scope.

all vectors in

Algorithm 1 GNN embedding generation algorithm

1: Input : Graph G(V, E, R); input node features z,, v € V;
input edge features z., e € E; depth K; relations r € R;

2: Output : vector representation z, for the whole graph;
3 fO() v EV;

4 f9e) « ze, e € E;

5: for k=1..K do

6: for rin R do

7 hf,j = FUSION, (fk_l(vj), fk_l(eid‘)r));

8: hf\,(vw) = AGGR ({hf,j,ij € N (vi,7)});

9: end for

0 B, = CONCAT ({h,, . ¥r € R});

11: f(v) = UpdateNode (f*~1(v), h?\/’(v))’

122 f*(e) = UpdateEdge (fk’l(e), hlfv(v))?
13: end for

14: z, + fX(v),Yv e V;

15: z4 < GlobalMaxPool ({z,});

16: return z,;

The generation procedure of neighborhood vector hy,
injectively maps the neighboring information of a node to a low-
dimensional vector. We incorporate the neighborhood vector
Rk, , with the previous layer node vector f (v;)F~1 to update
the node embeddings. In the first layer of the modified GNN,
the local geometric situation and the intrinsic properties of
the rectangle are merged to update the node embeddings. In
Algorithm 2, we leverage a one-layer MLP to do the node
update. The following Equation (7) demonstrates the node
update. Note that function ¢(-) also is represented as the
function UpdateNode(-) in Algorithm 2.

f<v§k)) (EVk<)v>’f(Y)) @

In traditional GNNs, edge features are commonly fixed
during the iteration. And as node embeddings repeatively get
updated, fixed edge embeddings can not well interpret the rela-
tionship between nodes. In [10], the spatial information of two
connected nodes are used to update the edge embeddings via
Equation (5). In our case, the neighbor vector h(,) carries the
geometric information. So we replace node embeddings with
the neighborhood vectors Ay (,). To utilize the edge embeddings

Fig. 5: The aggregation of a two-layer GNN.

of the previous layer, we add a single self-connection to each
edge. Note that the initial edge vector x. describes the relative
position relationship between two adjacent rectangles. Equa-
tion (8) is the modified edge update function. In Algorithm 2,
function UpdateEdge(-) further expands Equation (8). The
matrices W7 and Wy in Algorithm 2 and W in Equation (8)
all perform dimensional conversions.

F(e) =p (MR 100)+ W £ (470) ®

Algorithm 2 Node & Edge update functions

1: Input : node feature f(v); edge feature f(e;;); neighbor
feature h(,); transform matrices W;

Output : updated node and edge features fi,c.;

: Function 1: UpdateNode (f(v), hy(v))s

fnew(v) =MLP (CONCAT (f(’U), hN(v)));

Function 2: UpdateEdge (hn), f(€i;));

th(v) =Ws- hN(v);

Frew (eij) = MLP (CONCAT (h;v(w), h’N(vj)»;
8: f’rLe'w (eij) = fnew (eij) + W1 ' f (eij);

AN

>

The goal of all previous operations is to deliver an embedding
to best represent the local geometric situation for each graph
node. Each node in the graph applies the transformation and ag-
gregation to its neighboring nodes. More importantly, all nodes
share the same model to process information simultaneously.
The network used in the GNN is similar to the convolution
kernel used in CNN. No matter how big the graph is, the GNN
model size is fixed. And if the size of the input layout changes,
we do not need dimensional adjustments to the GNN-based
model to adapt to the variation.

Finally, we need to find a feature vector to represent the
layout graph. In Algorithm 1, we apply ‘GlobalMaxPool’ on
the last layer embeddings z, of all graph nodes. The ‘Global-
MaxPool’ means to take the maximum value on each dimension
of the node embeddings z, € RN*¥. F is the dimension of the
output feature vector and NV is the number of nodes. In [14],
it is pointed out that ‘max’ aggregation is good at extracting
the primary information of the graph. Therefore, we believe
the obtained graph feature vector can represent the geometric
relationship of the layout clip better.

D. Training Graph Neural Network

Now we get z, € R as the graph embedding. We believe
it can deliver a good representation of the topology of the layout
graph. In this subsection, we will introduce how to calculate
the prediction loss and backward propagate it.

We leverage a two-layer MLP to convert z, € R™F into a
two-dimensional output vector [z, 2], which can be viewed
as a one-hot encoding of the non-hospot/hotspot label. Then
apply softmax function to do normalization:

ern erh

!/ !/
vy =—— = — 9
" etn 4 et P e 4 e ©)

The groundtruth label of the graph is defined as follow:

[Yn, U] = { [1,0],graph label is nonhotspot (10)

[0,1], graph label is hotspot

TABLE II: Benchmark Statistics.

Training Set Testing Set Size/Clip

Benchmarks | —He™——NAS [#HS #NHS | (um?)
ICCAD2012 1204 17096 | 2524 13503 | 3.6 x 3.6
Via-1 3430 10290 | 2267 6878 | 2.0 x 2.0
Via-2 1029 11319 | 724 7489 | 2.0 x 2.0
Via-3 614 19034 | 432 12614 | 2.0 x 2.0
Via-4 39 23010 26 15313 | 2.0 x 2.0
Via-Merge 50700 63653 | 3449 42294 | 2.0 x 2.0

The detection loss function is defined as follow:

L =—(yn-log(a'n) + yn - log (1)) - (11)

It is worth mentioning that the ICCAD2012 dataset [9] is
quite unbalanced. The number of non-hotspot clips is much
bigger than the number of hotspot clips. In this paper, we repeat
the hotspot clips several times into the original training dataset.
In this way, we can achieve a balance in the number of two
classes clips. Also, we adopt the bias learning proposed in [4].
The ground-truth for non-hotspot clips is changed to [1 — ¢,].
We set €=0.38 in this paper. The biased learning increases the
detection accuracy but also introduces more false alarms at the
same time.

IV. EXPERIMENTAL RESULTS

Our approach is implemented in Python with the Pytorch-
geometric toolkit [15]. An nVIDIA RTX 2080 Ti GPU is used
for training and testing. To verify the efficiency and robustness
of our approach, two benchmarks are employed. One is the
ICCAD2012 benchmark [9], and the other is the ICCAD2020
benchmark [3]. Details of these two datasets are listed in
TABLE II. “#HS” denotes the total number of hotspots, and
“#NHS” denotes the total number of non-hotspots. Note that,
the ICCAD2020 benchmark contains clips of the layout of vias.
It is composed of four small datasets (the Via-1 to Via-4) ang
a big merged one (Via-Merge). For more detailed information
of the ICCAD2020 benchmark, please refer to [3].

A. Naive HSD via Graph Model

To illustrate the improvements brought in by GNN, we
construct a naive lithography hotspot detection (HSD) model
without GNN as a comparison. In the naive method, after the
feature extraction in Section III-A and Section III-B, we feed
the embedding matrix of nodes X,, € RN*!» and of edges
X, € RF*Ie directly to a MLP for classification. Here, N and
E denote the number of graph nodes and edges, respectively.
I, = 5 and I, = 4 represent the dimensions of input feature
vector of graph nodes and edges. Inspired by [16], we apply
a shared single-layer feedforward neural network a(-) to get
the attention coefficient of nodes and edges. Equations (12)
and (13) show how to get the coefficients of nodes, which also
applies to the edges.

Cy, = @ (f (UL)) 5 (12)
ay, = softmazx (cy,) = Xm. (13)
JEN

After obtaining the attention coefficients o , we respectively
compute the weighted sum of feature vectors of nodes and

TABLE III: Performance Comparisons for the ICCAD2012 and ICCAD2020 Benchmarks.

DAC’19 [5] TCAD’19 [4] ICCAD’20 [3] NAIVE-HSD GNN-HSD

Benchmark Accu FA Time Accu FA Time Accu FA Time Accu FA Time | Accu FA Time
(%) (s) (%) (s) (%) (s) (%) (s) (%) (s)

ICCAD2012 | 98.54 3260 561.28 | 98.40 3535 502.70 | 98.42 2481 143.79 | 87.20 5985 337 | 98.42 1731 32
Via-1 89.85 1886 57.76 71.50 773 43.36 93.42 1589 19.83 89.46 4603 1.75 | 9541 1722 1.93
Via-2 73.00 1222 21.66 65.06 1290 40.02 86.32 1100 13.22 89.23 5492 1.70 | 90.33 1507 1.31
Via-3 73.38 3406 43.15 48.15 760 60.23 88.2 2105 20.69 86.57 6373 195 | 89.81 1928 1.63
Via-4 73.08 15288 51.98 76.92 155 67.44 80.77 152 20.70 76.92 1482 238 | 84.62 400 1.82
Via-Merge 90.42 9295 105.30 | 88.01 7633 165.85 92.2 6453 59.74 88.34 17969 5.62 | 93.33 5502 4.76
Average 83.06 5726.17 140.19 | 74.67 2357.67 146.60 | 89.89 2313.33 46.33 86.29 6984 2.80 | 91.99 2131.67 244
Ratio 0.90 2.68 57.45 0.81 1.11 60.08 0.98 1.09 18.99 0.94 3.28 1.15 1.00 1.00 1.00

edges. Then we concatenate the final embedding of nodes and
edges together to get the embedding of the graph.

f(U) = Zavif(vi)’f(e) - Zaejf(ej)a (14)
iEN JEE
f(G) = concat (f (v), f(e)) . (15)

The following training process is the same as mentioned in
Section III-D. In TABLE III, “GNN-HSD” and “NAIVE-HSD”
respectively correspond to our proposed layout representation
model with and without GNN. Without GNN to aggregate
the information of neighborhood, “NAIVE-HSD” suffers from
unacceptable false alarms in both the ICCAD2012 and the
ICCAD2020 benchmarks. This proves that GNN can deliver
a better representation of layouts and play an important role in
the hotspot detection task.

B. Results Comparison

TABLE III summarizes the performances of the pro-
posed approach and the state-of-the-art approaches for the
ICCAD2012 and the ICCAD2020 benchmarks. The results
of other approaches are from [3]. Columns “DAC’19 [5]7,
“TCAD’19 [17]”, and “TCAD’19 [4]” denote the results of
selected baseline approaches respectively. Columns “GNN-
HSD” and “NAIVE-HSD” correspond to the results of our
proposed approach with and without GNN separately. “GNN-
HSD” outperforms ICCAD’20 averagely with 2.10% on detec-
tion accuracy and about 19x speed up.

Fast detection speed is the main advantage of taking graphs
as the input. Previous graph-based approaches like [8], suffer
from serious false alarms. In [8], a fixed number of nodes is
required to process the layout. Therefore, [8] has to divide the
whole layout into smaller blocks to do the detection. The false
alarm number reaches 40183 in ICCAD2012 in total, which
is unacceptable. Our proposed method solves the problem
of too many false alarms of graph-based approaches. In the
ICCAD2012 benchmark, the false alarm number of “GNN-
HSD” is only 1731 in total.

In the ICCAD2012 benchmark, our proposed approach de-
tects faster than other listed approaches over 20 times. In the
ICCAD2020 benchmark, “GNN-HSD” gains a better accuracy
in all datasets. Note that DAC’ 19 [5] exhibits a slightly better
detection accuracy, but it performs poorly on the ICCAD2020
dataset. In the Via-4 dataset, the false alarm of DAC’19 is
15288, while false alarm of “GNN-HSD” is only 676. The
experimental results show good robustness in our proposed
approach. In conclusion, our proposed “GNN-HSD” model

can detect fast and accurately in the ICCAD2012 and the
ICCAD2020 benchmarks.

V. CONCLUSION

In this paper, GNN-based approach is applied to the hotspot
detection problem. It achieves more than 10x speed up with no
loss of accuracy and fewer false alarms in both the ICCAD2012
and ICCAD2020 benchmarks. In the future, we hope to auto-
matically generate features of graph nodes and edges from the
basic information of the rectangles in the layout.

ACKNOWLEDGEMENT

This research is supported partly by National Key R&D
Program of China 2020YFA0711900, 2020YFA0711903, the
National Natural Science Foundation of China (NSFC) Re-
search Projects under Grants 61822402, 61774045, 62090025,
61929102, 62011530132, and The Research Grants Council of
Hong Kong SAR (No. CUHK 14209420 and CUHK14208021).

REFERENCES

[1] Wan-Yu Wen and et al. A fuzzy-matching model with grid reduction for
lithography hotspot detection. IEEE TCAD, 33(11), 2014.

[2] Fan Yang and et al. Improved tangent space-based distance metric for
lithographic hotspot classification. JEEE TCAD, 36(9), 2016.

[3] Hao Geng, Haoyu Yang, and et al. Hotspot detection via attention-based
deep layout metric learning. In Proc. ICCAD, 2020.

[4] Haoyu Yang, Jing Su, and et al. Layout hotspot detection with feature
tensor generation and deep biased learning. /EEE TCAD, 38(6), 2018.

[5] Yiyang Jiang, Fan Yang, and et al. Efficient layout hotspot detection via
binarized residual neural network. In Proc. DAC, 2019.

[6] Izumi Nitta and et al. A fuzzy pattern matching method based on graph
kernel for lithography hotspot detection. In Design-Process-Technology
Co-optimization for Manufacturability XI, volume 10148, page 101480U.
International Society for Optics and Photonics, 2017.

[7] Andrew B Kahng, Chul-Hong Park, and Xu Xu. Fast dual graph-based
hotspot detection. In Photomask Technology, volume 6349, 2006.

[8] Fan Yang and et al. Efficient svm-based hotspot detection using spectral
clustering. In Proc. ISCAS, 2017.

[9] J Andres Torres. ICCAD-2012 CAD contest in fuzzy pattern matching

for physical verification and benchmark suite. In Proc. ICCAD, 2012.

Yue Wang and et al. Dynamic graph CNN for learning on point clouds.

ACM TOG, 38(5), 2019.

Michael Schlichtkrull, Thomas N Kipf, and et al. Modeling relational

data with graph convolutional networks. In European semantic web

conference, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with

graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

William L Hamilton and et al. Inductive representation learning on large

graphs. In Proceedings of the 31st International Conference on Neural

Information Processing Systems, pages 1025-1035, 2017.

Keyulu Xu and et al. How powerful are graph neural networks? arXiv

preprint arXiv:1810.00826, 2018.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with

PyTorch Geometric. In ICLR Workshop, 2019.

Velickovi¢ and et al. Graph attention networks.

arXiv:1710.10903, 2017.

Ying Chen and et al. Semisupervised hotspot detection with self-paced

multitask learning. IEEE TCAD, 39(7), 2019.

[10]

[11]

[12]

[13]

[14]
[15]
[16]

arXiv preprint

[17]

