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Abstract

In this paper, we propose Parametric Contrastive Learn-
ing (PaCo) to tackle long-tailed recognition. Based on the-
oretical analysis, we observe supervised contrastive loss
tends to bias on high-frequency classes and thus increases
the difficulty of imbalanced learning. We introduce a
set of parametric class-wise learnable centers to rebal-
ance from an optimization perspective. Further, we ana-
lyze our PaCo loss under a balanced setting. Our anal-
ysis demonstrates that PaCo can adaptively enhance the
intensity of pushing samples of the same class close as
more samples are pulled together with their correspond-
ing centers and benefit hard example learning. Experi-
ments on long-tailed CIFAR, ImageNet, Places, and iNat-
uralist 2018 manifest the new state-of-the-art for long-
tailed recognition. On full ImageNet, models trained
with PaCo loss surpass supervised contrastive learning
across various ResNet backbones, e.g., our ResNet-200
achieves 81.8% top-1 accuracy. Our code is avail-
able at https://github.com/dvlab-research/
Parametric-Contrastive-Learning.

1. Introduction

Convolutional neural networks (CNNs) have achieved
great success in various tasks, including image classifica-
tion [22, 43], object detection [31, 34] and semantic seg-
mentation [55]. Especially, with the rise of neural network
search [60, 33, 45, 13, 4], performance of CNNs have fur-
ther taken a big step. However, The huge progress highly de-
pends on large-scale and high-quality datasets, such as Ima-
geNet [40], MS COCO [32] and Places [59]. But when deal
with real-world applications, generally we face the long-
tailed distribution problem – a few classes contain many
instances, while most classes contain only a few instances.
Learning in such an imbalanced setting is challenging as the
low-frequency classes can be easily overwhelmed by high-
frequency ones. Without considering this situation, CNNs
will suffer from significant performance degradation.
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Figure 1: Comparison with state-of-the-arts on ImageNet-
LT [35]. Inference time is calculated with a batch of 64 im-
ages on Nvidia GeForce 2080Ti GPU. The same experimen-
tal setting is adopted for comparison. ResNet-50, ResNeXt-
50, and ResNeXt101 are used for Balanced Softmax [38],
Decouple [28], and PaCo. For RIDE [49], various numbers
of expert with RIDEResNet and RIDEResNeXt are adopted.
PaCo significantly outperforms recent SOTA. Detailed num-
bers for RIDE is in the supplementary file.

Contrastive learning [9, 21, 10, 19, 7] is a major re-
search topic due to its success in self-supervised represen-
tation learning. Khosla et al. [29] extend non-parametric
contrastive loss into non-parametric supervised contrastive
loss by leveraging label information, which trains represen-
tation in the first stage and learns the linear classifier with
the fixed backbone in the second stage. Though supervised
contrastive learning works well in a balanced setting, for im-
balanced datasets, our theoretical analysis shows that high-
frequency classes will have a higher lower bound of loss
and contribute much higher importance than low-frequency
classes when equipping it in training. This phenomenon
leads to model bias on high-frequency classes and increases
the difficulty of imbalance learning. As shown in Fig. 2,
when the model is trained with supervised contrastive loss
on ImageNet-LT, the gradient norm varying from the most
frequent class to the least one is rather steep. In particu-
lar, the gradient norm dramatically decreases for the top 200
most frequent classes.

Previous work [1, 25, 15, 20, 8, 41, 38, 28, 49, 14, 46,
14, 57] explored to rebalance in traditional supervised cross-
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Figure 2: Rebalance in contrastive learning. We collect the
average L2 norm of the gradient of weights in the last classi-
fier layer on ImageNet-LT. Category indices are sorted by
their image counts. The gradient norm varying from the
most frequent class to the least one is steep for supervised
contrastive learning [29]. In particular, the gradient norm
dramatically decreases for the top 200 most frequent classes.
Trained with PaCo, the gradient norm is better balanced.

entropy learning. In this paper, we tackle the above men-
tioned imbalance issue in supervised contrastive learning
and make use of contrastive learning for long-tailed recog-
nition. To our knowledge, it is the first attempt of using
rebalance in contrastive learning.

To rebalance in supervised contrastive learning, we in-
troduce a set of parametric class-wise learnable centers into
supervised contrastive learning. We name our algorithm
Parametric Contrastive Learning (PaCo) shown in Fig. 3.
With such a simple and yet effective operation, we theoret-
ically prove that the optimal values for the probability that
two samples are a true positive pair (belonging to the same
class), varying from the most frequent class to the least fre-
quent class, are more balanced. Thus their lower bound of
loss values are better organized. This phenomenon means
the model takes more care of low-frequency classes, making
the PaCo loss benefit imbalance learning. Fig. 2 shows that,
with our PaCo loss in training, gradient norm varying from
the most frequent class to the least one are moderated bet-
ter than supervised contrastive learning, which matches our
analysis.

Further, we analyze the PaCo loss under a balanced set-
ting. Our analysis demonstrates that with more samples
clustered around their corresponding centers in training, the
PaCo loss increases the intensity of pushing samples of the
same class close, which benefits hard examples learning.

Finally, we conduct experiments on long-tailed version
of CIFAR [16, 5], ImageNet [35], Places [35] and iNatural-
ist 2018 [48]. Experimental results show that we create a
new record for long-tailed recognition. We also conduct ex-
periments on full ImageNet [40] and CIFAR [30]. ResNet

models trained with PaCo also outperform the ones by su-
pervised contrastive learning on such balanced datasets. Our
key contributions are as follows.

• We identify the shortcoming of supervised contrastive
learning under an imbalanced setting – it tends to bias
high-frequency classes.

• We extend supervised contrastive loss to the PaCo loss,
which is more friendly to imbalance learning, by intro-
ducing a set of parametric class-wise learnable centers.

• Equipped with the PaCo loss, we create new record
across various benchmarks for long-tailed recognition.
Moreover, experimental results on full ImageNet and
CIFAR validate the effectiveness of PaCo under a bal-
anced setting.

2. Related Work

Re-sampling/re-weighting. The most classical way to
deal with long-tailed datasets is to over-sample low-
frequency class images [41, 56, 2, 3] or under-sample high-
frequency class images [20, 27, 2]. However, Oversampling
can suffer from heavy over-fitting to low-frequency classes
especially on small datasets. For under-sampling, discard-
ing a large portion of high-frequency class data inevitably
causes degradation of the generalization ability of CNNs.
Re-weighting [23, 24, 51, 39, 42, 26] the loss functions is
an alternative way to rebalance by either enlarging weights
on more challenging and sparse classes or randomly ignor-
ing gradients from high-frequency classes [44]. However,
with large-scale data, re-weighting makes CNNs difficult to
optimize during training [23, 24].

One/two-stage Methods. Since deferred re-weighting and
re-sampling were proposed by Cao et al. [5], Kang et al. [28]
and Zhou et al. [58] observed re-weighting or re-sampling
strategies could benefit classifier learning while hurting rep-
resentation learning. Kang et al. [28] proposed to decom-
pose representation and classifier learning. It first trains the
CNNs with uniform sampling, and then fine-tune the classi-
fier with class-balanced sampling while keeping parameters
of representation learning fixed. Zhou et al. [58] proposed
one cumulative learning strategy, with which they bridge
representation learning and classifier re-balancing.

The two-stage design is not for end-to-end frameworks.
Tang et al. [46] analyzed the reason from the perspective of
causal graph and concluded that the bad momentum causal
effects played a vital role. Cui et al. [14] proposed residual
learning mechanism to address this issue.

Non-parametric Contrastive Loss. Contrastive learning
[9, 21, 10, 19, 7] is a framework that learns similar/dissimilar



representations from data that are organized into simi-
lar/dissimilar pairs. An effective contrastive loss function,
called InfoNCE [47], is

Lq,k+,{k−} = − log
exp(q·k+/τ)

exp(q·k+/τ) +
∑
k−

exp(q·k−/τ)
,

(1)
where q is a query representation, k+ is for the positive
(similar) key sample, and {k−} denotes negative (dissimi-
lar) key samples. τ is a temperature hyper-parameter. In the
instance discrimination pretext task [53] for self-supervised
learning, a query and a key form a positive pair if they are
data-augmented versions of the same image. It forms a neg-
ative pair otherwise.

Traditional cross-entropy with linear fc layer weight w
and true label y among n classes is expressed as

Lcross−entropy = − log
exp(q·wy)∑n
i=1 exp(q·wi)

. (2)

Compared to it, InfoNCE does not get involved with para-
metric learnable parameters. To distinguish our proposed
parametric contrastive learning from previous ones, we treat
the InfoNCE as a non-parametric contrastive loss following
[54].

Chen et al. [9] used self-supervised contrastive learn-
ing SimCLR to first match the performance of a super-
vised ResNet-50 with only a linear classifier trained on self-
supervised representation on full ImageNet. He et al. [21]
proposed MoCo and Chen et al. [10] extended MoCo to
MoCo v2, with which small batch size training can also
achieve competitive results on full ImageNet [40]. In addi-
tion, many other methods [19, 7] are also proposed to further
boost performance.

3. Parametric Contrastive Learning
3.1. Supervised Contrastive Learning

Khosla et al. [29] extended the self-supervised con-
trastive loss with label information into supervised con-
trastive loss. Here we present it in the framework of MoCo
[21, 10] as

Li=−
∑

z+∈P (i)

log
exp(z+ · T (xi))∑

zk∈A(i) exp(zk · T (xi))
. (3)

MoCo framework [21, 10] consists of two networks with the
same structure, i.e., query network and key network. The
key network is driven by a momentum update with the query
network in training. For each network, it usually contains
one encoder CNN and one two-layer MLP transform.

During training, for one two-viewed image batch B =
(Bv1, Bv2) and label y, Bv1 and Bv2 are fed into the query

Table 1: Top-1 accuracy (%) of supervised contrastive learn-
ing on ImageNet-LT with ResNet-50. Implementation de-
tails are in supplementary file. †represents model is trained
with PaCo loss without center learning rebalance.

Method Many Medium Few All

Cross-Entropy 67.5 42.6 13.7 48.4
SupCon 53.4 2.9 0 22.0
PaCo (ours) † 69.6 45.8 16.0 51.0

network and key network respectively and we denote their
outputs as Zv1 and Zv2. Especially, Zv2 is used to update
the momentum queue.

In Eq. (3), xi is the representation for image Xi in Bv1

obtained by the encoder of query network. The transform
T (·) also belongs to the query network. We write

A(i) = {zk ∈ queue ∪ Zv1 ∪ Zv2}\{zk ∈ Zv1 : k = i},
P (i) = {zk ∈ A(i) : yk = yi}.

In implementation, the loss is usually scaled by
1

|P (i)|
and a temperature τ is applied like in Eq. (1). Different from
self-supervised contrastive loss, which treats query and key
as a positive pair if they are the data-augmented version of
the same image, supervised contrastive loss treats them as
one positive pair if they belong to the same class.

3.2. Theoretical Motivation

Analysis of Supervised Contrastive Learning. Khosla et
al. [29] introduced supervised contrastive learning to en-
courage more compact representation. We observe that it is
not directly applicable to long-tailed recognition. As shown
in Table 1, the performance significantly decreases com-
pared with traditional supervised cross-entropy. From an op-
timization point of view, supervised contrastive loss concen-
trates more on high-frequency classes than low-frequency
ones, which is unfriendly for imbalanced learning.

Remark 1 (Optimal value for supervised contrastive learn-
ing). When supervised contrastive loss converges, the opti-
mal value for the probability that two samples are a true pos-

itive pair with label y is
1

Ky
, where, q(y) is the frequency

of class y over the whole dataset, queue is the momentum
queue in MoCo [21, 10] and Ky ≈ length(queue) · q(y).

Interpretation. As indicated by Remark 1, high-
frequency classes have a higher lower bound of loss value
and contribute much more importance than low-frequency
classes in training. Thus the training process can be domi-
nated by high-frequency classes. To handle this issue, we
introduce a set of parametric class-wise learnable centers
for rebalancing in contrastive learning.
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Figure 3: Parametric contrastive learning (PaCo). We introduce a set of para-
metric class-wise learnable centers for rebalancing in contrastive learning.
More analysis is in Section 3.3 for PaCo.
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Figure 4: Curve for Lextra.

3.3. Rebalance in Contrastive Learning

As described in Fig. 3, we introduce a set of paramet-
ric class-wise learnable centers C = {c1, c2, ..., cn} into
the original supervised contrastive learning, and called this
new form Parametric Contrastive Learning (PaCo). Cor-
respondingly, the loss function is changed to

Li=
∑

z+∈P (i)∪{cy}

−w(z+) log
exp(z+ · T (xi))∑

zk∈A(i)∪C exp(zk · T (xi))
,

(4)
where

w(z+)=

{
α, z+∈P (i)
1.0, z+∈{cy}

and

z · T (xi)=
{
z · G(xi), z∈A(i)
z · F(xi), z∈C.

Following Chen et al. [10], the transform G(·) is a two-
layer MLP while F(·) is the identity mapping, i.e., F(x) =
x. α is one hyper-parameter in (0,1). P (i) and A(i) are
the same with supervised contrastive learning in Eq. (3). In

implementation, the loss is scaled by
1∑

z+∈P (i)∪{cy} w(z+)

and a temperature τ is applied like in Eq. (3).

Remark 2 (Optimal value for parametric contrastive learn-
ing) When parametric contrastive loss converges, the op-
timal value for the probability that two samples are a true

positive pair with label y is
α

1 + α ·Ky
and the optimal

value for the probability that a sample is closest to its cor-

responding center cy among C is
1

1 + α ·Ky
, where q(y)

is the frequency of class y over the whole dataset, queue
is the momentum queue in MoCo [21, 10] and Ky ≈
length(queue) · q(y).

Interpretation. Suppose the most frequent class yh has
Kyh

≈ q(yh)·length(queue) and the least frequent class yt
hasKyt

≈ q(yt)·length(queue). As indicated by Remarks
2 and 1, the optimal value for the probability that two sam-
ples are a true positive pair varying from the most frequent

class to the least one is rebalanced from
1

Kyh

−→ 1

Kyt

to

1
1
α +Kyh

−→ 1
1
α +Kyt

. The smaller α, the more uniform

the optimal value from the most frequent class to the least
one is, friendly to low- frequency classes learning.

However, when α decreases, the intensity of contrast
among samples will be weaker, the intensity of contrast be-
tween samples and centers will be stronger. The whole loss
becomes closer to supervised cross-entropy. To make good
use of contrastive learning and rebalance at the same time,
we observe that α=0.05 is a reasonable choice.

3.4. PaCo under balanced setting

For balanced datasets, all classes have the same fre-
quency, i.e., q∗=q(yi)=q(yj) and K∗=Kyi

=Kyj
for any

class yi and class yj . In this case, PaCo reduces to an
improved version of multi-task with weighted sum of su-
pervised cross-entropy loss and supervised contrastive loss.
The connection between PaCo and multi-task is

ExpSum =
∑
ck∈C

exp(ck·F(xi))+
∑

zk∈A(i)

exp(zk · G(xi)).



We also write the PaCo loss as

Li =
∑

z+∈P (i)∪{cy}

−w(z+) log
exp(z+ · T (xi))∑

zk∈A(i)∪C exp(zk · T (xi))

= − log
exp(cy · F(xi))

ExpSum
− α

∑
z+∈P (i)

log
exp(z+ · G(xi))
ExpSum

= Lsup+αLsupcon−(logPsup+αK
∗ logPsupcon)

= Lsup+αLsupcon−(logPsup+αK
∗ log(1− Psup)) ,

where


Psup =

∑
ck∈C exp(ck ·F(xi))

ExpSum
;

Psupcon =

∑
zk∈A(i) exp(zk · G(xi))

ExpSum
.

(5)

Multi-task learning combines supervised cross-entropy
loss and supervised contrastive loss with a fixed weighted
scalar. When these two losses conflict, the training can suf-
fer from slower or sub-optimization. Our PaCo contrarily
adjust the intensity of supervised cross-entropy loss and su-
pervised contrastive loss in an adaptive way and potentially
avoids conflict as analyzed in the following.

3.4.1 Analysis of PaCo under balanced setting

As indicated by Eq. (5), compared with multi-task, PaCo has
an additional loss item:

Lextra = − log(Psup)− αK∗ log(1− Psup). (6)

Here, we take full ImageNet as an example, i.e., q∗ =
0.001, length(queue) = 8192, α = 0.05, αK∗ = 0.41.
Then the function curve for Lextra is shown in Fig. 4. With
Psup increases from 0 to 1.0, the function value decreases
until Psup = 0.71 and then goes up, which implies Lextra

obtains the smallest loss value when Psup = 0.71. Note that,
when the whole PaCo loss in Eq. (4) achieves the optimal
solution, Psup = 0.71 still establishes as demonstrated by
Remark 2. With Psup increases in the training, we analyze
how does it affect the intensity of supervised contrastive loss
and supervised cross-entropy loss in the following.

Adaptive weighting between Lsup and Lsupcon. Note
that the optimal value for the probability that two samples
are a true positive pair with label y is 0.035 as indicated
by Remark 2. We suppose pl, ph ∈ (0, 0.71) and pl < ph.
To achieve the optimal value, when Psup=p, the supervised
contrastive loss value Lsupcon must decrease as in Eq. (7).
Here Psup increases from pl to ph, Lsupcon must decrease
to a much smaller loss value to achieve the optimal solution,
which implies the need to make two different class samples

Lsupcon = −
∑

z+∈P (i)

log
exp(z+ · G(xi))∑

zk∈A(i) exp(zk · G(xi))

= −
∑

z+∈P (i)

log

exp(z+·G(xi))
ExpSum∑

zk∈A(i) exp(zk·G(xi))

ExpSum

= −K∗ log
0.035

1− p
.

(7)

much more discriminative, i.e., increasing inter-class mar-
gins, and thus the intensity of supervised contrastive loss
will enlarge.

An intuition is that as Psup increases, more samples are
pulled together with their corresponding centers. Along with
stronger intensity of supervised contrastive loss at that time,
it is more likely to push hard examples close to those sam-
ples that are already around right centers.

3.5. Center Learning Rebalance

PaCo balances the contrastive learning (for moderating
contrast among samples). However the center learning also
needs to be balanced, which has been explored in [1, 25,
15, 20, 8, 41, 38, 28, 49, 14, 46, 18, 57]. We incorporate
Balanced Softmax [38] into the center learning. Then the
PaCo loss is changed from Eq. (4) to what follows:

Li=
∑

z+∈P (i)∪{cy}

−w(z+) log
ψ(z+, T (xi))∑

zk∈A(i)∪C ψ(zk, T (xi))
,

(8)
where

ψ(zk, T (xi))=

{
exp(zk · G(xi)), zk∈A(i);
exp(zk · F(xi)) · q(yk), zk∈C.

We emphasize that Balanced Softmax is only a practical
remedy for center learning rebalance. The theoretical analy-
sis remains as a future work.

4. Experiments
4.1. Ablation Study

Data augmentation strategy for PaCo. Data augmenta-
tion is the key for success of contrastive learning as indi-
cated by Chen et al. [9]. For PaCo, we also conduct ablation
studies for different augmentation strategies. Several obser-
vations are intriguingly different from those of [37]. We ex-
periment with the following ways of data augmentation.

• SimAugment: an augmentation policy [21, 10] that ap-
plies random flips and color jitters followed by Gaus-
sian blur.

• RandAugment [12]: A two stage augmentation pol-
icy that uses random parameters in place of parameters



Table 2: Comparison with different augmentation strategies
for PaCo on ImageNet-LT with ResNet-50.

Methods Aug. strategy Top-1 Accuracy

PaCo Strategy (1) 55.0
PaCo Strategy (2) 56.5
PaCo Strategy (3) 57.0

tuned by AutoAugment. The random parameters do not
need to be tuned and hence reduces the search space.

For the common random resized crop used along with
the above two strategies, work of [37] explains that the op-
timal hyper-parameter for random resized crop is (0.2,1)
in self-supervised contrastive learning. This setting is also
adopted by other work of [9, 21, 10, 19, 7]. However, in
this paper, we observe severe performance degradation on
ImageNet-LT with ResNet-50 (55.0% vs 52.2%) for PaCo
when we change the hyper-parameter from (0.08,1) to (0.2,
1). This is because PaCo involves center learning while
other self-supervised frameworks only apply non-parametric
contrastive loss as described in Section 2. Note that the
same phenomenon is also observed on traditional supervised
learning with cross-entropy loss.

Another observation is on RandAugment [12]. The work
of [50] demonstrated that directly applying strong data aug-
mentation in MoCo [21, 10] does not work well. Here
we observe a similar conclusion with RandAugment [12].
We experiment with 3 different augmentation strategies of
(1) encoder and momentum encoder input are both with
SimAugment; (2) encoder and momentum encoder input are
both with RandAugment; and (3) encoder input uses Ran-
dAugment while momentum encoder input uses SimAug-
ment. The experimental results are presented in Table 2.
With strategy (3), PaCo achieves the best performance,
showing center learning requires more aggressive data aug-
mentations compared with contrastive learning among sam-
ples.

4.2. Baseline implementation

Contrastive learning benefits from longer training com-
pared with traditional supervised learning with cross-
entropy as Chen et al. [9] concluded, which is also validated
by previous work of [9, 21, 10, 19, 7]. We run PaCo with
400 epochs on CIFAR-LT, ImageNet-LT, iNaturalist 2018,
full CIFAR, and full ImageNet except for Places-LT. With
Places-LT, we follow previous work [35, 14] by loading the
pre-trained model on ImageNet and finely tune 30 epochs
on Places-LT. For a fair comparison on ImageNet-LT and
iNaturalist 2018, we re-implement baselines with the same
training time and RandAugment [12]. Especially, for RIDE,
based on model ensemble, we compare with it under com-
parable inference latency in Fig. 1.

4.3. Long-tailed Recognition

We follow the common evaluation protocol [35, 14, 28]
in long-tailed recognition – that is, training models on the
long-tailed source label distribution and evaluating their
performance on the uniform target label distribution. We
conduct experiments on long-tailed version of CIFAR-100
[16, 5], Places [35], ImageNet [35] and iNaturalist 2018 [48]
datasets.

CIFAR-100-LT datasets. CIFAR-100 has 60,000 images
– 50,000 for training and 10,000 for validation with 100 cat-
egories. For a fair comparison, we use the long-tailed ver-
sion of CIFAR datasets with the same setting as those used in
[6, 58, 16]. They control the degrees of data imbalance with
an imbalance factor β. β= Nmax

Nmin
where Nmax and Nmin

are the numbers of training samples for the most and least
frequent classes respectively. Following [58], we conduct
experiments with imbalance factors 100, 50, and 10.

ImageNet-LT and Places-LT. ImageNet-LT and Places-
LT were proposed in [35]. ImageNet-LT is a long-tailed ver-
sion of ImageNet dataset [40] by sampling a subset follow-
ing the Pareto distribution with power value α=6. It contains
115.8K images from 1,000 categories, with class cardinality
ranging from 5 to 1,280. Places-LT is a long-tailed version
of the large-scale scene classification dataset Places [59]. It
consists of 184.5K images from 365 categories with class
cardinality ranging from 5 to 4,980.

iNaturalist 2018. The iNaturalist 2018 [48] is one species
classification dataset, which is on a large scale and suffers
from extremely imbalanced label distribution. It is com-
posed of 437.5K images from 8,142 categories. In addition
to the extreme imbalance, the iNaturalist 2018 dataset also
confronts the fine-grained problem [52].

Implementation details. For image classification on
ImageNet-LT, we used ResNet-50, ResNeXt-50-32x4d, and
ResNeXt-101-32x4d as our backbones for experiments. For
iNaturalist 2018, we conduct experiments with ResNet-50
and ResNet-152. All models were trained using SGD opti-
mizer with momentum µ = 0.9. Contrastive learning usu-
ally requires long training time to converge. MoCo [21, 10],
BYOL [19] and SWAV [7] train 800 epochs for model con-
vergence. Supervised contrastive learning [29] trains 350
epochs for feature learning and another 350 epochs for clas-
sifier learning.

Following MoCo [21, 10], when we train models with
PaCo, the learning rate decays by a cosine scheduler from
0.02 to 0 with batch size 128 on 4 GPUs in 400 epochs.
The temperature is set to 0.2. α is 0.05. For a fair com-
parison, we re-implement baselines in the same setting for



Table 3: Long-tail recognition accuracy on ImageNet-LT
for different backbone architectures. † denotes models are
trained with RandAugment [12] in 400 epochs. More com-
parisons with RIDE [49] are in Fig. 1.

Method ResNet-50 ResNeXt-50 ResNeXt-101

CE(baseline) 41.6 44.4 44.8
Decouple-cRT 47.3 49.6 49.4
Decouple-τ -norm 46.7 49.4 49.6
De-confound-TDE 51.7 51.8 53.3
ResLT - 52.9 54.1
MiSLAS 52.7 - -

Decouple-τ -norm † 54.5 56.0 57.9
Balanced Softmax † 55.0 56.2 58.0
PaCo† 57.0 58.2 60.0

recent state-of-the-arts of Decouple [28], Balanced Softmax
[38] and RIDE [49] as mentioned in Section 4.2.

For Places-LT, following previous setting [35, 14], we
choose ResNet-152 as the backbone network, pre-train it on
the full ImageNet-2012 dataset (provided by torchvision),
and finely tune it for 30 epochs on Places-LT. Same as that
on ImageNet-LT, the learning rate decays by a cosine sched-
uler from 0.02 to 0 with batch size 128. The temperature is
set to 0.2. α is 0.05. For CIFAR-100-LT, we strictly follow
the setting of [38] for fair comparison. A smaller tempera-
ture of 0.05 and α = 0.02 are adopted for PaCo.

Comparison on ImageNet-LT. Table 3 shows extensive
experimental results for comparison with recent SOTA
methods. We observe that Balanced Softmax [38] still
achieves comparable results with Decouple [28] across
various backbones under such strong training setting on
ImageNet-LT, consistent with what is claimed in the original
paper. For RIDE that is based on model ensemble, we an-
alyze the real inference speed by calculating inference time
with a batch of 64 images on Nvidia GeForce 2080Ti GPU.

We observe RIDEResNet with 3 experts even has
higher inference latency than a standard ResNeXt-50-32x4d
(15.3ms vs 13.1ms); RIDEResNeXt with 3 experts yields
higher inference latency than a standard ResNeXt-101-
32x4d (26ms vs 25ms). This result is in accordance with
the conclusion that network fragmentation reduces the de-
gree of parallelism and thus decreases efficiency in [36, 13].
For fair comparison, we do not apply knowledge distillation
tricks for all these methods. As shown in Fig. 1 and Table 3,
under comparable inference latency, PaCo significantly sur-
passes these baselines.

Comparison on Places-LT. The experimental results on
Places-LT are summarized in Table 4. Due to the architec-
ture change of RIDE, it is not applicable to load the publicly

Table 4: Performance on Places-LT [35], starting from an
ImageNet pre-trained ResNet-152 provided by torchvision.
†denotes the model trained with RandAugment [12].

Method Many Medium Few All

CE(baseline) 45.7 27.3 8.2 30.2
OLTR 44.7 37.0 25.3 35.9
Decouple-τ -norm 37.8 40.7 31.8 37.9
Balanced Softmax 42.0 39.3 30.5 38.6
ResLT 39.8 43.6 31.4 39.8
MiSLAS 39.6 43.3 36.1 40.4
RIDE (2 experts) - - - -

PaCo 37.5 47.2 33.9 41.2
PaCo † 36.1 47.9 35.3 41.2

pre-trained model on full ImageNet, while PaCo is more
flexible where the network architecture is the same as those
of [35, 14]. Under fair training setting by finely tuning 30
epochs without RandAugment, PaCo surpasses SOTA Bal-
anced Softmax by 2.6%. An interesting observation is that
RandAugment has little effect on the Places-LT dataset. A
similar phenomenon can be observed on the iNaturalist 2018
dataset. More evaluation numbers are in the supplementary
file. They can be intuitively understood since RandAugment
is designed for ImageNet classification, which inspires us to
explore general augmentations across different domains.

Comparison on iNaturalist 2018. Table 5 lists experi-
mental results on iNaturalist 2018. Under fair training set-
ting, PaCo consistently surpasses recent SOTA methods of
Decouple, Balanced Softmax and RIDE. Our method is
1.4% higher than Balanced Softmax. We also apply PaCo
on large ResNet-152 architecture. And the performance
boosts to 75.3% top-1 accuracy. Note that we only transfer
the hyper-parameters of PaCo on ImageNet-LT to iNatural-
ist 2018 without any change. Tuning hyper-parameters for
PaCo will bring further improvement.

Comparison on CIFAR-100-LT. The experimental re-
sults on CIFAR-100-LT are listed in Table 6. For the CIFAR-
100-LT dataset, we mainly compare with the SOTA method
Balanced Softmax [38] with the same training setting where
Cutout [17] and AutoAugment [11] are used in training.
As shown in Table 6, PaCo consistently outperforms Bal-
anced Softmax across different imbalance factors with such
a strong setting. Specifically, PaCo surpasses Balanced Soft-
max by 1.2%, 1.8% and 1.2% under imbalance factor 100,
50 and 10 respectively, which testify the effectiveness of our
PaCo method.

4.4. Full ImageNet and CIFAR Recognition

As analyzed in Section 3.4, for balanced datasets, PaCo
reduces to an improved version of multi-task learning, which



Table 5: Top-1 accuracy over all classes on iNaturalist 2018
with ResNet-50. Knowledge distillation is not applied to all
methods for fair comparison. We compare with RIDE 1 un-
der comparable inference latency. † denotes models trained
with RandAugment [12] in 400 epochs.

Method Top-1 Accuracy

CB-Focal 61.1
LDAM+DRW 68.0
Decouple-τ -norm 69.3
Decouple-LWS 69.5
BBN 69.6
ResLT 70.2
MiSLAS 71.6

RIDE (2 experts) † 69.5
Decouple-τ -norm † 71.5
Balanced Softmax † 71.8
PaCo † 73.2

Table 6: Top-1 accuracy on CIFAR-100-LT with different
imbalance factors (†: models trained in same setting).

Dataset CIFAR-100 LT

Imbalance factor 100 50 10

Focal Loss 38.4 44.3 55.8
LDAM+DRW 42.0 46.6 58.7
BBN 42.6 47.0 59.1
Causal Norm 44.1 50.3 59.6

Balanced Softmax † 50.8 54.2 63.0
PaCo † 52.0 56.0 64.2

adaptively adjusts the intensity of supervised cross-entropy
loss and supervised contrastive loss. To verify the effective-
ness of PaCo under this balanced setting, we conduct experi-
ments on full ImageNet and full CIFAR. They are indicative
to compare PaCo with supervised contrastive learning [29].
Note that, under full ImageNet and CIFAR, we remove the
rebalance in center learning, i.e., Balanced Softmax.

Full ImageNet. In the implementation, we transfer hyper-
parameters of PaCo on ImageNet-LT to full ImageNet with-
out modification. SGD optimizer with momentum µ = 0.9
is used. α=0.05, temperature is 0.2 and queue size is 8,192.
For multi-task training, the supervised contrastive loss is ad-
ditional regularization and the loss weight is also set to 0.05.
The same data augmentation strategy is applied as PaCo,
which is discussed in Section 4.1.

The experimental results are summarized in Table 7.
With SimAugment, our ResNet-50 model achieves 78.7%
top-1 accuracy, which outperforms supervised contrastive
learning model by 0.8%. Equipped with strong augmenta-
tion, i.e., RandAugment [12], the performance further im-
proves to 79.3%. ResNet-101/200 trained with PaCo con-

Table 7: Top-1 accuracy on full ImageNet with ResNets.
“⋆” denotes supervised contrastive learning with additional
operation of image warping before Gaussian blur.

Method Model augmentation Top-1 Acc

Supcon ResNet-50 SimAugment ⋆ 77.9
Supcon ResNet-50 RandAugment 78.4
Supcon ResNet-101 StackedRandAugment 80.2

multi-task RandAugment ResNet-50 78.1

PaCo ResNet-50 SimAugment 78.7
PaCo ResNet-50 RandAugment 79.3
PaCo ResNet-101 StackedRandAugment 80.9
PaCo ResNet-200 StackedRandAugment 81.8

Table 8: Top-1 accuracy on full CIFAR-100 (ResNet-50).

Method dataset Top-1 Accuracy

CE(baseline) CIFAR-100 77.9
multi-task CIFAR-100 78.0

Supcon CIFAR-100 76.5
PaCo CIFAR-100 79.1

sistently surpass supervised contrastive learning.

Full CIFAR-100. For CIFAR implementation, we follow
supervised contrastive learning and train ResNet-50 with
only the SimAugment. Compared with full ImageNet, we
adopt a smaller temperature of 0.07, α = 0.008 and batch
size 256 with learning rate 0.1. As shown in Table 8, on
CIFAR-100, PaCo outperforms supervised contrastive learn-
ing by 2.6%, which validates the advantages of PaCo. Note
that, following [13], we use a weight-decay of 5e-4.

5. Conclusion
In this paper, we have proposed Parametric Contrastive

Learning (PaCo), which contains a set of parametric class-
wise learnable centers to tackle the long-tailed recognition.
It is based on the theoretical analysis of supervised con-
trastive learning. For balanced data, our analysis of PaCo
demonstrates that it can adaptively enhance the intensity
of pushing two samples of the same class close as more
samples are pulled together with their corresponding cen-
ters, which can potentially benefit hard examples learning in
training.

We conduct experiments on various benchmarks of
CIFAR-LT, ImageNet-LT, Places-LT, and iNaturalist 2018.
The experimental results show that we create a new state-
of-the-art for long-tailed recognition. Further, experimental
results on full ImageNet and CIFAR demonstrate that PaCo
also benefits balanced datasets.
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Parametric Contrastive Learning
Supplementary Material

A. Proof to Remark 1
For an image Xi and its label yi, the expectation number of positive pairs with respect to Xi will be:

Kyi
= q(yi) ∗ (length(queue) + batchsize ∗ 2− 1) ≈ length(queue) · q(yi), (9)

q(yi) is the class frequency over the whole dataset. Here the ”≈” establishes because batchsize ≪ length(queue) in
training process. Note that we use such approximation just for simplification. Our analysis holds for the precise Kyi

. In what
follows, we prove the optimal values for supervised contrastive loss.

Suppose training samples are i.i.d. To minimize the supervised contrastive loss for sample Xi, according to Eq. (3), we
rewrite: 

P (i) = {z+1 , z+2 , ..., z+Kyi
};

p+i =
exp(z+i · T (xi))∑

zk∈A(i) exp(zk · T (xi))
;

p+sum = p+1 + p+2 + ...+ p+Kyi
.

Then the supervised contrastive loss will be:

Li = −
∑

z+∈P (i)

log
exp(z+ · T (xi))∑

zk∈A(i) exp(zk · T (xi))

= −(log p+1 + log p+2 + ...+ log p+Kyi
).

For obtaining its optimal solution, we define the Lagrange multiplier form of Li as:

l = −(log p+1 + log p+2 + ...+ log p+Kyi
) + λ(p+1 + p+2 + ...+ p+Kyi

− p+sum), (10)

where λ is the Lagrange multiplier. The first order conditions of Eq. (10) w.r.t. λ and p+i can be written as follows:
∂l

∂p+i
= − 1

p+i
+ λ = 0;

∂l

∂λ
= p+1 + p+2 + ...+ p+Kyi

− p+sum = 0.

(11)

From Eq. (11), the optimal solution for p∗i will be
p+sum
Kyi

. Note that p+sum ∈ [0, 1], with a specific p+sum, the minimal loss

value of Li is:

Li = −Kyi log
p+sum
Kyi

. (12)

Thus, when p+sum = 1.0, Li achieves minimum with the optimal value p+i =
1

Kyi

which is exactly the probability that

two samples of the same class are a true positive pair.



B. Proof to Remark 2
For the image Xi and its label yi, Eq. (9) still establishes for our parametric contrastive loss. To minimize the parametric

contrastive loss for sample Xi, according to Eq. (4), we similarly rewrite:

P (i) = {z+1 , z+2 , ..., z+Kyi
}

p+i =
exp(z+i · T (xi))∑

zk∈A(i)∪C exp(zk · T (xi))

p+c =
exp(cy · T (xi))∑

zk∈A(i)∪C exp(zk · T (xi))
p+sum = p+1 + p+2 + ...+ p+Kyi

+ p+c .

Then the parametric contrastive loss will be:

Li =
∑

z+∈P (i)∪{cy}

−w(z+) log
exp(z+ · T (xi))∑

zk∈A(i)∪C exp(zk · T (xi))
(13)

= −
(
log p+c + α · (log p+1 + log p+2 + ...+ log p+kyi

)
)
. (14)

For obtaining its optimal solution, we define the Lagrange multiplier form of Li as:

l = −
(
log p+c + α · (log p+1 + log p+2 + ...+ log p+kyi

)
)
+ λ(p+1 + p+2 + ...+ p+Kyi

+ p+c − p+sum), (15)

where λ is the Lagrange multiplier. The first order conditions of Eq. (15) w.r.t. λ, p+c and p+i can be written as follows:

∂l

∂p+i
= − α

p+i
+ λ = 0;

∂l

∂p+c
= − 1

p+c
+ λ = 0;

∂l

∂λ
= p+1 + p+2 + ...+ p+Kyi

+ p+c − p+sum = 0.

(16)

From Eq. (16), the optimal solution for p+i and p+c will be
αp+sum

1 + αKyi

and
p+sum

1 + αKyi

respectively. Note that p+sum ∈ [0, 1],

with a specific p+sum, the minimal loss value of Li is:

Li = − log
p+sum

1 + αKyi

− αKyi log
αp+sum

1 + αKyi

. (17)

Thus, when p+sum = 1.0, Li achieves minimum with the optimal value p+i =
α

1 + αKyi

, which is the probability that

two samples of the same class are a true positive pair, and the optimal value p+c =
1

1 + αKyi

which is the probability that a

sample is closest to its corresponding center cyi
among C.



C. Gradient Derivation
In Section 3.4, we analyze PaCo loss under balanced setting, taking full ImageNet as an example. With Psup increases

from 0 to 0.71, the intensity of supervised contrastive loss will enlarge. Here we show that more samples will be pulled
together with their corresponding centers when Psup increases from 0 to 0.71 from the perspective of gradient derivation.

∂L
∂ck

=

{
(αK∗ + 1)pckxi, yi ̸= k;

{(αK∗ + 1)pck − 1}xi, yi = k.
(18)

It is worthy to note that when pck ∈ (0, 0.71), we have
∂L
∂ck

> 0, yi ̸= k;

∂L
∂ck

< 0, yi = k.

(19)

Eqs. (18) and (19) mean that as Psup increases in training process, the probability that a sample is closest to its corresponding
center will increase and the probability that a sample is closest to other centers will decrease. Thus, more and more samples
will be pulled together with their right centers.

D. More Experimental Results on Many-shot, Medium-shot, and Few-shot.

Table 9: Comprehensive results on ImageNet-LT with different backbone networks (ResNet-50, ResNeXt-50 & ResNeXt-
101). Models are trained with RandAugment in 400 epochs. Inference time is calculated with a batch of 64 images on Nvidia
GeForce 2080Ti GPU, Pytorch1.5, Python3.6.

Backbone Method Inference time (ms) Many Medium Few All

ResNet-50
τ -normalize 8.3 65.0 52.2 32.3 54.5
Balanced Softmax 8.3 66.7 52.9 33.0 55.0
PaCo 8.3 65.0 55.7 38.2 57.0

ResNeXt-50
τ -normalize 13.1 66.4 53.4 38.2 56.0
Balanced Softmax 13.1 67.7 53.8 34.2 56.2
PaCo 13.1 67.5 56.9 36.7 58.2

ResNeXt-101
τ -normalize 25.0 69.0 55.1 36.9 57.9
Balanced Softmax 25.0 69.2 55.8 36.3 58.0
PaCo 25.0 68.2 58.7 41.0 60.0

Table 10: Comprehensive results on ImageNet-LT with RIDE. Models are trained with RandAugment in 400 epochs. Infer-
ence time is calculated with a batch of 64 images on Nvidia GeForce 2080Ti GPU, Pytorch1.5, Python3.6.

Backbone Method Inference time (ms) Many Medium Few All

RIDEResNet
1 expert 8.2 64.8 49.8 29.6 52.8
2 experts 12.0 67.7 53.5 31.5 56.0
3 experts 15.3 69.0 54.7 32.5 57.0

RIDEResNeXt
1 expert 13.0 67.2 49.0 28.1 53.2
2 experts 19.0 70.4 52.6 30.3 56.4
3 experts 26.0 71.8 53.9 32.0 57.8



Table 11: Comprehensive results on iNaturalist 2018 with ResNet-50 and ResNet-152. †represents the models are trained
without RandAugment. Inference time is calculated with a batch of 64 images on Nvidia GeForce 2080Ti GPU, Pytorch1.5,
Python3.6.

Backbone Method Inference time (ms) Many Medium Few All

ResNet-50
τ -normalize 8.3 74.1 72.1 70.4 71.5
Balanced Softmax 8.3 72.3 72.6 71.7 71.8
PaCo 8.3 70.3 73.2 73.6 73.2

ResNet-50 † Balanced Softmax 8.3 72.5 72.3 71.4 71.7
PaCo 8.3 69.5 73.4 73.0 73.0

ResNet-152 PaCo 20.1 75.0 75.5 74.7 75.2

Table 12: Comprehensive results on iNaturalist 2018 with RIDE. Models are trained with RandAugment in 400 epochs
without knowledge distillation. Inference time is calculated with a batch of 64 images on Nvidia GeForce 2080Ti GPU,
Pytorch1.5, Python3.6.

Backbone Method Inference time (ms) Many Medium Few All

RIDEResNet

1 expert 8.2 56.0 66.3 66.0 65.2
2 experts 12.0 62.2 70.5 70.0 69.5
3 experts 15.3 66.5 72.1 71.5 71.3

Table 13: Comparison with re-weighting baselines on ImageNet-LT with ResNet-50. The re-weighting strategy is applied to
the supervised contrastive loss. Models are all trained without RandAugment.

Method Top-1 Accuracy

CE 48.4
multi-task (CE+Re-weighting) 49.0
multi-task (CE+Blance Softmax) 48.6

PaCo 51.0

E. Implementation details for Table 1

We train models with cross-entropy, parametric contrastive loss 400 epochs without RandAugment respectively. For
supervised contrastive loss, following the original paper, we firstly train the model 400 epochs. Then we fix the backbone
and train a linear classifier 400 epochs.

F. Ablation Study

Re-weighting in contrastive learning without center learning rebalance Re-weighting is a classical method for dealing
with imbalanced data. Here we directly apply the re-weighting method of Cui et al. [16] in contrastive learning to compare
with PaCo. Moreover, Balanced softmax [38], as one state-of-the-art method for traditional cross-entropy in long-tailed
recognition, is also applied to contrastive learning rebalance. The experimental results are summarized in Table 13. It is
obvious PaCo significantly surpasses the two baselines.

Rebalance in center learning PaCo balances the contrastive learning (for moderating contrast among samples). However
the center learning also needs to be balanced, which has been explored in [1, 25, 15, 20, 8, 41, 38, 28, 49, 14, 46, 18].
To compare with state-of-the-art methods in long-tailed recognition, we incorporate Balanced Softmax [38] into the center



Table 14: Comparison with re-weighting baselines that perform center learning rebalance on ImageNet-LT with ResNeXt-50.
Models are all trained with RangAugment in 400 epochs.

Method loss weight Top-1 Accuracy

multi-task (Balanced Softmax+Re-weighting) 0.05 57.0
multi-task (Balanced Softmax+Re-weighting) 0.10 57.1
multi-task (Balanced Softmax+Re-weighting) 0.20 57.1
multi-task (Balanced Softmax+Re-weighting) 0.30 57.0
multi-task (Balanced Softmax+Re-weighting) 0.50 57.2
multi-task (Balanced Softmax+Re-weighting) 0.80 57.2
multi-task (Balanced Softmax+Re-weighting) 1.00 56.9

PaCo - 58.2

learning. As shown in Table 14, after rebalance in center learning, PaCo boosts performance to 58.2%, surpassing baselines
with a large margin.


