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Abstract—The decrease of feature size and the growing
complexity of the fabrication process lead to more failures
in manufacturing semiconductor devices. Therefore, identifying
the root cause layout patterns of failures becomes increasingly
crucial for yield improvement. In this paper, a novel layout-
aware diagnosis-based layout pattern analysis framework is
proposed to identify the root cause efficiently. At the first stage
of the framework, an encoder network trained using contrastive
learning is used to extract representations of layout snippets that
are invariant to trivial transformations including shift, rotation,
and mirroring, which are then clustered to form layout patterns.
At the second stage, we model the causal relationship between
any potential root cause layout patterns and the systematic
defects by a structural causal model, which is then used to
estimate the Average Causal Effect (ACE) of candidate layout
patterns on the systematic defect to identify the true root cause.
Experimental results on real industrial cases demonstrate that
our framework outperforms a commercial tool with higher
accuracies and around ×8.4 speedup on average.

I. INTRODUCTION

The yield of manufactured integrated circuits (ICs) is
defined as the percentage of good dies among all dies manu-
factured. A high and stable yield could ensure profitability
and reliability of products. However, as the feature size
decreases, specific layout patterns that are hard to fabricate
tend to cause more systematic defects, such as open or bridge
defects in neighboring wires. These layout patterns are an
important source of yield loss. Since layout configurations
of new designs may differ from existing ones, identifying
layout patterns that lead to yield loss through test chips,
SRAMs, etc., is becoming less effective. Performing hotspot
detection [1, 2, 3] on entire layouts may result in overcorrec-
tion which can adversely affect chip area and performance.
Physical failure analysis (PFA) is a straightforward method
to determine whether a layout pattern is the root cause of
systematic defects. However, it requires both experience and a
proper understanding of the fabrication process and is usually
time-consuming and expensive.

To efficiently identify the root cause of systematic defects,
statistical methods have been adopted to automatically iden-
tify common physical defect features by analyzing volume di-
agnosis reports. One of the most prominent work is a Bayesian
method proposed in [4], which characterizes the conditional
distribution of systematic defect given potential root causes. It
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Fig. 1 Overview of prior methods. Upper: [4, 6]; lower: [8, 9].

learns the optimal root cause distribution by maximizing the
likelihood of observed diagnosis report using an Expectation-
Maximization (EM) learning algorithm. There are also works
[5, 6] focusing on improving the quality of diagnosis results
by evaluating the impact of diagnosis features to improve the
root cause identification accuracy. These methods fall short of
considering root cause layout patterns which largely restricts
their applicability to real tasks. Cheng et al. [7] proposed
an advanced solution based on [4]. They take root cause
layout patterns into consideration when identifying the correct
layout patterns inducing systematic yield loss. In practice,
there usually exists complex interactions between different
root causes, as well as root cause and systematic defect, but
the causal relationship between candidate layout patterns and
the systematic defect was not considered in [7].

Another class of seminal works [8, 9] focus more on the
geometric structure of layout patterns by adopting clustering
algorithms to improve the systematic IC-defect identification.
Both connectivity-based and centroid-based clustering algo-
rithms are used to group rotation-, mirror-equivalent layout
snippets together. These works conduct clustering on raw
layout snippets in a two-stage manner and manually check
all possible geometric equivalence between different clusters.
Simulation experiments in [9] indicate that the resolution
of the identification results of clustering-based methods is
limited, since they may require a failure analysis expert’s
judgment to pick a single layout snippet for each cluster.
Furthermore, layout snippets that are shift-equivalent are re-
garded as different candidates, which is commonly considered
unreasonable since these snippets share identical or similar
geometric structures.

To address the above issues and improve the resolu-



tion of root cause identification, a unified framework for
layout pattern analysis with deep causal effect estimation
is proposed in this work. Compared to existing statistical
learning methods, our framework characterizes the causal
relationship between potential root causes and the systematic
defect. Compared to methods using clustering algorithms,
our framework regards rotation-, mirror-, and shift-invariant
layout snippets as equivalent without requiring any manual
equivalence check. At the first stage of the framework, a
novel contrastive learning method is used to train an encoder
network to extract from layout snippets their rotation-, mirror-,
and shift-invariant latent features. The latent features are then
clustered to form layout patterns. Based on the learned layout
patterns, we use a Structural Causal Model (SCM) to model
the causal relationship between candidate layout patterns and
the systematic defect, i.e. the model describes the relationship
between the occurrence/presence of a certain layout pattern
and the systematic defect. Lastly, the Average Causal Effect
(ACE) of candidate layout patterns on the systematic defect
is estimated as the metric for the identification of the root
cause of systematic defects. Experimental results on large-
scale designs show that our framework achieves state-of-the-
art results which significantly outperforms a commercial tool
in terms of accuracy as well as inference time.

To the best of our knowledge, this work is the first to
apply contrastive learning-based deep learning techniques and
average causal effect estimation to identify the root cause. The
main contributions of this work are threefold:

• We propose a unified solution to volume diagnosis-based
root causes layout pattern identification task. Both pattern
clustering and root cause identification are taken into
consideration. Our framework can identify the critical
root causes and provide high-resolution clustered snip-
pets for further analysis.

• The causal relationship between different candidate lay-
out patterns and the systematic defects is characterized
using a neural network and a neural network attribution
method is adopted to estimate the average causal effect
for root cause identification.

• Experimental results on several industrial designs show
the effectiveness and robustness against the noise of our
framework. The accuracy of our framework outperforms
a commercial tool in different scenarios and we get ×8.4
speedup on average at inference.

The remainder of this paper is organized as follows.
Section II introduces terminologies and problem formula-
tion related to this work. Section III describes the problem
formulation and the algorithmic details of our framework.
Section IV lists the experimental results, followed by the
discussion and conclusion in Section V.

II. PRELIMINARIES

In this section, preliminary knowledge related to the pro-
posed framework is briefly reviewed.
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Fig. 2 Idea of contrastive learning: maximize the similarity
between latent features of an image and its augmented version
and simultaneously minimize the similarity between latent
features of inputs correspond to different original images.

A. Layout Pattern Analysis

Layout Pattern Analysis (LPA) takes a step towards iden-
tifying the layout patterns which cause systematic defects.
Cheng et al. [7] proposed an LPA solution which is an
enhanced flow based on [4]. Attribute to the external steps on
layout pattern processing, this work makes root cause iden-
tification on layout patterns becomes feasible. The challenge
of how to handle a large number of potential layout patterns
to be considered for analysis is solved. And the risk of over-
fitting caused by Bayesian modeling is also addressed. Layout
pattern extraction is designed to extract all unique layout
patterns around locations that could be physical defects. In
layout pattern matching, layout patterns are transformed to
canonical forms which make shifted, rotated, or mirrored pat-
terns identical. Combining previous steps with the root cause
identification method proposed in [4], root cause analysis
results including root cause distribution and layout patterns
are returned for further study.

B. Contrastive Learning

Conventional deep networks training often relies on large
amounts of annotated data to learn representations in a latent
space. Since the annotated data can be costly or even impos-
sible to collect, self-supervised learning leverages unlabeled
data to perform pretext tasks for representation learning
[10, 11]. Contrastive learning is a class of self-supervised
learning that uses contrastive objectives. The general idea of
contrastive learning is to maximize the similarity between an
instance and its augmentation, while keep the discriminative
power against different instances through a contrastive loss in
the latent space, as illustrated in Fig. 2. Recent contrastive
learning methods [12, 13, 14, 15] have achieved competitive
results in visual representation learning compared with promi-
nent supervised learning methods for computer vision tasks.

C. Structural Causal Models

Structural Causal Models (SCMs) [16] are developed to-
wards a comprehensive theory of causation and serve as a
key ingredient of our framework.

Definition 1 (Structural Causal Model [16]). A structural
causal model M is a 4-tuple (E,X,F, P (E)), where
• E is a set of exogenous (unobserved) variables;
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Fig. 3 An SCM (a) without and (b) under intervention.
Nodes represent random variables and directed edges x→ y
indicates that x is a direct cause of y. Under intervention
do(t′), the intervened variable t is fixed to the intervened
value t′ and all its incoming edges are removed.

• X is a set of endogenous (observed) variables;
• F represents a collection of functions F = {fi} such

that each endogenous variable xi ∈ X is determined
by a function fi ∈ F , where fi is a mapping from the
respective domain of εi∪Pai to xi, with εi ⊆ E, Pai ⊆
X\{Xi} is the set of direct parents of xi;

• The uncertainty is encoded through a probability distri-
bution over the exogenous variables, P (E).

SCMs provide a compact way of characterizing average
causal effect ACEy

do(xi)
, which is defined as E[y|do(xi =

1)]−E[y|do(xi = 0)] for binary xi. E[y|do(xi = α)], known
as interventional expectation [16], denotes the expectation of
y when intervening the value of xi to be α. For an SCM,
such intervened model can be represented by replacing the
structural equation xi = fi(Pai, εi) by a constant xi = α.

D. Neural Network Attributions

Attribution methods aim to provide interpretability of deep
networks by identifying the effect of an input neuron on a
specific output neuron [17, 18]. Recently, [19] approached
neural network attribution problems from a causal perspective.
They view a multilayer perceptron (MLP) {lin, . . . , lout} as
an SCM M ′(E, {lin, lout}, f ′, P (E)), where lin is the input
layer, lout is the output layer, E refers to a set of exogenous
random variables which act as causal factors for the input
neurons lin, f ′ refers to the mapping from the input to output
by marginalizing out all hidden neurons.

Based on SCM reformulation, [19] approximated the inter-
ventional expectation of the output neurons f ′(lin) under the
intervention do(xi = α) as:

E[f ′(lin)|do(xi = α)] ≈ f ′(µ)+
1

2
tr(∇2f ′(µ)E[(lin − µ)(lin − µ)T |do(xi = α)]),

(1)

where tr(·) is the trace operator, µ = [µ1, . . . , µk]
T and

each entry µi′ = E[xi′ |do(xi = α)], ∀xi′ ∈ lin, is the
interventional expectation of xi′ when xi is intervened to the
value α.

III. METHODOLOGIES

A. Overview

The objective of LPA in this work is to identify true
root cause(s) of systematic defect by analyzing a dataset
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Fig. 4 Overview of the framework.

consisting of m diagnosis reports R = {re}me=1 and layout
snippets of potential root causes in these reports. Each report
re consists of several independent symptoms (i.e., defects),
whose possible causes are also given along with several
important properties (e.g., ID, score, etc.). Our framework
identifies the true root cause(s) inducing systematic defects in
R by exploiting both the geometric structure of layout snippets
(Section III-B) and causal relationship between potential root
causes and systematic defect (Section III-C).

An illustration of our LPA framework is given in Fig. 4. It
uses diagnosis reports and layout snippets of potential root
causes in these reports as the inputs. First, a contrastive
learning-based method is adopted to extract rotation-, mirror-
, and shift-invariant latent features from input layout snip-
pets. Then, the latent features are clustered using k-means
clustering to identify layout patterns from a large amount
of layout snippets. Each cluster corresponds to one layout
pattern. Third, a feed-forward neural network, which acts as
the SCM involves all candidate layout patterns and systematic
defect, is trained to maximize the likelihood of the input
diagnosis reports given the representation of candidate layout
patterns as inputs. After training, the Average Causal Effects
(ACEs) of layout patterns to systematic defect are evaluated
to identify the true root cause(s).

B. Deep Layout Snippet Clustering (DLSC)

The identification of layout patterns from layout snippets
using clustering algorithm is elaborated in this section.

Since there are a considerable number of duplicate and
equivalent layout snippets in the diagnosis reports, layout
pattern matching is usually conducted to recognize layout
snippets that are rotated, mirrored, or shifted version of each
other as geometrically equivalent. Clustering algorithms are
a widely-used class of techniques in layout pattern match-
ing. Although applying connectivity-based or centroid-based



clustering algorithms on raw layout snippets achieved certain
improvements on identifying root causes, they heavily rely on
manual design and may have difficulty when generalized to
new manufacturing processes.

To circumvent the need of manually designed clustering
rules, we introduce deep neural networks in layout pattern
matching. Specifically, an encoder network is trained using
contrastive learning to extract latent features that are invariant
to trivial transformations such as rotation, mirror and shift.
Besides, the self-supervised nature of contrastive learning
allows us to construct a huge amount of training data set
by cropping unlabeled layout snippets from the entire layout
designs.

Encoder Network. The principle of the encoder network
is to transform raw layout snippets into a low-dimensional
latent space, in which equivalent layout snippets are mapped
to an identical embedding (vector). The low dimensional em-
beddings represent prototypes of layout snippets. The network
structure of our model is shown in Fig. 5. “SeparableConv”
indicates depthwise separable convolution layer which is a
variant convolution layer widely used in [20] for computation
efficiency. “Block A” and “Block B” are two modules with
residual connections. Three “Linear” layers are attached to
the feature extractor as a bottleneck structure maps two-
dimensional features to embeddings.

Contrastive Loss. Given a batch of embeddings trans-
formed from raw layout snippets by the encoder network, our
goal is to make the embeddings of equivalent layout snippets
identical, while keeping those of non-equivalent as dissimilar
as possible. To achieve this, `p-norm is used as a metric to
measure the dissimilarity between embeddings zi and zj of
a pair of layout snippets:

d(zi, zj) = ‖zi − zj‖p , (2)

where p is a real number greater than 1 and is set to p = 2
in this work. Contrastive loss [21] based on the metric above
is given by

L(z,p,n) = max(d(z,p)− d(z,n) +marg, 0), (3)

where marg is a non-negative value indicating an appro-
priately set margin, z, p, and n are the embedding of one
layout snippet, the embedding of a positive sample of z,
and the embedding of a negative sample of z, respectively.
marg represents the minimum difference between positive
and negative distances that is required for the loss to be zero
During training, positive samples p are getting closer to the
anchor embedding z and negative samples n are penalized to
be far from anchor embedding. An illustration on contrastive
learning with an encoder is shown in Fig. 6. The detail of how
to construct the positive and negative samples and training
scheme is clarified in Section IV.

After training the encoder network, it is used to extract
embeddings of layout snippets. Then k-means clustering al-
gorithm is applied to these embeddings to partition them into
k clusters Ci, i ∈ {1, . . . , k}. Each cluster Ci consists of
ni equivalent layout snippets that correspond to one layout
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Fig. 5 Encoder network structure for contrastive learning.
Note that all Convolution, Separable Convolution and Linear
layers are followed by batch normalization.
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Fig. 6 Illustration of encoder network training using con-
trastive learning. Parameters of encoders are shared.

pattern. The silhouette method [22] which is a measurement
of how similar an object is to its own cluster compared to
other clusters is adopted to determine the optimal value of
the number of clusters k. By embedding clustering, equivalent
layout snippets can be grouped into the same cluster without
artificial modulation.

An example of the DLSC is illustrated in Fig. 7, layout
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Fig. 7 An example of Deep Layout Snippet Clustering.

snippets with a large number of pixels are transformed to low-
dimensional embeddings which reduces the clustering compu-
tation remarkably while improves the layout pattern matching
accuracy. Experimental results in section IV empirically show
that encoder network trained using layout snippets of one
layout design can also generalize to new layout designs.

C. Deep Average Causal Effect Estimation (DACE)

In this section, we introduce how we use average causal
effect estimation to identify true root cause(s) from a large
amount of potential root causes using diagnosis reports and
the results of layout pattern matching.

Defect SCM Training. Based on the clustering results, we
transform the embeddings of layout snippets to the cluster
space and then build the SCM between candidate layout
patterns and systematic defect. First, distance matrix D ∈
Rn×k is computed, whose (j, i)-th entry [D]j,i denotes the
distance of j-th embedding to the center of cluster i. Then
the distance matrix are converted to a cluster membership
matrix P ∈ Rn×k whose entries indicate the probability of
each embedding belonging to each cluster as follows

[P]j,i =
exp (−Dj,i/τ)∑
i′ exp (−Dj,i′/τ)

, (4)

where τ is a temperature parameter, set as 0.1 in this work.
The layout snippets closer to the cluster center have higher
probabilities.

With all layout snippets represented in the form of mem-
bership vectors in P, we model the SCM between candidate
layout patterns and systematic defect with an MLP M to
characterize their causal relationship. The input layer lin of
M has k input neurons xi, i ∈ {1, . . . , k}, each of which
corresponds to one layout pattern. Its output layer lout has one
output neuron indicating the probability of systematic defect.
The objective function for training the M is

L(θ) = −
m∑
e=1

log

[∑
i

p(re|yi)p(yi|µi,θ)

]
, (5)

where m is the number of diagnosis reports, θ denotes
the parameters of M, µi = 1

ni

∑n
j∈Ci

Pj,: is the mean
representation of cluster i with ni layout snippets, p(yi|µi,θ)
is the output of M corresponding to layout pattern xi, which
indicates the probability of layout pattern xi inducing the
systematic defect, p(re|yi) is the conditional probability of
diagnosis report re if layout pattern xi occurs. We train the
neural network M by minimizing the negative log-likelihood
in Equation (5). The detail on estimating p(re|yi) is elaborated
in Section IV.
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Fig. 8 Left: The defect SCM for Layout Pattern Analysis
without intervention. Right: Apply intervention on cluster i.

LPA by ACE estimation. After the objective in Equa-
tion (5) converges, M is viewed as an SCM containing
candidate layout patterns and systematic defect. We assume
that the true root cause has the most significant average causal
effect on the systematic defect. Therefore, average causal
effects of input neurons (corresponding to layout patterns) on
the output neuron (corresponding to the systematic defect) are
estimated as the metric to identify root causes. Causal neural
attribution in Equation (1) is adopted to compute the ACE of
each layout patterns on the systematic defect.

When training the M, the inputs are representations ob-
tained from the membership matrix P whose entries are
continuous values between [0, 1]. Since entries in P indicate
the probability of a layout snippet belonging to a certain
cluster, they have monotonic property, i.e., the closer (j, i)-th
entry is to 1 (resp. 0), the higher (resp. lower) the probability
of j-th layout snippet belonging to cluster i is. As a result,
when regarding xi as a binary variable, the ACE of xi on y
characterizes the causal effect of the presence of layout pattern
xi on the systematic defect. This ACE can be estimated as

ACEy
do(xi)

= |E[y|do(xi = 0)]− E[y|do(xi = 1)]| . (6)

The interventional expectation when xi is intervened to 0 in
Equation (6) can be estimated using Equation (1) as

E[y|do(xi = 0)] ≈ f ′(µi0)+

1

2
tr(∇2f ′(µi0)E[(lin − µi0)(lin − µi0)

T |do(xi = 0)]),
(7)

where f ′ refers to the mapping from the input of M to
its output y, the vector of interventional expectation µi0 is
obtained by intervening the value of i-th entry of µi to 0.
Similar steps apply for the computation of the interventional
expectation when xi is intervened to 1. After obtaining the
ACE of all layout patterns on systematic defect, we normalize
them to form the root cause distribution of all candidate layout
patterns as

p(xi) =
ACEy

do(xi)∑
i′ ACE

y
do(x′

i)

. (8)

D. Inference flow

An overview of this unified framework and modules of
DLSC and DACE are introduced in Section III-B and Sec-
tion III-C. Here we give a detailed explanation on the infer-
ence flow of the framework.



Algorithm 1 The Inference flow of the Framework.

Input: R = {re}me=1 - a set of diagnosis reports, S =
{sj}nj=1 - a set of layout snippets of all potential root
causes;

Output: Root cause distribution
1: for d = 1→ L do
2: for j = 1→ |S| do
3: Encoder(sj)→ zj , ∀j ∈ d; . Equation (3)
4: end for
5: Get optimal kd with highest silhouette score;
6: Compute distance matrix Dd using optimal kd;
7: end for
8: Construct D by concatenating Dd, ∀d ∈ {1, . . . , L};
9: Convert D to P; . Equation (4)

10: Train defect SCM M(θ); . Equation (5)
11: for i = 1→ k do
12: Calculate ACE of clusters; . Equation (6)
13: end for
14: return Root cause distribution; . Equation (8)

TABLE I Notation on Diagnosis Report Features.

Feature Description

rule id ID of the potential root cause
sej The score of potential root cause j in re

hej DFM hits of potential root cause j in re

vj DFM violations of potential root cause j
〈xj , yj〉 Coordinate of potential root cause j
layer Layer name of current potential root cause
type Defect category of current potential root cause

TABLE II Layout Design Information.

Size(µm× µm) #Layers #Gates

Case 1 8881× 9328 5 9337
Case 2 429× 384 9 1560k
Case 3 8033× 7822 6 9278k

Pseudocode of the inference flow is presented in Algo-
rithm 1, lines 1-7 correspond to the inference steps of DLSC
and lines 8-12 represent the procedure of DACE. Firstly,
layout snippets are transformed to embeddings in a latent
space and clustered within each layer with the dedicated
optimal cluster number kd respectively. Layer-wise clustering
is performed due to the consideration of process variance
of different layers and efficiency. Secondly, the membership
matrix of layout snippets in each layer are computed and
different matrices from all layout layers are concatenated
along axis zero to form P. An SCM M is then learned using
the information in diagnosis reports. Lastly, the average causal
effect of each cluster on the systematic defect is estimated
according to Equation (6). The root causes are identified based
on the estimated ACE of all candidate layout patterns.

TABLE III Defect Injection Statistics.

#TotalInjections #Open #Bridge

Case 1 68 50 18
Case 2 107 72 35
Case 3 93 69 24

Case 2 noise 856 576 280

IV. EXPERIMENTAL RESULTS

We evaluate the effectiveness of our proposed framework by
testing its root cause identification accuracy on three noise-
free datasets from three different layout designs, and eight
noisy datasets from one layout design. The advantage of
our framework over compared methods in runtime is also
validated by all related experiments. The accuracy is defined
as the percentage of datasets that the real root cause is
identified.

A. Datasets

Encoder Training. We crop layout snippets according
to the point of interests (POI) from the layout design in
Case 2. Their size is determined by the pitch size in the
corresponding layer. Each cropped layout snippet is rotated,
mirrored and shifted to generate positive samples for itself.
Samples corresponding to different original layout snippets
are deemed negative samples in contrastive learning.

LPA. We follow the same steps of defect injection per-
formed in [4] to generate diagnosis reports. Defects of type
Open and Bridge are considered in the injection steps. The
detailed information within diagnosis reports are listed in
TABLE I. Three classes of datasets are considered in our
evaluation: (1) Noise-free dataset. Three different layout de-
signs are used to construct noise-free datasets and their basic
information is shown in TABLE II. Case 2 and case 3 are
two real silicon datasets that result from real in-production
IC. Diagnosis reports in one noise-free dataset share one
single true root cause of systematic defect. The data of each
layout design consists of #TotalInjections noise-free
datasets and both open and bridge types are considered in
our experiments (TABLE III). (2) Noisy dataset. A certain
percentage of diagnosis reports in the dataset share a single
true root cause and the remaining diagnosis reports have
root causes different from the true one (i.e., noise). Different
percentages of noise are considered during the process of
injections and the sources of noise are randomly sampled from
the entire layout designs among all metal layers. (3) Mixture
dataset. Diagnosis reports in this dataset are divided into four
portions. Each portion share one root cause independently.
Three portions of root causes are true and the rest portion
is different from the true one. E.g., proportion ’50-20-20-
10’ in TABLE VI means 50%, 20%, and 20% of diagnosis
reports have three true root causes correspondingly and 10%
of diagnosis reports have random noise.

Besides the diagnosis reports, layout snippets of potential
root causes in these reports are another required inputs of our
framework. Note that in the noisy dataset, both the number



TABLE IV Accuracy(%) on Noise-free Datasets.

Dataset Baseline Commercial Tool Ours

Case 1 25.00 98.53 100.00
Case 2 55.88 92.52 98.04
Case 3 58.06 98.92 98.92

Average 46.31 96.66 98.99

TABLE V Accuracy(%) on Noisy Case 2 Datasets.

Noise(%) Baseline Commercial Tool Ours

80 19.57 84.11 97.83
70 37.62 92.52 95.05
60 44.55 94.39 98.02
50 49.02 94.39 96.08
40 50.98 93.45 95.10
30 51.96 93.45 93.14
20 58.82 92.52 95.10
10 55.88 93.46 98.04

Average 46.05 92.29 96.05

of injection and types of defect are the same across different
noise levels. We merged them as ‘Case 2 noise’ in TABLE III.

B. Implementation Details

The proposed framework is implemented in Python with
PyTorch library [23]. The encoder network is trained using
four Nvidia Tesla V100 GPUs. SGD optimizer is adopted with
initial learning rate 1e−1, weight decay 5e−4, and momentum
0.9. The batch size, number of epochs, margin marg in
Equation (3) are set to 64, 16, and 1.5 in the experiments,
respectively. Following [14], we add a single linear layer
before the output of encoder during training to avoid the
feature collapsion problem.

When conducting LPA, the defect SCM M is trained using
SGD optimizer with initial learning rate 1e−2, weight decay
1e−3, and momentum 0.9. The maximum number of epoch
of model training is set as 100 and the training will be early
stopped if there is no improvement of the training loss in
consecutive 5 epochs. The conditional probability of diagnosis
report re if layout pattern xi is true is calculated as

p(re|yi) =
hej∗s

e
j∗

vj∗
1{s|s≥90}(s

e
j∗), (9)

where j∗ = argmaxj∈Ci

∑
e s

e
j1{s|s≥90}(s

e
j), 1{s|s≥90}(s

e
j)

is an indicator function which evaluates to 1 if sej ≥ 90 and
0 otherwise.

C. Results and Analysis

We compare the proposed framework with an industry-
leading commercial tool. One Nvidia Tesla V100 GPU is used
for inference. The DFM hits are the number of a potential
root cause appearing in the diagnosis report, more DFM hits
indicate the layout snippet is more likely to be the root cause
to a certain extent. To justify the necessity of our causality-
based approach, a diagnosis statistical approach is presented
as the baseline. The baseline approach finds the root cause in
the following steps: (1) Given a volumn of diagnosis reports,

TABLE VI Accuracy(%) on Mixture Datasets.

Proportion
(r1%-r2%-r3%-noise%)

Commercial Tool Ours

Case 2 Case 3 Case 2 Case 3

30-30-30-10 85 70 87 81
40-20-20-20 66 24 73 74
40-30-20-10 81 70 79 75
40-30-30-00 88 82 83 78
50-20-20-10 77 58 76 58
50-30-20-00 84 82 84 79
60-20-20-00 75 71 79 50
20-20-20-40 63 8 81 49
30-20-20-30 63 18 83 58
30-30-20-20 78 36 84 75

Average 76 52 81 68

case1

case2

case3

case2-noise-avg

674

7,227

1,069

8,227

4,806

18,923

23,044

19,012

Ours (sec)
Tool (sec)

Fig. 9 Inference speed comparison between our framework
and the commercial tool.

collect the DFM hits and DFM violations of potential root
causes. (2) Calculate the ratio between DFM hits and DFM
violations of layout snippets and get mean ratio within each
cluster. (3) The cluster with the top rank of ratio is regarded
as the root cause predicted by the diagnosis reports.

On noise-free datasets. As shown in TABLE IV, our
method outperforms the commercial tool 2.33% on average
under the setting of noise-free defect injection. The average
accuracy of the baseline is 46.31% which is much lower than
our method and the commerical tool. This indicates that by
using simple statistics according to the diagnosis report we
can never locate the root cause accurately.

On noisy datasets. When given more challenging tasks
of root cause identification, we observe that the performance
of baseline becomes worse when the noise level is higher.
Our proposed method can estimate the root cause with better
performance under different noise levels, see TABLE V. The
average accuracy of the framework is 3.76% higher than the
commercial tool. Especially when the ratio of noise greater
than 70%, it is difficult for the commercial tool to identify
the root cause precisely. While our framework locates the root
cause with 13.72% higher accuracy then the commercial tool.
The proposed method is robust to the injection noise.

On mixture datasets. We conduct the mixture root causes
identification experiments to test whether our framework can
be extended to multiple root causes scenario. The experimen-
tal results in TABLE VI show that the proposed framework
has competitive results compared to the commercial tool
especially in tasks of identifying 1 or 2 true root causes from
mixture dataset, while the commercial tool may provide a
misleading results which can not be used for further study.
And we got 10.5% better accuracy on average than the
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Fig. 10 Accuracy of identifying 1, 2, and 3 true root causes in top-3 layout patterns on mixture datasets.
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Fig. 11 ARI of conducting layout pattern matching using raw
layout snippets (raw) and embeddings (emb).

commercial tool.
Top-3 accuracy on mixture datasets. We analyze the

performance of identifying 1, 2, and 3 true root causes from
the mixture datasets. Since there are 3 true root causes in
each dataset, a true root cause belonging to one of top-3
layout pattern in the root cause distribution is a successful
identification. The accuracies of identifying 1, 2, and 3 true
root causes are shown in Fig. 10, our method can identify
at least 1 root cause in all cases while the commercial tool
fails to achieve 100% accuracy. Also, the average accuracy of
identifying 2 root causes of our method is greater than 95%.

Inference speed. The inference time of our framework and
the commercial tool on single root cause datasets are shown
in Fig. 9. The speed of the proposed deep learning framework
method surpasses the conventional commercial tool by a large
margin. We got around ×10.4 and ×2.3 speedup on noise-free
datasets and noisy datasets. The robustness of accuracy and
inference speed indicate our method is valuable for industry.

Clustering quality. We compare the clustering quality
of DLSC with directly applying k-means algorithm on raw

layout snippets using the adjusted rand index (ARI ∈ [−1, 1],
[24]). ARI computes a similarity measure between two parti-
tions by considering all pairs of samples and counting pairs
that are assigned in the same or different clusters in the
predicted and true clusterings. High ARI indicates good match
between the clustering results and the ground truth. The
experiments are conducted on case 2, 256 layout snippets are
sampled on each layer for evaluation. The ARIs of clustering
using raw layout snippets and embeddings in DLSC presented
in Fig. 11 are the mean of ten independent evaluations. The
DLSC got higher ARI scores across all metal layers, which
indicates our contrastive learning method can improve the
quality of layout pattern matching.

V. DISCUSSION AND CONCLUSION

In this paper, a unified framework on layout pattern analysis
is proposed to identify the root cause(s). Based on the con-
cept of contrastive learning, a deep layout snippet clustering
module is designed to solve the ambiguity issue and improve
the resolution of root cause identification. Embedded canon-
ical forms are presented as latent codes of layout patterns,
which decreases the size of features and the inference times.
According to the principle of structural causal model, a deep
average causal effect estimation method is proposed to model
the causal relationship between candidate layout patterns and
the systematic defect. The experimental results on several
industrial designs show that our framework outperforms a
commercial tool in different scenarios. We hope our research
provides a new perspective on layout pattern analysis for yield
improvement.
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