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Abstract—With the rapid development of semiconductors and
the continuous scaling-down of circuit feature size, hotspot
detection has become much more challenging and crucial as
a critical step in the physical verification flow. In recent years,
advanced deep learning techniques have spawned many frame-
works for hotspot detection. However, most existing hotspot
detectors can only detect defects arising in the central region of
small clips, making the whole detection process time-consuming
on large layouts. Some advanced hotspot detectors can detect
multiple hotspots in a large area but need to propose potential
defect regions, and a refinement step is required to locate the
hotspot precisely. To simplify the procedure of multi-stage de-
tectors, an end-to-end single-stage hotspot detector is proposed
to identify hotspots on large scales without refining potential
regions. Besides, multiple tasks are developed to learn various
pattern topological features. Also, a feature aggregation module
based on Transformer Encoder is designed to globally capture
the relationship between different features, further enhancing
the feature representation ability. Experimental results show
that our proposed framework achieves higher accuracy over
prior methods with faster inference speed.

I. INTRODUCTION

As semiconductor technology develops rapidly, the size of
integrated circuit components is becoming much smaller. This
poses a challenge for chip manufacturers since it is much
more difficult to ensure the printability of layout designs due
to shrinking feature sizes. Therefore, a precise and efficient
hotspot detection technique is crucial to help locate the defect
position of a given layout.

In a nutshell, the hotspot detection methods can be di-
vided into three categories, lithography simulation, pattern
matching, and machine learning. Lithography simulation is a
common method that can achieve high accuracy but suffers
from runtime overhead issues. In contrast to lithography sim-
ulation, pattern matching and machine learning methods can
identify the hotspots efficiently. Pattern matching methods
[1]–[4] take a collection of hotspot layout patterns and use
them to scan over new designs to identify any matched
patterns as hotspots. Although pattern matching overcomes
the time-consuming drawback, it fails to detect unknown
hotspots, which are limited in real scenarios.

Different from pattern matching, hotspot detection methods
based on machine learning [5]–[10] show strong generaliza-
tion abilities and achieve acceptable performance. Especially
the approaches [11]–[17] built upon deep learning techniques
get significant improvements on both accuracy and efficiency.
For example, Yang et al. [11] design a convolutional neural
network (CNN) model to detect hotspots in clip-wise and
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Fig. 1 The comparison between two regions with the same
layout patterns. (a) Hotspot region. (b) Non-hotspot region.
(c) Locality inductive bias of CNN.

successfully address the issue arising from the imbalanced
data distribution.

However, there are still some issues with previous methods.
(1) Most deep learning-based frameworks are designed to
detect whether there is a hotspot at the center of an input
clip. It would take a long time to detect the whole layout
design. Although the method proposed in [16] can detect
multiple defects in large scales, some redundant designs may
affect the efficiency. To be specific, the whole framework is
a two-stage detector that requires a region proposal network
as the first stage to select the potential defect regions. A
refinement module is designed to process these candidate
defect regions for more accurate results (2) Chen et al. [16]
trains a framework to locate hotspots with rectangle bounding
boxes. However, the underlying information, e.g., corner
information, is not utilized as supervision for model training.
The underlying information is helpful for detection tasks in
some aspects. For example, corner information contributes to
improve the localization accuracy [18], while center informa-
tion performs better on detecting small targets [19]. (3) We
observe some outlier situations where two regions sharing the
same layout patterns may have different simulation results,
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Fig. 2 The visualization for three different representations to
indicate hotspot regions. (a) The bounding box of the hotspot
region. (b) Center of the hotspot region. (c) Top-left and
bottom-right corner of the hotspot region.

i.e., one region is identified as a hotspot while the other
is not. An example is shown in Fig. 1(a) and Fig. 1(b).
This phenomenon indicates that we can not judge whether
a hotspot exists only by focusing on the local layout pat-
terns, instead, context information plays an important role.
However, CNNs, commonly adopted by previous methods,
are infeasible to capture the long-range dependencies due to
the locality inductive bias. Only neighboring pixels are taken
into consideration when performing convolution operation,
leading to a limited receptive field for each position, as
illustrated in Fig. 1(c). Therefore, frameworks solely based
on CNNs have limitations on hotspot detection.

To address these issues, we propose a single-stage detection
framework that is more efficient than [16] by eliminating the
region proposal stage. We design two modules called center
head and corner head to learn the underlying representations
of the hotspots. These two modules act as auxiliary to help
produce more accurate bounding boxes, which are used to
indicate hotspot regions. A visualized example of different
representations is shown in Fig. 2. Our motivation is that
by jointly training the hotspot detector to learn different but
related tasks, the knowledge learned from one task can be
leveraged by others. This process simulates human perception
and helps improve the overall performance. In addition, a fea-
ture aggregation module based on Transformer Encoder [20]
is designed to augment the feature representation ability by
modeling the dependencies between each feature with others.
With this module, the issue of the CNNs, which can only
attend to local features, is mitigated. The main contributions
of this paper are listed as follows:
• We propose a single-stage detector skipping the region

proposal stage, which can effectively detect the hotspots.
• We build up center head and corner head to detect the

center and corner points of the hotspot regions.
• We design a feature aggregation module and a feature

sampling strategy to enrich the feature representation.
The sampling strategy is adopted to save the computation
cost of the aggregation operation.

• Experimental results show that our model achieves high
detection accuracy and speed over prior state-of-the-art
models.
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Fig. 3 Two basic modules for Transformer architecture. (a)
Multi-Head Attention. (b) Scaled Dot-Product Attention.

The rest of this paper is organized as follows. Section II
introduces terminologies and evaluation metrics related to this
work. Section III discusses each component of the proposed
hotspot detector. Section IV describes the implementation
details including the loss function design. Section V shows
the experimental comparison results with state-of-the-art,
followed by the conclusion in Section VI.

II. PRELIMINARIES

In this section, we will introduce the problem formulation
and some preliminary knowledge related to this work.

A. Problem Formulation

In chip manufacturing, designed layout patterns are trans-
ferred onto silicon wafers through a technique called litho-
graphic process. However, lithographic process involves many
variations, and some patterns are sensitive to these variations,
which may reduce the manufacturing yield due to potential
open or short circuit failures. Layout patterns that are sensi-
tive to lithographic process variations are defined as hotspots.

A high-performance hotspot detector should correctly de-
tect as many hotspots as possible and avoid mistaking non-
hotspot patterns for hotspot patterns. To evaluate the perfor-
mance, we define the following metrics.

Definition 1 (Accuracy). The ratio between the number of
correctly detected hotspots and the number of groundtruth
hotspots.

Definition 2 (False Alarm). The number of non-hotspots that
are predicted as hotspots by the classifier.

With the evaluation metrics defined above, we formulate
the hotspot detection problem as follows:

Problem 1 (Hotspot Detection). Given a collection of clips
containing hotspot and non-hotspot layout patterns, the ob-
jective of hotspot detection is to train a detector to locate and
classify all hotspots and non-hotspots, such that the detection
accuracy is maximized and the false alarm is minimized.



B. Transformer and Multi-Head Attention

Recently, Transformer [20] has made much progress in
many sequence-to-sequence tasks [21]–[23]. Transformer
consists of two modules, Encoder and Decoder. Both the
Encoder and the Decoder are built on a core mechanism
called Multi-Head Attention, which allows the model to
attend to information at different positions globally [20]. The
architecture of Multi-Head Attention is illustrated in Fig. 3(a)
and it is formulated as:

MultiHead(Q,K,V ) = Concat (H1, . . . ,Hh)W
O, (1)

where Q,K,V ∈ Rn×dm are the input matrices. In Trans-
former [20], Q,K,V are called query, key and value sep-
arately. n is sequence length and dm is the dimension for
each element of the sequence. Hi, i ∈ {1, 2, . . . , h} is the
output of a single scaled dot-product attention head as shown
in Fig. 3(b) and h is the number of heads.

To illustrate the dimension of Hi and WO, we first give
the formulation of Hi as follows:

Hi = Attention
(
QWQ

i ,KWK
i ,V W V

i

)
= softmax

[
QWQ

i

(
KWK

i

)>
√
dk

]
V W V

i .
(2)

For each attention head, the original input Q,K,V are
projected into different subspaces via projection matrices
WQ

i ,W
K
i ∈ Rdm×dk ,W V

i ∈ Rdm×dv so that different
heads deal with different input to learn richer informa-
tion [20]. The attention head then computes the similarity
between projected query and key via scaled dot-product and
a softmax function is then applied to obtain the weights on
projected value.

The Multi-Head Attention formulation in Equation (1)
concatenates all the outputs Hi ∈ Rn×dv , i ∈ {1, 2, . . . , h}
from different heads and then reduce the high dimension
feature to low dimension via matrix WO ∈ Rhdv×dm .

III. HOTSPOT DETECTION ARCHITECTURE

The proposed architecture overview of our framework is
illustrated in Fig. 4. (1) The first part is a backbone made
up of ResNet-50 and Feature Pyramid Network. With the
backbone, we can transfer the input clip to high dimensional
features, and multiple level feature maps are generated for
subsequent detection. (2) To conduct the hotspot detection
task, we predefine dense regions on the output feature map
of the backbone. The classification head performs label
prediction to judge whether a region is a hotspot region or not.
The localization head adjusts the predefined regions to fit the
groundtruth hotspot regions better. (3) Corner head and center
head receive the output from the backbone and identify the
corners and centers of input clips. (4) The feature aggregation
module is used to learn a rich hierarchy of associative
features across different positions in the localization and
classification head separately. The feature selection module
selects informative features and filters out unimportant ones
to save the computation cost.
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Fig. 4 The architecture of the proposed hotspot detector.

TABLE I ResNet-50 Architecture

layer name ResNet-50

conv1 7× 7, 64, stride 2

conv2 x 3× 3 max pool, stride 2 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3 x

 1× 1, 128
3× 3, 128
1× 1, 512

× 4

conv4 x

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

conv5 x

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

3× 3, 64

1× 1, 64

1× 1, 256

+

256-d

relu

relu

relu

Residual Block

A. Backbone

Feature extraction is a process that identifies important
features from input clips, which makes it easier for later
hotspot detection. The deep convolutional neural network is
a powerful tool for extracting effective features.

ResNet-50. Different from the previous works like [11],
[16], our work does not concentrate on the design of the
convolutional neural network for feature extraction. Instead,
we adopt ResNet-50 [24] as the feature extractor, which
proves to have prominent feature extraction ability according
to much work like [24]–[26]. The architecture of ResNet-50
is listed in TABLE. I.

Feature Pyramid Network. Previous work [11], [16], [27]
simply detect hotspots on the output from the last layer of the
backbone. However, we find that the feature maps of layers in



different levels are also crucial for hotspot detection, which
is further verified by our experimental results in V.

To utilize the feature maps from different layers, we build
the Feature Pyramid Network (FPN) [28] on top of the
ResNet-50. As shown in the right part of Fig. 5, with a
top-down pathway and lateral connections, multi-scale feature
maps are generated. Each feature map contains different level
features, and all of them can be used for detecting hotspots.
Considering the potential size of hotspot regions, we generate
three feature maps (P3, P4, P5) with different scales, where
Pk indicates that it has resolution 2k lower than the input.

B. Classification and Localization Head

In order to detect hotspots, previous work [16] first pro-
poses the regions of interest (ROI) that are likely to contain
the hotspot with region proposal network [16]. Then these
proposed regions are fed into the detection head for regression
and classification to get more accurate results. However, due
to the region proposal network with complex structures, the
detection speed is low.

To tackle this issue, we define dense regions which will be
directly passed to classification and localization head after
feature extraction. The region proposal step is skipped in
order to improve the detection efficiency. These predefined
regions are called anchors. More details about the anchor
settings are illustrated in Section IV-A.

Assume that we define M anchors for each pixel of the
feature map. Given a feature map F ∈ RH×W×C generated
by the backbone as the input, the conv layers module, which
consists of four consecutive 3 × 3 convolution layers with
C filters, outputs a new feature map Fc ∈ RH×W×C . A
feature aggregation module is then adopted to enhance the
representation ability of Fc, and then produces another feature
map Fa ∈ RH×W×C . The structure of the feature aggregation
module will be clearly illustrated in Section III-D. The feature
map Fa will be fed into the last layer, which is a 3 × 3
convolution layer with M filters and output the final result
Fo ∈ RH×W×M where each element predicts the probability
of each anchor containing a hotspot.

As for the regression head, it predicts the offset from each
anchor to a nearby groundtruth hotspot, if one exists. The
structure of the regression head is almost the same as the
classification head except that the last layer has 4M filters.
This is because the offset for each anchor is a 4-dimension
vector, including the offset for a 2-d center, width, and height.

C. Corner & Center Representation Learning

Multi-task learning is a learning paradigm which aims to
learn multiple related tasks jointly so that the knowledge
contained in one task can be leveraged by other tasks, with
the hope of improving the overall performance.

In Section III-B, the localization and classification heads
are proposed to detect the potential hotspot regions with
bounding boxes. Apart from the bounding box, corner and
center representations are proposed in this work to further
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Fig. 5 The architecture of the backbone. The backbone is a
combination of ResNet-50 and Feature Pyramid Network.

improve the detection performance. There are several advan-
tages to utilize corner and center representation learning. (1)
Center representation learning: hotspot region can be regarded
as a small pattern in the layout design, for which center repre-
sentation is proved to be friendly to detect small objects [19].
(2) Corner representation learning: corner representation is
helpful for locating the target precisely [18].

Following the paradigm of multi-task learning, corner and
center representation learning share the same backbone with
the previous heads illustrated in Section III-B. To train the
detector to learn these effective representations, we design
corner head and center head separately. The center head
receives the output F ∈ RH×W×C of the backbone and
predicts the probability of each point being a center as well
as the offset from each point to a nearby center, if one exists.
The structure of the center head is composed of a single point
head as shown in Fig. 6. Different from the center head, the
corner head identifies both the top left corner and bottom
right corner of the hotspot region. Therefore, the corner head
is composed of two separate point heads.

D. Feature Aggregation Module

The Transformer Encoder applied in machine translation
tasks has shown its strength in modeling all pairwise interac-
tions between different elements in a sequence. Inspired by its
mechanism, which has been introduced in Section II-B, we
design a module called feature aggregation module (FAM)
based on the Transformer Encoder.

With the help of FAM, we can enrich the feature map
output from the conv layers module in the localization and
classification heads, as shown in Fig. 4. By globally capturing
the dependencies between different features with the Multi-
Head Attention mechanism, the representation ability of the
feature map could be effectively augmented.
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Fig. 6 Point head structure. The center head is composed of a
single point head. The corner head is composed of two point
heads.

To be specific, given a feature map Fc ∈ RH×W×C , when
we hope to capture the dependencies between fm ∈ RC
with all other features fn ∈ RC , n ∈ {1, 2, . . . ,HW}, fm is
regarded as query and fn is regarded as key and value. Noted
that Fc is the output of the conv layers module as illustrated
in Section III-B. Then considering the operation via a single
head of the Multi-Head Attention, which can be applied on
fm and fn as follows:

hi =

HW∑
n=1

exp(fmWQ
i (fnW

K
i )>/

√
C)∑HW

n=1 exp(fmWQ
i (fnWK

i )>/
√
C)

fnW
V
i , (3)

where hi ∈ RC is the output of head i. HW is the number
of features of the feature map Fc ∈ RH×W×C , and C is
the dimension of the feature. WQ

i ,W
K
i ,W

V
i ∈ RC×C are

projection matrices as explained in Section II-B.
However, the computation cost is extremely expensive

since the huge key set includes hundreds of candidates and the
complexity for Equation (3) is O(HWC2). In terms of this
issue, we design a simple yet effective algorithm to reduce
the amount of the selected keys. The main idea is to leverage
the knowledge from the center head and corner head to guide
the key selection for the feature map in the classification head
and localization head separately. The key selection algorithm
on the center head is demonstrated in Algorithm 1. The key
set of the corner head is selected in a similar way.

As illustrated in Section III-C, the probability map output
by center head describes the probability of each point being
a center. We perform a 3 × 3 average pooling with stride 1
on the probability map and get the positions of the maximum
k values (lines 2–3). Then the features in the corresponding
positions of the feature map are added to the key set (lines
4–8), which will be adopted to enhance the feature map.

Based on the new generated key set, we further design a
variant of Equation (3) as follows:

hi = fm+λ

k∑
n=1

exp(fmWQ
i (fnW

K
i )>/

√
C)∑k

n=1 exp(fmWQ
i (fnWK

i )>/
√
C)

fnW
V
i

(4)

Algorithm 1 Key selection algorithm

Input: Center Probability Map C ∈ RH×W , Feature Map
Fc ∈ RH×W×C , Selection Number k;

Output: Key set Fk;
1: Fk ← Initialized to empty set;
2: C ′ ← AvgPool(C);
3: topk idx← the index of the maximum k values in C ′;
4: for i← 1, 2, . . . k do
5: idx← topk idx[i];
6: fi ← the feature in the position idx of Fc;
7: append feature fi to key set Fk;
8: end for
9: return Key set Fk with k features.

where k is the selection number of keys defined in Algo-
rithm 1 and fn is from the key set Fk. λ is a hyperparam-
eter to control the feature augmentation degree. Compared
to Equation (3), the complexity of Equation (4) is reduced to
O(kC2), where k is much smaller than HW . As illustrated
in Section II-B, the Multi-Head Attention is composed of
multiple attention heads. In our framework, the number of
the heads is set to 8.

IV. IMPLEMENTATION DETAILS

A. Anchors

For each pixel of the feature map, anchors with three
different aspect ratios {1:2, 1:1, 2:1} and four different sizes
{20, 21/4, 22/4, 23/4} are set for dense scale coverage. Since
each pixel is assigned with 12 anchors and each feature map is
composed of many pixels, the number of anchors is extremely
large, leading to the low efficiency for training. We can benefit
from getting rid of large parts of the anchors. We first define
Intersection-over-Union (IoU) as follows:

IoU =
anchor ∩ groundtruth
anchor ∪ groundtruth

. (5)

Our assignment rule is based on the IoU between anchor
and groundtruth as follows:
• If the IoU between an anchor and a groundtruth is larger

than 0.5, the anchor will be regarded as positive sample.
• If the IoU between an anchor and any other groundtruth

is smaller than 0.4, the anchor will be regarded as
negative sample.

• If the IoU between a groundtruth and any other anchor
is smaller than 0.5, the anchor with the highest IoU will
be regarded as positive sample.

• The rest anchors are ignored during training.
Noted that each anchor is assigned to at most one

groundtruth bounding box.

B. Training Loss

The objective function presented in this work is formulated
as follows:

Ldet = Lbbox + Lctr + Lcor, (6)



Lbbox, Lctr and Lcor are bounding box loss, center loss and
corner loss correspondingly. The detail explanation on these
three terms will be introduced in this section.

1) Bounding Box Loss: Based on the assignment rule in
section IV-A, the ground truth classification target pi is set to
1 if the anchor i belongs to positive sample and 0 otherwise.

Focal loss [29] is adopted to train the classification head.
The classification loss function is defined as:

Lbboxcls (pi, p
′
i) =

{
−α(1− p′i)γ log p′i, pi = 1,
−(1− α)p′γi log(1− p′i), pi = 0,

(7)

where α and γ are hyperparameters. p′i is the prediction result
which indicates the probability containing the hotspot.

In addition to the classification head, the regression head
predicts the offset between each anchor and its assigned
groundtruth bounding box. t′i = (t′x, t

′
y, t
′
w, t
′
h) and ti =

(tx, ty, tw, th) are 4-d vector representing the regression pre-
diction and the corresponding groundtruth target, respectively.
They are defined as:

tx = (x− xa) /wa, ty = (y − ya) /ha,
tw = log (w/wa) , th = log (h/ha) ,

t′x = (x′ − xa) /wa, t′y = (y′ − ya) /ha,
t′w = log (w′/wa) , t′h = log (h′/ha) ,

(8)

where (x, y, w, h) represents the center coordinates, width
and height. w′, wa and w represents the width of the
predicted bounding box, anchor and groundtruth bounding
box separately (same as x, y and h). Smooth L1 loss is
adopted for regression loss function which is formulated as:

Lbboxreg (ti, t
′
i) =

4∑
j=1

lbboxreg (ti[j], t
′
i[j]), (9)

where

lbboxreg (ti[j], t
′
i[j]) =

{
1
2 (ti[j]− t

′
i[j])

2
, if |ti[j]− t′i[j]| < 1

|ti[j]− t′i[j]| − 1
2 , otherwise.

(10)
With the defined regression and classification loss function,

the overall loss for the bounding box is calculated as:

Lbbox =
1

Nanch

∑
i

(Lbboxcls (pi, p
′
i) + piL

bbox
reg (ti, t

′
i)), (11)

where Nanch is the number of anchors.
2) Center & Corner Loss: Center and corner representa-

tions are adopted as the auxiliary to enhance the bounding
box representation. To learn the effective feature expression,
loss functions are designed for the corner head and the center
head respectively. The loss for each point in the corner head
is designed identically as the loss for the center head, thus
we take the loss function for the center head as an example.

Similar to the anchor assignment, all the points within a
feature map are divided into two categories. The points within
the groundtruth bounding box are regarded as positive points
and the rest are regarded as negative points. We assign each
positive point with its corresponding bounding box center.
For negative points, the groundtruth probability qxy for (x, y)

being the center is set to 0. And for positive points, we take
the Gaussian kernel to describe the probability as follows:

qxy = exp

(
− (x− bx̂c)2 + (y − bŷc)2

2σ2

)
, (12)

where (x̂, ŷ) is the assigned center for each positive point
and σ is a hyperparameter. The classification branch of the
center head predicts the probability q′xy of each point being
the center. A variant of focal loss [29] is adopted for the
classification loss function, defined as:

Lctrcls(qxy, q
′
xy) =

{ (
1− q′xy

)θ
log
(
q′xy
)
, qxy = 1,(

1− q′xy
)β (

q′xy
)θ

log(1− q′xy), qxy < 1,
(13)

where θ and β are hyperparameters.
Besides predicting the probability of each point being a

center, the center head is trained to predict the offset d′xy
between each positive point (x, y) and its corresponding
center (x̂, ŷ). Similar to eq. (9), the regression loss function
is defined as:

Lctrreg(dxy,d
′
xy) =

2∑
j=1

lctrreg(dxy[j], d
′
xy[j]), (14)

where lctrreg is taken as the same form as eq. (10).
By combining the regression and classification loss func-

tions, the overall loss for the corner head is calculated as:

Lctr =
1

Nctr

∑
x

∑
y

(Lctrcls(qxy, q
′
xy)+Iqxy>0L

ctr
reg(dxy,d

′
xy)),

(15)
where Nctr is the number of centers for a given input. The
indicator function Iqxy>0 points out that the negative points
are omitted for regression part.

V. EXPERIMENTAL RESULTS

We implement our proposed hotspot detector on a platform
with the Xeon Silver 4114 CPU processor and NVIDIA
TITAN Xp Graphic card. We evaluate the performance of our
framework on the ICCAD CAD Contest 2016 Benchmarks
[30] which contains four designs that are shrunk to match
EUV metal layer design rules. According to the results de-
tected with the industrial 7nm metal layer EUV lithography
simulation technique, the hotspot is precisely located. Since
the first benchmark design contains limited defects checked
by lithography simulation, we only conduct the experiments
on the rest three ones. For each layout, we split it into two
parts with equal area size, among which one part is used
for training, and the other part is used for testing. Due to
the extremely large size of the whole layout, small clips are
cropped from the layout and are then fed into the hotspot
detector. More details are illustrated in TABLE II.

Noted that case2, case3 and case4 are the names of
the three benchmarks. Column “Train #HS” and “Test #HS”
indicate the total number of hotspots in the training and test
set, while column “Train #Clips” and “Test #Clips” refer to
the total number of clips in the training and test set. “Training



TABLE II Benchmark Information

Bench Train #HS Test #HS Train #Clips Test #Clips Training Set Size (µm× µm) Test Set Size (µm× µm)

case2 40 39 1000 8 6.95 × 3.75 6.95 × 3.75
case3 1388 1433 1000 33 12.91 × 10.07 12.91 × 10.07
case4 90 72 1000 55 79.95 × 42.13 79.95 × 42.13

TABLE III Comparison with State-of-the-art

Bench TCAD’19 [27] DAC’19 [16] Ours
Accu(%) FA Time(s) Accu(%) FA Time(s) Accu(%) FA Time(s)

case2 77.78 48 60.0 93.02 17 2.0 94.87 6 1.0
case3 91.20 263 265.0 94.5 34 10.0 97.2 26 4.0
case4 100.00 511 428.0 100.0 201 6.0 100 70 6.0

Average 89.66 274.00 251.00 95.84 84.00 6.00 97.31 34.00 3.67
Ratio 0.92 8.06 67.84 0.98 2.47 1.62 1.00 1.00 1.00

Set Size” and “Test Set Size” denote the resolution of the
training and test set for each benchmark respectively. Clips in
the training set are obtained by randomly cropping the layouts
of the training part for 1000 times to get sufficient data for
training. Different from the training set, we uniformly crop
the layout in the test set. The size of each clip is 256× 256
(corresponding to 2.56µm×2.56µm), on which hotspots may
appear or not.

TABLE III shows the results of our proposed frame-
work and several other state-of-the-art hotspot detectors.
“TCAD’19” lists the result of a deep learning-based hotspot
detector proposed in [27] that adopts a high-dimensional fea-
ture extraction method and biased learning algorithm which
can reduce the size of training instances. “DAC’19” shows
the result of a faster region-based hotspot detector in [16]
which first proposes a detector capable of detecting multiple
hotspots in a large area for each inference. The comparison
results illustrate that our model has satisfactory detection
accuracy on each case. Especially, the average accuracy of
our framework achieves 97.31 compared to 95.88 and 89.66
for DAC’19 [16] and TCAD’19 [27], respectively. Besides,
the efficiency superiority of our proposed hotspot detector can
also be noticed that it achieves 67.84× speedup compared to
TCAD’19 [27], which can only detect whether the center of
an input clip has a hotspot. Also, compared to DAC’19 [16],
the inference speed of our model is faster because of the
simpler architecture of the whole framework. Moreover, the
advantage of our framework can also be noticed that it
suppresses the false alarm effectively, which decreases 87.6%
and 59.5% of the FA reported by TCAD’19 and DAC’19.

To investigate the behavior of our designed components,
we carry out ablation studies to examine how different config-
urations affect performance as shown in Fig. 7. The histogram
shows that with the FPN, the detection accuracy improves
significantly, which reveals the importance of merging feature
maps from different layers. By detecting on the feature maps
from different layers, multi-level features from the input
clip could be utilized for detection, which contribute to the
robustness of the framework. Besides, with the center head
and corner head, we obtain 2.21% improvement on accuracy
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Fig. 7 Comparison among different configurations on (a)
average accuracy and (b) average false alarm.

and a reduction on average False Alarm, indicating that the
knowledge learned in the corner head and center head can
be positively leveraged for the regression and classification
for bounding boxes. In addition, with feature aggregation
module, we further achieve 3.1% improvement on accuracy,
demonstrating that by adopting the self-attention module, the
detector learns more informative representations and further
achieves better detection performance.

VI. CONCLUSION

In this paper, we proposed an end-to-end one-stage hotspot
detection framework. We take advantage of the corner and
center representation to improve both classification and lo-
calization accuracy. Our feature aggregation module provides
a new way to aggregate different features and further gen-
erate the enhanced features. We further exploit a sampling
strategy for FAM to reduce the computation cost effectively.
The experimental results demonstrate the superiority of our
framework over current deep learning-based detectors on both
accuracy and efficiency. With the development of manufac-
turing techniques for semiconductors, layouts are becoming
more and more complex. We hope the framework proposed in
this work can provide a more powerful solution to advanced
design for manufacturability research.
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