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Abstract—With the feature size continuously shrinking in
advanced technology nodes, mask optimization is increasingly
crucial in the conventional design flow, accompanied by an
explosive growth in prohibitive computational overhead in op-
tical proximity correction (OPC) methods. Recently, inverse
lithography technique (ILT) has drawn significant attention and
is becoming prevalent in emerging OPC solutions. However, ILT
methods are either time-consuming or in weak performance
of mask printability and manufacturability. In this paper, we
present DevelSet, a GPU and deep neural network (DNN) accel-
erated level set OPC framework for metal layer. We first improve
the conventional level set-based ILT algorithm by introducing
the curvature term to reduce mask complexity and applying
GPU acceleration to overcome computational bottlenecks. To
further enhance printability and fast iterative convergence, we
propose a novel deep neural network delicately designed with
level set intrinsic principles to facilitate the joint optimization
of DNN and GPU accelerated level set optimizer. Experimental
results show that DevelSet framework surpasses the state-of-the-
art methods in printability and boost the runtime performance
achieving instant level (around 1 second).

I. INTRODUCTION

As minimum feature size continues to shrink, the optical
diffraction and proximity effects in lithography become not
negligible, which could seriously degrade the yield of in-
tegrated circuits. To compensate for pattern distortion and
improve process window in the lithography process, optical
proximity correction (OPC) is used to ensure pattern transfer
fidelity. Typical OPC approaches encompass rule-based meth-
ods [1], model-based methods [2], [3], inverse lithography
techniques [4], [5], and DNN-based methods [6]–[8].

In model-based OPC procedure, the edges of the initial
mask are fragmented into segments, which are moved itera-
tively under the guidance of lithography simulation. Inverse
lithography techniques (ILT) also leverage rigorous simulation
to perform mask printability enhancement. Moreover, ILT
can achieve pixel-level optimization and thus find a better
solution in a larger solution space by seeing mask optimization
as an inverse imaging problem. Gao et al. [4] derived a
closed-form gradients descent algorithm through direct edge
placement error and process window optimization. In recent
years, DNN-based methods have drawn great attention as
they can attain significant speedup while preserve comparable
mask printability by incorporating previous experience. Yang
et al. [6] proposed a generative model to produce an initial
mask solution, which greatly lowers the number of iterations
required in traditional ILT methods.
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Fig. 1 (a) The 3D illustration of level set function φ. The mask
is shaped as the cross-section of the level set continuum with
the zero plane. The contours on the x-y plane are the projected
level set. (b) The level set evolution process.

In the past decades, level set-based ILT methods have been
actively explored as a feasible alternative to pixel-based ILT
methods in OPC tasks. As illustrated in Fig. 1, the implicit
representation of level set method is naturally more effective
in dealing with complex topology changes and lithography de-
velopment [9]. Shen et al. [10] solved the inverse lithography
problem using a level set time-dependent model with finite
difference schemes. Yu et al. [11] proposed a momentum-
based conjugate gradient (CG) method and accelerated the
level set evolution with GPU-enabled Fast Fourier Transform
(FFT) algorithm.

Briefly, there are two main approaches for the inverse
lithography techniques: parametric and implicit. The para-
metric methods [4]–[8] use pixel-wise tensors to generate the
mask (Fig. 2(a)). While the implicit approaches represent the
mask as a zero level set cross-section [10]–[14] (Fig. 2(b)).
So far, due to the simplicity and flexibility of pixel-based
gradient descent methods, the parametric methods have been
thoroughly researched through the perspectives of objective
function, optimization method, and the DNN acceleration,
achieving state-of-the-art (SOTA) runtime performance and
mask print fidelity. However, as depicted in Fig. 2(c), the
parametric methods inevitably generate unnecessary isolated
stains or edge glitches with zigzagging and tortuous complex
mask boundaries while the level set implicit representation
is accomplished in mask boundary continuity and curvature
control (Fig. 2(d)). Unfortunately, due to the extra compu-
tational overhead introduced by the level set evolution, the
application of level set-based ILT method has been greatly



underestimated.
With the rapid development of GPU and deep learning, the

progressive potential of level set-based ILT methods should
be reconsidered. Motivated by these issues, we present the
DevelSet framework, which contains two parts. The GPU
accelerated level set optimizer (DevelSet-Optimizer) and the
deep level set neural network (DevelSet-Net). Following the
improvements proposed by the previous work, DevelSet-
Optimizer (DSO) incorporates the curvature term into level
set-based ILT to reduce mask complexity and develops a set
of GPU friendly algorithm to overcome the computational
overhead. DevelSet-Net (DSN) is designed to provide better
initial solutions by leveraging the fast inference ability of
neural network and compensate DSO for the curvature cost by
applying a novel modulation branch. The DevelSet framework
benefits from end-to-end joint optimization of DSN and DSO,
achieving SOTA fast convergence and mask printability. Our
main contributions are:
• We propose DevelSet, an improved level set-based ILT

framework with CUDA and DNN acceleration.
• We firstly introduce curvature term into level set-based

ILT methods to reduce mask complexity and leverage
GPU to perform all the calculations.

• We are the first to integrate level set into deep neural
network for an end-to-end joint mask optimization flow.

• We design a novel multi-branch neural network archi-
tecture with level set embeddings to further boost the
performance and improve mask printability.

• Experimental results show that DevelSet achieves SOTA
mask printability with predominant runtime advantage
for instant mask optimization i.e., around 1 second.

The rest of the paper is organized as follows: Section II
lists some preliminaries about level set algorithms and mask
optimization methods. Section III details the DevelSet algo-
rithm. Section IV presents our experimental results, followed
by a conclusion in Section V.

II. PRELIMINARIES

In this section, we will introduce some concepts and
background related to this work. Following the traditions, we
denote Zt, M, and I, as the target layout, mask image, and
intensity of aerial image respectively. Z, Zin, and Zout are the
wafer image under the nominal/min/max process conditions.
We use H for lithography kernels and φ for the level set
function (LSF).

A. Level Set-Based ILT Algorithms

Level set as a mathematical technique is pioneered by Osher
et al. [15]. Recently, it has been actively explored as a feasible
alternative to tackle the ILT problem. Let C : Ω → R2

denote a parametric curve in 2D space Ω, the level set method
implicitly represents the boundary of the mask using zero
crossing of a LSF φ(x, y) : Ω→ R:

C = {(x, y) | φ(x, y) = 0}. (1)
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Fig. 2 Comparison of pixel-based ILT and level set-based ILT.
(a) Intensity matrix of pixel-based ILT; (b) Level set-based
ILT; (c) Mask generated by pixel-wise intensity threshold; (d)
Mask generated by zero level set.

As depicted in Fig. 1(b), the mask optimization process can
be viewed as the evolution along the descent of the LSF φ.
The commonly used LSF φ is the signed distance function
(SDF),

φSDF(x, y) =

 −d(x, y), if(x, y) ∈ inside(C),
0, if(x, y) ∈ C,
d(x, y), if(x, y) ∈ outside(C),

(2)

where d(x, y) is the minimum Euclidean distance from point
(x, y) to the parametric curve C. As illustrated in Fig. 2(d),
the contours are labeled with its SDF values, and the C is
the contour labeled by 0. Now the mask image M can be
represented by φ as

M(x, y) =

{
1, if φ(x, y) ≤ 0
0, if φ(x, y) > 0.

(3)

During the evolution, the mask boundary C(t) changes over
time t ∈ R, the curve evolution then can be formally defined
as

∂C(t)

∂t
= vn, (4)

where n = ∇φ
|∇φ| is the unit vector in the outward normal

direction of the curve C and v indicates the velocity along
the normal direction. We use the zero level set to implicitly
represent the mask boundary, thus: φ(C(t), t) = 0. The chain
rule gives us,

∂φ(C(t), t)

∂t
= 0→ ∂φ

∂C(t)

∂C(t)

∂t
+
∂φ

∂t
= 0. (5)



Consider all the points on the evolving front C(t), ∂φ∂C = ∇φ,
combining the Equation (4) and Equation (5), the motion
equation of LSF ∂φ

∂t can be formally expressed by

∂φ

∂t
= −v|∇φ|. (6)

Equation (6) is a partial differential equation (PDE), once
the level set φ and velocity v are defined, the first-order
derivative in space and time of Equation (6) can be approx-
imated using finite difference techniques. Evolution of LSF
φ(x, y, t) can be performed iteratively. We use φi(x, y) to
denote φ(x, y, ti) for simplicity. For i ∈ {0, 1, 2 . . . T − 1},
the ith-step update is

φi+1(x, y) = φi(x, y) + ∆t
∂φi
∂t

, (7)

where ∆t is the time step, φ0(x, y) is the initial LSF, and the
φT (x, y) is the corresponding output LSF after T evolution
steps. As shown in Fig. 1(b), we can obtain the optimized
mask after T steps by applying the Equation (3).

B. The Lithography Simulation Model

During the conventional lithography process, the input
mask M is transformed through an optical projection system
into the aerial image. The distribution of aerial light intensity
I floating on the wafer forms the printed image Z. The
optical projection system can be expressed mathematically
using Hopskin’s diffraction model [16]. The sum of coherent
systems (SOCS) can roughly estimate Hopskin’s diffraction
model by performing singular value decomposition, the opti-
cal projection process is then replaced by a set of coherent
kernels. The intensity of aerial image I can be represented by
convolving the mask M and a set of optical kernels H,

I(x, y) =

N2∑
i=1

σi|M(x, y)⊗ hi(x, y)|2. (8)

Here ⊗ denotes the convolution operation, and hi is the ith

kernel of the optical kernel set H and σi is the corresponding
weight of the coherent system. The N th

k order approximation
to the partially coherent system can be obtained by,

I(x, y) ≈
Nk∑
i=1

σi |M(x, y)⊗ hi(x, y)|2 , (9)

where Nk = 24 in our implementation. After optical simu-
lation, the aerial image undergoes a resist model to estimate
the final printed shape on wafer. For methodology verification
and also for simplicity, we adopt the constant threshold resist
model which is consistent with the ICCAD 2013 contest set-
tings [17]. As depicted in Fig. 2(c), given the print threshold
Ith, the printed wafer image can be expressed as:

Z =

{
1, if I ≥ Ith,
0, if I < Ith.

(10)

C. Mask Printability and Mask Manufacturability

Mask printability represents the quality of the printed
patterns generated from the optimized mask. In this paper, we
use squared L2 error and process variation band (PVBand) as
two typical metrics to evaluate mask printability. Moreover,
the mask fracturing shot count proposed in Neural-ILT [8] is
also applied in this work to evaluate mask complexity and
manufacturability.

1) Squared L2 error: Given the wafer image Z and target
image Zt, the squared L2 error is calculated by: ‖Z− Zt‖22.

2) PVBand: Process variation band (PVBand) is the
bitwise-XOR region among all the printed patterns under
different process conditions. In our work, for simplicity, we
calculate the PVBand under two extreme conditions, one
at nominal condition with +2% dose and the other one at
defocus and −2% dose. A mask is more robust if its PVBand
area is smaller.

3) Mask Fracturing Shot Count: Many conventional pixel-
based ILT methods tend to optimize the mask only to improve
mask printability. However, most of these optimized masks
contain plenty of tiny irregular sub-features, which increase
the difficulty for mask manufacture. In this work, we use shot
count to evaluate the mask manufacturability. An evaluated
mask M can be fractured into a set of small rectangles which
could replicate exactly the original mask. Mask fracturing shot
count stands for the number of fractured rectangles.

III. DEEP NEURAL LEVEL SET ALGORITHMS

As depicted in Fig. 3, the proposed DevelSet frame-
work consists of two parts, DevelSet-Optimizer (DSO) and
DevelSet-Net (DSN). In this section, we will first intro-
duce the improved level set-based ILT algorithm of DSO
in Section III-A applying curvature term to improve the
mask manufacturability, along with the full implementation
in CUDA platform by combining the mechanism of GPU
parallelism with the numerical setting of level set. Then a
novel multi-branch neural network i.e., DSN is proposed in
Section III-B to: 1) provide a better initial LSF for DSO to
reduce the total iterations, 2) predict a weighted matrix to
selectively regularize the mask boundary and compensate for
mask printability loss caused by the curvature term. Finally,
we perform the end-to-end joint optimization for DevelSet in
Section III-C to accomplish instant mask optimization with
higher mask printability and lower mask complexity.

A. DevelSet-Optimizer (DSO)

The objective of the conventional ILT-based OPC method is
to find an optimized mask Mopt = L−1(Zt;Pnom), where Zt

is the design target and the L (·;Pnom) denotes the forward
lithography process under the nominal condition. The pixel-
based ILT methods represent the intensity wafer image as
the pixel-wise parameters and then update the mask pixel-
by-pixel with the guidance of the inverse gradient from the
lithography model. While the level set-based ILT methods
regard the optimization process as the evolution of the level set
continuum, the mask is formulated by the cross-section of zero
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Fig. 3 Overview of DevelSet framework with the end-to-end joint optimization flow of DSN and DSO.

height plane and the level set continuum. Mathematically, the
level set continuum is represented with LSF φ, the evolution
procedure can be expressed by Equation (7). The SOTA
pixel-based method Neural-ILT [8] brings the ILT to the on-
neural-network training solution with a CUDA accelerated
lithography simulator, achieving a breakthrough in runtime
boosting. It applies a mask complexity refinement layer
and domain knowledge re-training to eliminate the complex
shape in masks thus reducing mask complexity. Nonetheless,
Neural-ILT sacrifices mask printability that the sum of L2

and PVBand is worse than the previous learning-based work
PGAN-OPC [6]. The SOTA level set-based method GLS-
ILT [11] leveraged GPU accelerated FFT to speed up the
momentum-based algorithm. However, there is still room for
acceleration since GLS-ILT only accelerates the FFT module
and much runtime is wasted on CPU and GPU transfers.

DSO is a CUDA accelerated iterative mask optimizer
applying our improved level set algorithm. By controlling the
curvature term and transferring all the computations to the
GPU, DSO obtains mask printability superiority and break-
through in runtime performance simultaneously. As revealed
in Equation (7), the key to leverage level set methods in
mask optimization tasks is the definition of the LSF φ and
the velocity term v. In DSO, we carefully design the LSF
φ, and then integrate the ILT-based gradient as the velocity
term v. Moreover, we introduce the curvature term to improve
mask printability and reduce mask complexity.

1) The Improved Level Set-Based ILT: Truncated signed
distance function. The theoretical framework of the level
set method is independent of which particular LSF φ is
used. A popular type of LSF is the signed distance function
(SDF) in Equation (2). SDF is Lipschitz continuous and from
Rademacher’s theorem, it is almost everywhere differentiable.
However, instead of using SDF, we adopt truncated signed
distance function (TSDF) as our LSF with an upper bound
Du and a lower bound Dl,

φTSDF =

 Du, if φSDF > Du,
φSDF, if Dl ≤ φSDF ≤ Du,
Dl, if φSDF < Dl.

(11)

In our work, we set Du to 900 and Dl to −100 according to
the design rules of the benchmark. The TSDF improves the

stability of optimization procedure by reducing the variance
of the dataset. More importantly, the TSDF ensures the fast
convergence of the DevelSet-Net to enable the end-to-end
joint optimization of the whole mask optimization framework.

Motion term. Motion term ∂φ
∂t is the core component in

level set methods determining the evolution process. Accord-
ing to Equation (6), it is dominated by the velocity term
v. In our work, the velocity is the gradient back-propagated
from the forward lithography simulation process of the partial
coherent imaging system. All the techniques used in the
previous pixel-based framework can be seamlessly migrated to
the DevelSet framework, for DSO provides a proxy that allows
us to perfectly control the gradient near the mask boundary.
The objective function of DSO consists of the commonly used
ILT loss and the PVBand loss,

LDSO = αLilt + βLpvb. (12)

To minimize the image difference of target image and
nominal image, the ILT loss is given by

Lilt =

N∑
x=1

N∑
y=1

(Z(x, y)− Zt(x, y))
2
, (13)

where the Zt is the target image; Z is the wafer image after the
lithography under the nominal condition; N is the width of the
target image. To enable the evolution process differentiable,
the step function in Equation (10) is approximated as

Z =
1

1 + exp (−σz × (I− Ith))
, (14)

where σz is the steepness of the sigmoid function. Then the
gradient of ILT loss can be expressed as

∂Lilt

∂M
= 2× (Z− Zt)�

∂Z

∂M
= 2σz × {H′ ⊗ [(Z− Zt)� Z� (1− Z)� (M⊗H∗)]

+(H′)∗ ⊗ [(Z− Zt)� Z� (1− Z)� (M⊗H)]} ,
(15)

where the H′ is the 180◦ rotation of the optical kernel set H,
and the H∗ is the conjugate of H.

To minimize the area of PVBand, we expect the inner-
most/outermost wafer under min/max process conditions as



close to the target image as possible. The PVBand loss is
given by,

Lpvb = (Zin − Zt)
2

+ (Zout − Zt)
2
. (16)

The gradient of PVBand loss can be represented as

∂Lpvb

∂M
=2× (Zin − Zt)�

∂Zin

∂M

+2× (Zout − Zt)�
∂Zout

∂M
.

(17)

The detailed derivation of Equation (17) is similar to Equa-
tion (15). Now the velocity v is

v = α
∂Lilt

∂M
+ β

∂Lpvb

∂M
. (18)

And the motion equation is finally derived as

∂φi
∂t

= −(α
∂Lilt

∂M
+ β

∂Lpvb

∂M
)|∇φi|. (19)

Curvature term. As revealed in Equation (7), the evolution
manner of level set is defined by several updating terms,
which can be roughly divided into two categories : (1) external
terms that attract the curve to the desired location-based on
the data evidence, such as the inverse lithography gradient
or the optimization methods, and (2) internal regularization
terms on the curve shape, e.g. curvature and the length of
the curvature. Previous level set-based methods focus on the
improvements of the external terms since the internal term
such as curvature requires extensive calculations to get the
second-order derivatives. However, with GPU acceleration,
DSO takes the maximum advantage of the effective feature
in the implicit representation to obtain the curvature of the
boundaries, which is practical to control the smoothness of
the front and eliminate the noise points on the mask pattern.
The curvature term is formally defined as

κ = λmθ |∇φi|div

(
∇φi
|∇φi|

)
, (20)

where λ is the curvature weight. However, in OPC tasks, there
may exist sharp corners in some parts of the masks. Directly
apply curvature term on the level set evolution process may
harm the lithography results. Thus, we add a weighted matrix
mθ to control the curvature term, and the subscript θ denotes
the mθ is predicted by the modulation branch parameters
of DSN. We will introduce the modulation branch in Sec-
tion III-B1 detailedly. Then the level set evolution of DSO
can be described as the sum of the motion term and curvature
term,

∂φi
∂t

=− (α
∂Lilt

∂M
+ β

∂Lpvb

∂M
)|∇φi|

+ λmθ |∇φi|div

(
∇φi
|∇φi|

)
.

(21)

2) The CUDA Implementation of DSO: Conventional ILT-
based mask optimization methods suffer from severe com-
putational overhead, and the situation grows worse in level
set-based methods. When the new terms are leveraged to
improve mask printability, the new computational cost is also

introduced to the already burdensome computation system.
Hence, the major challenge for DSO is to overcome the
drawback of high computational effort. By implementing the
entire DSO framework on the CUDA platform, we find a way
to balance efficiency and performance. Next, we will detail
the CUDA implementation of each term in level set algorithm,
as well as engineering tricks to make our DSO framework
significantly faster.

Numerical settings. The level set-based mask optimization
methods focus on 2D situation with an image as the input.
The space is discretized by a Cartesian grid with steps
∆x,∆y, where the coordinates (x, y) represent the xth, yth

pixel in the image. The first-order derivatives in space and
time of Equation (21) can be approximated using finite differ-
ence techniques. We apply weighted essential nonoscillatory
(WENO) [18] numerical polynomial interpolation method that
uses the smoothest possible polynomial interpolation to find
φ. And the first-order and second-order spatial derivatives of
φ can be represented with central differences as

∇φx =
1

2
(φ(x+ 1, y)− φ(x− 1, y)),

∇φy =
1

2
(φ(x, y + 1)− φ(x, y − 1)),

∇φxx =φ(x+ 1, y) + φ(x− 1, y)− 2× φ(x, y),

∇φyy =φ(x, y + 1) + φ(x, y − 1)− 2× φ(x, y),

∇φxy =
1

4
[(φ(x+ 1, y + 1)− φ(x− 1, y + 1))

− (φ(x+ 1, y − 1)− φ(x− 1, y − 1))],

(22)

and the curvature term is then computed numerically with

κ = λmθ |∇φi|div

(
∇φi
|∇φi|

)
= λmθ

∇φxx∇φy2 − 2∇φy∇φx∇φxy +∇φyy∇φx2

∇φx2 +∇φy2
.

(23)
CUDA-based TSDF. The first tremendous challenge is to

calculate the truncated signed distance function (TSDF) on a
given target image (2048 × 2048), in an extremely short pe-
riod. The most celebrated method to calculate signed distance
function is the Fast Marching Method introduced by [19].
Instead of using Fast Marching Method, we have specially
designed the TSDF algorithm based on the characteristics of
CUDA parallelism. In DSO, we use the target pattern as the
initial mask. The first step focuses on extracting the boundary
segments and calculating the distance towards the boundary
using the CUDA_TSDF function in Algorithm 1. We apply
pixel-wise Shift and XOR operation to obtain the mask
boundary lines bh, bv (line 2-5). Then for all pixels p on mask
plates we calculate the distance towards all boundary lines
and select the minimum distance for each point in parallel.
Finally, we apply the Equation (11) to generate the truncated
signed distance function (line 6-10). For a complicated mask
generated from the neural network, experimental result shows
the CUDA_TSDF can achieve more than 98% reduction in
TSDF calculation time.



CUDA-based geometry gradient and curvature term. As
demonstrated in Equation (22), the numerical settings are well
compatible with CUDA parallelism. The spatial derivatives of
φ are calculated in function CUDA_geometry_gradient
of Algorithm 1. And the curvature term can be calculated with
the function CUDA_curvature with GPU acceleration. All
the operations in Algorithm 1 such as shift and XOR are
pixel-wise independent and can be parallelly performed per
pixel per thread, which not only reduces the total runtime of
the DSO but also makes it possible to integrate the level set
evolution into neural network.

CUDA accelerated lithography simulation. According to
the previous experimental analysis, lithography simulation is
the most time-consuming part of the mask optimization flow,
since it involves plenty of convolution operations between
different kernels and the mask images. Inspired by Neural-
ILT [8], we implement our CUDA accelerated lithography
simulator and integrate the forward and backward functional-
ities into the popular machine learning framework PyTorch,
with some engineering improvements. First, the optical ker-
nels and corresponding weights are loaded and pinned in
GPU memory throughout the optimization process, all the
computations are performed on GPU to reduce the data trans-
fer time from CPU to GPU. Second, the runtime bottleneck
of the CUDA lithography simulator lies on the CUDA_FFT
and CUDA_IFFT operators. Our improved CUDA_FFT op-
erator runs faster than the commonly used cuFFT and the
torch.fft libraries.

B. DevelSet-Net (DSN)

Although the CUDA accelerated DSO framework has
achieved a remarkable speedup, there is still much room
for improvement. Given the recent advance of deep learning
on OPC, we propose a novel neural network with level set
embeddings to improve efficiency and mask printability.

1) Network Architecture and Training: As illustrated in
Fig. 3, the DSN is a mulit-branch neural network adopting
the simple UNet [20] as the backbone. Our key contribution is
the integration of level set embeddings with the conventional
OPC networks.

Multi-branch pre-training. To utilize the advance of the
mulit-branch neural networks, two types of losses are opti-
mized simultaneously,

LDSN(θ) = L0(θ) + Lm(θ). (24)

Level set branch supervision. As illustrated in Fig. 3,
different from the tipical OPC networks, the level set branch
predicts the initial LSF φ0,θ for DSO, instead of the pixel-wise
mask. The mean square error is employed as the objective
function,

L0(θ) =
∑
(x,y)

(φ0,θ(x, y)− φgt(x, y))
2
, (25)

where φ0,θ is the predicted LSF with network parameters θ.
The φgt is the ground truth LSF generate by DSO.

Algorithm 1 CUDA Level Set Algorithms

Input : Target image Zt

1: function CUDA_TSDF(Zt)
2: Ztu,Ztd ← Shift Zt upwards, downwards by 1 pixel;
3: Ztl, Ztr ← Shift Zt leftwards, rightwards by 1 pixel;
4: bh ← (Zt XOR Ztu) + (Zt XOR Ztd);
5: bv ← (Zt XOR Ztl ) + (Zt XOR Ztr);
6: for all pixels on target image Zt do
7: dij ← Distance from pixel pi to boundary bj ;
8: di ← Minimum distance of point pi in all dij ;
9: φSDF ← SDF matrix from all di;

10: φTSDF ← TSDF matrix using Equation (11);
11: return φTSDF;
Output : Truncated Signed Distance Function φTSDF;

Input : TSDF matrix φTSDF;
12: function CUDA_geometry_gradient(φ)
13: φu, φd ← Shift φ upwards, downwards by 1 pixel;
14: φl, φr ← Shift φ leftwards, rightwards by 1 pixel;
15: ∇φx ← (φr − φl)/2; ∇φy ← (φu − φd)/2;
16: return ∇φx,∇φy;
Output : Geometry gradient ∇φx, ∇φy;

Input : TSDF φTSDF, geometry gradient ∇φx,∇φy;
17: function CUDA_curvature(φ,∇φx,∇φy)
18: ∇φxx ← CUDA_geometry_gradient(∇φx);
19: ∇φyy ← CUDA_geometry_gradient(∇φy);
20: φul, φur, φdl, φdr ← Shift φ to 4 diagonal directions;
21: ∇φxy ← ((φur − φul)− (φdr − φdl))/4;
22: κ← Curvature term using Equation (23);
23: return κ;
Output : Curvature term κ;

Modulation branch supervision. During the training pro-
cess, the modulation branch aims to find the best mθ in
Equation (21) for curvature term evolution in DSO, which is
a boundary-aware model for detecting the curvature-sensitive
areas. The idea is carried out by shifting the ground-truth
TSDF φgt with a set of distance ∆h,

φ̃m(x, y) = φgt(x, y) + ∆h,

m̃ = H(φ̃m(x, y)),
(26)

where ∆h is uniformly sampled from [−20, 20], m̃ is a set
of mθ. H(φ) is the Heaviside function,

H(z) =

{
1, z ≥ 0,
0, z < 0.

(27)

For every target image Zt, the ground-truth of modulation
branch is

mgt = argmin
m̃

LDSO. (28)

During the training, the modulation branch learns to simulate
an optimized mθ. As suggested in [21], the simple Heaviside
function in Equation (27) acts on zero level set, which may get



TABLE I Mask Printability, Complexity Comparison with SOTA.

Bench Area(nm2)
ILT [4] GLS-ILT [11] PGAN-OPC [6] Neural-ILT [8] DevelSet

L2 PVB #shots L2 PVB #shots L2 PVB #shots L2 PVB #shots L2 PVB #shots

case1 215344 49893 65534 2478 46032 62693 1476 52570 56267 931 50795 63695 743 49142 59607 969
case2 169280 50369 48230 704 36177 50642 861 42253 50822 692 36969 60232 571 34489 52012 743
case3 213504 81007 108608 2319 71178 100945 2811 83663 94498 1048 94447 85358 791 93498 76558 889
case4 82560 20044 28285 1165 16345 29831 432 19965 28957 386 17420 32287 209 18682 29047 376
case5 281958 44656 58835 1836 47103 56328 963 44733 59328 950 42337 65536 631 44256 58085 902
case6 286234 57375 48739 993 46205 51033 942 46062 52845 836 39601 59247 745 41730 53410 774
case7 229149 37221 43490 577 28609 44953 548 26438 47981 515 25424 50109 354 25797 46606 527
case8 128544 19782 22846 504 19477 22541 439 17690 23564 286 15588 25826 467 15460 24836 493
case9 317581 55399 66331 2045 52613 62568 881 56125 65417 1087 52304 68650 653 50834 64950 932
case10 102400 24381 18097 380 22415 18769 333 9990 19893 338 10153 22443 423 10140 21619 393

Average 44012.7 50899.5 1300.1 38615.4 50030.3 968.6 39948.9 49957.2 706.9 38503.8 53338.3 558.7 38402.8 48673.0 699.8
Ratio 1.146 1.046 1.858 1.006 1.028 1.384 1.040 1.026 1.010 1.003 1.096 0.798 1.000 1.000 1.000

†L2 and PVB unit: nm2.

stuck in the local minima. To tackle this, we replace it with the
Approximated Heaviside Function (AHF) with a parameter ε,

Hε(φ) =
1

2

(
1 +

2

π
arctan

(
φ

ε

))
. (29)

Thus, the objective function is

Lm(θ) =
∑
(x,y)

(Hε(φm,θ(x, y))−mgt(x, y))
2
, (30)

where Hε(φm,θ) is the output of modulation branch.

C. DevelSet (DSN+DSO) End to End Joint Optimization

As illustrated in Fig. 3, we apply the CUDA_TSDF function
to facilitate the fast transform from pixel-wise target image to
LSF φ0. After pre-training of the two branches of DSN, we fix
all the parameters of DSN then directly feed the output of level
set branch φ0,θ and modulation branch mθ into the evolution
process of DSO to generate the final mask. We choose the
conjugate gradient (CG) method [13] for optimization in DSO,
and follow CFL condition [13] to set the time step ∆t =
η/max(|v|), where v is evolution velocity in Equation (18),
and η is CFL condition number.

IV. EXPERIMENTAL RESULTS

The DevelSet framework is developed with the popular
deep learning framework PyTorch and CUDA platform. All
the tests are performed on Linux system with 2.2GHz CPU
and a single Nvidia Titan Xp GPU. The lithography engine is
from ICCAD 2013 CAD Contest [17], which also provides the
ten industrial M1 designs on 32nm design node as evaluation
dataset. The scripts for shot count evaluation are obtained
from the authors of Neural-ILT [8] to guarantee comparable
results. The training set of DevelSet-Net is obtained from the
author of GAN-OPC [6]. We pick σz = 50, Nh = 24, α = 1,
β = 7.5, λ = 0.9, ε = 0.03, and η = 0.85 for DevelSet
optimization.

case1 case3 case5 case9

(a) PGAN [6]

(b) GLS [11]

(c) NILT [8]

(d) DSO

(e) DevelSet

Fig. 4 Mask visualizations of: (a) PGAN-OPC [6], (b) GLS-
ILT [11], (c) Neural-ILT [8], (d) DSO, and (e) DevelSet
framework (DSN + DSO).

A. Comparison with State-of-the-art.

1) Mask Printability and Complexity: We compare the
performance of the proposed DevelSet with other SOTA mask
optimization methods, and the detailed values are listed in
TABLE I. Compared with the conventional ILT, the L2 and
PVB are reduced by 14.6% and 4.6% respectively. Compared
with the conventional level set mask optimization GLS-ILT,
the L2 and PVB could reduce by 0.6% and 2.8%. Our
framework also displays superiority when compared with
PGAN-OPC and Neural-ILT, which are two high-performance
machine learning-based mask optimization frameworks. The



TABLE II Runtime comparison with SOTA.

Bench
ILT [4] GLS [11] PGAN [6] NILT [8] DSO DevelSet
TAT (s) TAT (s) TAT (s) TAT (s) TAT (s) TAT (s)

case1 1280 123 358 13.57 3.39 1.5
case2 381 81 368 14.37 2.84 1.4
case3 1123 214 368 9.72 3.59 1.29
case4 1271 184 377 10.4 4.1 1.65
case5 1120 76 369 10.04 2.68 0.91
case6 391 65 364 11.11 2.57 0.84
case7 406 64 377 9.67 2.32 0.76
case8 388 67 383 11.81 2.67 1.14
case9 1138 63 383 9.68 2.86 1.21
case10 387 64 366 11.46 2.27 0.42

Average 788.5 100.1 371.3 11.18 2.93 1.11
Ratio 710.360 90.180 334.505 10.072 2.640 1.000

performance of L2 could achieve 4.0% and 0.3% improve-
ments and PVB could obtain 2.6% and 9.6% improvements,
respectively. As shown in Fig. 4, these results prove the high
quality of DevelSet generated masks.

Among the above-mentioned methods, the shot numbers of
DevelSet reduced by 85.8%, 38.4% and 1.0% compared with
ILT, GLS-OPC and PGAN-OPC. For Neural-ILT which also
considers mask complexity, DevelSet generated masks contain
20.2% more shots. As depicted in Fig. 4, although the masks
of DSO and DevelSet contain fewer stains, more shots are
needed to keep the boundaries smooth. And the quality and
simplicity of masks are a trade-off, we are more concerned
about the mask printability, this performance is acceptable.

2) Runtime Comparison: To prove the efficiency of our
DevelSet mask optimization framework quantitively, we eval-
uate the turn around time (TAT) of different methods, as
is shown in TABLE II. Compared with above-mentioned
four methods, DevelSet could achieve significant speedup
from 10× to 710×. With DSN as pre-processing, De-
velSet can achieve 2.64× speedup compared with DSO only,
this strongly proves the runtime performance improvement
brought by DSN.

B. Ablation Study.

We conduct a set of ablation studies to evaluate the influ-
ence of each module in DevelSet. As shown in TABLE III,
we list the results of DSO with curvature term and without
curvature term, and the influence of modulation branch for
end-to-end joint optimization of DevelSet (the DSN+DSO
column). The L2, PVB, #shots represent the square L2 error,
the area of PVBand, and the number of shots respectively.
We use the score to evaluate mask printability and mask
complexity comprehensively, where the score is calculated as
the sum of the L2, PVB, and 10×#shots. The result is better
if the score is smaller.

1) The Effectiveness of Curvature Term: We analyze the
influence of the curvature term on mask complexity and print-
ability. As the data listed in the DSO column in TABLE III,
The DSO gets 805 #shots without curvature term but reduces
to 726 when with the guidance of the curvature. In Fig. 5,

TABLE III Ablation study.

DSO DSN+DSO
w/o. curv. w. curv. w/o. mod. w. mod.

L2 38253.0 38454.0 39259.8 38402.8
PVB 49243.0 49398.0 48384.0 48673.0

#shots 805.0 726.0 712.8 699.8

score† 95546.0 95112.0 94771.8 94073.8
†score = L2 + PVB + 10 × #shots.

w/o. curv.

w. curv.

Fig. 5 Visualizations for ablation study of the curvature term.

we compare several parts of different masks to illustrate the
influence of the curvature term. As shown in figures, the
curvature term makes the mask boundaries more smooth and
eliminates the isolated stains and edge glitches. Although the
L2 and PVB all become somewhat worse, which confirms
our assumption that the curvature will harm mask printability
a bit, the total score drops indicating the loss caused by the
curvature term is acceptable.

2) The Necessity of DSN and Modulation Branch: Com-
paring the column DSO and the DSN+DSO in TABLE III,
we find that the DSN boosts the overall performance of
DevelSet by the end-to-end joint optimization. The DSN
provides better initial LSF which help the DSO overcome the
local minima and obtain better masks. The #shots number also
drops because the upsample functions of the neural network
make the mask generated by DSN more regular.

Further, we apply the modulation branch with curvature
term to improve the overall score, the result in DSN+DSO
with mod. column reveals that the modulation branch im-
proves mask printability and reduces complexity. With the
modulation branch, we have maximized the benefits of the
curvature term while minimizing its adverse impacts.

V. CONCLUSION

In this paper, we present DevelSet, a CUDA and DNN
accelerated end-to-end level set OPC framework that can
perform instant mask optimization in around 1 second. By
introducing the curvature term into the level set algorithm, we
extend the applicable scenarios of level set-based ILT method-
ology for mask manufacturability improvement. Moreover, a
novel multi-branch neural network with level set embeddings
is proposed to boost the fast convergence of DevelSet. We
believe the improved level set algorithm with CUDA/DNN
accelerated joint optimization paradigm will have a real
impact on the industrial mask optimization solutions.
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