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Abstract—With feature size scaling and complexity increase of circuit
designs, hotspot detection has become a significant challenge in the very-
large-scale-integration (VLSI) industry. Traditional detection methods, such
as pattern matching and machine learning, have been made a remarkable
progress. However, the performance of classifiers relies heavily on reference
layout libraries, leading to the high cost of lithography simulation. Querying
and sampling qualified candidates from raw datasets make active learning-
based strategies serve as an effective solution in this field, but existing
relevant studies fail to take sufficient sampling criteria into account. In
this paper, embedded in pattern sampling and hotspot detection framework,
an entropy-based batch mode sampling strategy is proposed in terms of
calibrated model uncertainty and data diversity to handle the hotspot
detection problem. Redundant patterns can be effectively avoided, and
the classifier can converge with high celerity. Experiment results show
that our method outperforms previous works in both ICCAD2012 and
ICCAD2016 Contest benchmarks, achieving satisfactory detection accuracy
and significantly reduced lithography simulation overhead.

I. INTRODUCTION

Along with the rapid scaling of transistor feature size, the VLSI
industry has been seriously challenged by increasing complexity and
manufacturability issues. In chip design, though equipped with diverse
resolution enhancement technologies, mask layouts still suffer from
process variations, causing manufacturing defects. These defects, also
known as hotspots, should be detected at early stages in chip design to
ensure high fidelity.

A conventional hotspot detection scheme, illustrated in Fig. 1,
consists of training set generation and hotspot detection. Training set
sampling aims to set up the labeled layout patterns and fed them into
hotspot detectors for further layout printability estimation. State-of-the-
art hotspot detectors are mainly based on pattern matching and machine
learning techniques. On one hand, pattern matching-based approaches
[1], [2] are profoundly dependent on the identified hotspot patterns in
the pattern library to identify matched patterns in new designs. Similar
or same patterns in the entire layout will be sampled in this approach,
resulting in high accuracy for known patterns but failing to predict
unseen patterns. On the other hand, the superiority of machine learning-
based approaches [3], [4] lies in the robust learning ability and the
capability of detecting unseen patterns, while false alarm issues should
be carefully treated.

Currently, the convolutional neural network (CNN) plays an increas-
ingly significant role in hotspot detection [5]–[7] The first hotspot
detection technique based on CNN in [5] is used to calibrate the model
by generating virtual samples, [6] proposes a CNN-based framework for
learning representative features, and [7] designs a CNN-based hotspot
detection framework with double inception modules. However, it is
high-priced to obtain labeled data during the design and manufacturing

This work was supported by the National Science Foundation of China under
Grant 61977017 and the Fujian Science Fund for Distinguished Young Scholars
under Grant 2019J06010.

Training Set Sampling

dimension 1

di
m

en
si

on
 2Input Layout Hotspot Detection

Fig. 1 A traditional process of training set sampling and hotspot
detection.

process of chips. For example, in the DUV era, it is necessary to build
a lithography simulation model for full-chip detection and finding out
hotspots [8], and in the EUV era, tapout and SEM images inspection
are inevitable to localize the label hotspots.

To alleviate the above concerns, active learning-based frameworks
are able to mitigate the tension of labeling. In the active learning, the
learning engine is continuously fine-tuned by extending the training
set with new labeled samples. A significant step of active learning
is sampling qualified candidates with the most productive information
into the training set, which also will mainly determine the labeling
cost of the whole process. Two main concerns of data sampling in
previous studies are the model uncertainty [9] and the data diversity
[10], [11]. Specifically, a model is uncertain on an input instance when
the instances are located near the hyper-plane in the raw data space,
and data diversity can avoid redundancy of data sampling effectively via
selecting the most representative instance. Also, a number of strategies
take both uncertainty and diversity into consideration [12], [13]. For
example, Ash et al. [13] takes the gradient of the loss function as
an uncertainty metric and adopts the k-means++ seeding algorithm to
ensure high diversity of the samples.

In the hotspot detection problem, Yang et al. [14] proposes an active
learning framework combining pattern sampling and hotspot detection.
The detection framework, however, is still flawed as detailed below.
Firstly, in the sampling process, the model uncertainty is not actually
considered with a poorly calibrated model [15] and the diversity metric
with a convex optimization equation is time-consuming. Secondly,
informative patterns may lose when samples are discarded in each
iteration. Also, the error introduced from the relaxing integer constraints
of the quadratic programming (QP) formulation will always cause
diversity loss, and the loss is inevitable even if the two-step number of
batch mode sampling is adjusted appropriately to improve the diversity.

To address these concerns, we develop a new batch mode selection
method with model calibration for pattern sampling and hotspot de-
tection that effectively coordinate uncertainty and diversity for a better
performance. In the designed framework, model generality increases



with weights adjusted according to new labeled instances in the training
set. The main contributions of this paper are listed as follows:
• We conduct a novel uncertainty score with calibration error

addressed, selecting hotspot-like samples with higher uncertainty
and improving the reliability of model confidences.

• We apply a new diversity metric with high efficiency in the
sampling process, reducing computational cost and error rate
compared with the QP method in [14].

• We present an entropy-based sampling strategy via applying the
entropy weighting method, weighting the metrics according to
information quantity.

• Experimental results show that the proposed strategy increases
hotspot detection accuracy while significantly minimizing lithogra-
phy simulation overhead and runtime. Specifically, 100% accuracy
is achieved in ICCAD16 benchmark.

The rest of this paper is organized as follows. Section II introduces
some terminologies and definitions that are used throughout this paper.
Section III provides details of the pattern sampling and hotspot detec-
tion flow. Section IV lists experimental settings and conduct the result
comparisons, followed by conclusion in Section V.

II. PRELIMINARIES

In this section, we will introduce some of the terminologies and
essential contents related to hotspot detection. We use the following
metrics to evaluate the performance of this framework.

Definition 1 (Hit [14]). A hit is defined as when the detector reports
hotspot on a clip of which at least one defect occurs at the core region.
We also denote the ratio between the number of hits and the number
of total hotspot clips as detection accuracy.

Definition 2 (Extra [14]). An extra is defined as when the detector
reports hotspot on a clip of which no defect occurs at the core region.

Definition 3 (Litho-clip [14]). A litho-clip is a clip in the training set
or an extra that is labeled hotspot or non-hotspot based on results of
lithography simulation. The count of litho-clips reflects the lithography
simulation overhead.

According to the evaluation metrics above, we define the problem of
layout pattern sampling and hotspot detection (PSHD) as follows.

Problem 1 (PSHD [14]). Given a layout design, the objective of PSHD
is sampling the representative clips that will generalize the hotspot
pattern space and maximize the machine learning model generality,
i.e., maximizing the detection accuracy while minimizing the number
of litho-clips.

It can be concluded from the PSHD that the proposed framework
requires full chip layout designs as input, and outputs a labeled dataset
which consists of a training set and a validation set, an unlabeled dataset
and a machine learning model. The evaluation metrics of this detection
process consist of accuracy, defined in Equation (1),

Acc =
#HSTrain +#HSV al +#Hits

#HSTotal
, (1)

where #HSTrain, #HSV al and #HSTotal are the number of
hotspots in the training set, validation set, and total data set, Hits
denotes the number of hotspots that are correctly predicted in the
unlabeled set, and lithography simulation overhead, as shown in Equa-
tion (2),

Litho = #Tr +#V al +#FA, (2)

where #Tr,#V al are the number of instances in the training set and
validation set, respectively. #FA is the false alarm.
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Fig. 2 Reliability diagrams of confidence v.s. Accuracy. Blue bars
represent the calibration gap between confidence and accuracy, and
orange bars represent average accuracy in different bins.

Also, throughout the paper, scalers are written as lowercase letters
(e.g. x), vectors are denoted as bold lowercase letters (e.g. x) and
metrics are bold uppercase letters (e.g. X).

III. THE ALGORITHM

In this section, we will discuss details of our proposed pattern sampling
strategy, including an entropy-based sampling algorithm and a summary
of the entire sampling framework.

A. Entropy-based Sampling

In active learning, model uncertainty and pattern diversity are both
key factors to ensure the model generality. Hence, we propose an
entropy-based sampling according the uncertainty and diversity metrics,
selecting the most useful instances into the training set.

1) Calibrated Uncertainty Metric
Uncertainty is the most common metric in active learning, such as

the entropy of prediction probabilities [9], [12] and the Best-versus-
Second-Best (BvSB) [10]. Generally, a classification model is more
uncertain on an instance if the prediction probability is closer to 0.5,
which also means the instance is near the separating hyper-plane. For
a given unlabeled layout clip xi from a set of n instances, the related
binary BvSB can be denoted as follows,

ui = 1− |σ(z(0)i )− σ(z(1)i )|, (3)

where zi (i = 1,. . . ,n) denotes the output of the machine learning model,
σ(z

(c)
i ) is the output of the softmax function, signifying the prediction

probability that xi belongs to the c-th class (c = 0,1 in this case), as
represented in Equation (4). ui is the uncertainty score of sample xi,
and it is positively correlated with the model uncertainty of xi.

σ(zi)
(c) =

exp(z
(c)
i )∑C

j=1 exp(z
(j)
i )

. (4)

However, the uncertainty in Equation (3) comes with disadvantages
to be addressed for a learning engine based on poorly calibrated neural
networks. Model calibration refers to the problem of predicting prob-
ability estimates representative of the true correctness likelihood [15].
We visualize it by partitioning predictions of our neural network into
10 equally-spaced bins and computing weighted averages of accuracy
and confidence in different bins, as shown in Fig. 2(a), where blue bars
represent the calibration gap between confidence and accuracy. Also,
considering that biased datasets include limited hotspot instances, more
importance should be attached to hotspot-like instances in the sampling
process. In other words, we expect to sample instances both near the
decision boundary and in hotspots regions. So we propose a novel
hotspot-aware uncertainty score equipped with model calibration.
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ui =

{
σ(zi)

(0) + h, if σ(zi)(1) > h;

σ(zi)
(1), if σ(zi)(1) < h.

(6)

As shown in Equation (5), we first calibrate the neural network
by a post-processing method, temperature scaling [15], modifying the
softmax function with parameter T . The results of the calibrated model
are visualized in Fig. 2(b), where the prediction probabilities approach
the true correctness likelihood. T (T > 0) is obtained by optimizing
negative log likelihood, i.e. cross-entropy loss, on the validation set.
It should be noted that the modified softmax function only affects the
probabilities of instances rather than the prediction results. Symbolizing
ground truth correctness likelihood, the calibrated confidences also
indicate the reliability of prediction results, which is valuable when
it comes to the real-world classifying task.

We also convert the uncertainty score with a parameter h, which is
the decision boundary between 0 and 1. With the preference of hotspot-
like instances and uncertain samples, the uncertainty score of hotspots
should be higher than that of non-hotspots, and the probability close
to h should result in a higher score, as shown in Equation (6). We fix
h = 0.4 throughout our experiments since the datasets are imbalanced.

To sum up, compared with the method proposed in [14], not only do
we regard instances near decision boundary and in hotspot regions as
more important, but address the calibration error in practice, making
the model prediction more accurate and adaptive in hotspot detection
tasks.

2) Diversity Metric
If only sampling on account of uncertainty metric, the selected

instances will not have adequate information since samples with high
uncertainty scores may be located in similar regions of the data
space, possibly causing redundant instances in the training set. Various
methods of diversity have been described in previous studies, such as
the clustering method [11] and QP method [10], [14]. Observing the
drawbacks of QP-based diversity sampling in [14], we propose a new
metric that simply evaluates the diversity score of a single instance, as
shown in Equation (7),

di = min
x∈Q\xi

dist(xi,x), (7)

where xi is the features obtained from the fully-connected layer, dist
is a distance function, Q represents the query set with n unlabeled
instances, and di is the diversity score of a sample xi. It is worth
noticing that instances with the highest diversity scores tend to be
sampled.

The design of dist function will be demonstrated below. A general
method to measure the distance between two unlabeled instances is
using the Gaussian kernel function, however, features are auto-learned
from deep neural networks which attain much express power than
Gaussian Kernel, so we use the normalized inner product of features
for representing the similarity of two instances. We can further express
the difference between two instances as Equation (8).

Dij = 1− x>i · xj . (8)

Specifically, Dij = 1 represents the upper bound of diversity
assessment and Dij = 0 denotes the lower bound. Then we can obtain
the diversity matrix D ∈ Rn×n or the distance matrix, whose entries
are defined by Equation (8). Consequently, the minimum distance
to neighbor feature points is taken as the diversity score, calculated
by Equation (7), which implies the lowest value of each row other
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Fig. 3 Visualization of layout patterns diversity metric and runtime
comparison.

than the diagonal in D, and instances with higher diversity scores
di tend to be sampled from the query set. Compared with the batch
mode sampling method in [14], where data diversity is measured via
addressing a QP problem, our method can achieve high efficiency with
low computational cost and less error.

We also visualize the diversity metric in Fig. 3(a). The instances
with higher diversity scores are labeled in orange in the query set, and
points away from clusters or near the boundary of groups tend to be
selected with high possibility. Besides, we compare the runtime of the
diversity metric in this paper with that in [14], as shown in Fig. 3(b).
It can be seen that our diversity metric is less time-consuming.

3) Entropy-based Score
To balancing the influences of two metrics, we design the entropy-

based score to synthetically evaluate the contributions of uncertainty
and diversity via normalizing and weighting two scores, as shown in
as Equation (9),

si = ω1 × ui + ω2 × di, (9)

where ωj (j = 1, 2) are the weights of the scores, satisfying 0 ≤ ωj ≤
1 and ω1 + ω2 = 1. Uncertainty score and diversity score need to be
normalized in the dataset, while they are still expressed as ui and di for
convenience. We try to pick k entries with the highest entropy-based
scores from the query set into the training set.

Next, we will focus on the determination of ωj . Distributions of two
indices (uncertainty and diversity) change constantly along with the
query process, bringing various information quantity and representing
different contributions in each iteration. In other words, weights should
be determined dynamically in different iterations to avoid information
loss. Specifically, if an indicator distributes evenly in the query set,
the indicator will be less discrete with higher entropy. In this case,
no matter how much weight is assigned to the indicator, it has no
impact on the sampling results based on the entropy-based score, thus
a weight of 0 should be given since the order of clips in the query set
is totally determined by the other indicator. Consequently, to balance
the influences of indicators and achieve better performance, we adopt
the entropy weighting method to determine the weights of two scores
according to the dispersion degree of indicators in each iteration.

Supposing that there are n samples with two indices, the entropy
weighting method is described in details as follows: Firstly, n scores
of two indices should be normalized, as shown in Equation (10),

rij =
aij −min {asj}

max {asj} −min {asj}
, s = 1, . . . , n, (10)

where aij(i = 1, 2, ..., n and j = 1, 2) is the scores obtained from
uncertainty metric and diversity metric, and rij is the normalized score.

We then calculate the proportion of i-th score among the total of j-th
index, i.e. the disorder of each example, as shown in Equation (11).



The entropy of each index can be further calculated by Equation (12).

qij =
rij∑n
i=1 rij

, (11)

Ej = − b
n∑

i=1

qij ln qij . (12)

Let b = 1/ lnn, so that the value of Ej can be guaranteed
between 0 and 1. By analyzing the equation above, we can infer
that if qij(i = 1, . . . , n) incline to be the same, the value of Ej

approaches 1. Under such circumstances, the role of the indicator
in linear combination can be weakened due to larger entropy and
less information contained in the related scores. Consequently, the
weights of the indices in the linear combination are determined by the
consistency of qij , varying in different iterations. The dynamic weights
are defined as follows:

ωj =
1− Ej

2−
∑2

j=1Ej

. (13)

Algorithm 1 describes the process of entropy-based sampling specif-
ically. The algorithm requires a query set Q, the number of patterns to
be sampled k, and a parameter T used for temperature scaling. Firstly,
to prevent the neural network from making inaccurate predictions,
we adjust the softmax function for calibrated confidence according to
Equation (5), which is used to obtain the uncertainty score F of the
query set Q based on the binary BvSB strategy as Equation (6) (line 1);
besides, we design the diversity score D in view of Equation (7), and the
distance between features is provided by the diversity matrix, ensuring
low time-consuming and sufficient information in selected samples (line
2); then the entropy-based score S is obtained to bring two metrics into
full play by weighting the uncertainty score F and diversity score D,
where weights are determined by the entropy weighting method and
Norm denotes the normalization function as Equation (10) (lines 3–4);
finally, clips with k the highest entropy-based scores S in the query set
Q will be sampled to form a set B (line 5).

Algorithm 1 EntropySampling(Q, k, T )

Require: Q, k, T .
Ensure: B.

1: F ← Compute uncertainty scores of Q by Equation (6) and
Equation (5);

2: D← Compute diversity scores of Q by Equation (7);
3: ωj ← EntropyWeight(F,D), j = 1, 2;
4: S← ω1 × Norm(F) + ω2 × Norm(D);
5: B← Sample k instances with the highest entropy-based scores (S)

from Q;
6: return B.

B. Overall Sampling Flow
Algorithm 2 describes the proposed overall pattern sampling flow. The
algorithm requires the pre-processed features set X, the number of
patterns to be sampled in two steps n and k, and a standard variation
σ used to initiate the sampling model. We first calculate posterior
probabilities P of features based on Gaussian Mixture Model and split
X into three sets: an original training set with labeled data L0, an
unlabeled data set U0 to sample instances from, and a validation set
V0 for temperature scaling (lines 1–2), where the samples with the
lowest posterior probability, that is, hotspot-like samples, are taken
as the original training set; we then initialize the model and train
it based on L0 (lines 3–5); further, the iterative sampling procedure
is implemented until the termination condition is satisfied. In each
iteration, firstly, n instances are sampled in the light of P to form
a query set Q (line 7) ; afterwards, the parameter T is optimized on V0

Algorithm 2 Overall Sampling Framework

Require: X, n, k, σ.
Ensure: w.

1: P← Calculate posterior probabilities of the unlabeled dataset;
2: U0,L0,V0 ← Split X based on P;
3: Initialize w ∼ N(0, σ);
4: U← U0,L← L0;
5: w←Train the machine learning model based on L.
6: for i = 1 : N do
7: Q← Sample n instances with the lowest posterior probabilities

(P) from U;
8: T ← get a modified parameter is optimized on V0;
9: B← EntropySampling(Q, k, T );

10: U← U\B;
11: L← L ∪ B;
12: w←Update machine learning model based on L;
13: end for
14: return w.

as one of the inputs of the entropy-based sampling algorithm, which
outputs a set B consisting of k instances with the highest information
as the second step of the sampling process (lines 8–9); labeled via
lithography simulation, instances in B will be transferred from the
unlabeled set U to the training set L, and the machine learning model
will be updated by adjusting the weights of each layer (lines 10–12).
The trained model returns after N times iteration when the termination
condition is satisfied. It should be noted that in each iteration, we do not
discard unselected samples in the query set to avoid loss of informative
patterns. Finally, the full chip detection will be applied to the rest of
the unlabeled clips by the trained model. Prediction confidences of the
model are trustworthy since they are well-calibrated by temperature
scaling.

IV. EXPERIMENTAL RESULTS

Our entropy-based sampling framework is implemented in Python with
the TensorFlow library [16], and evaluated on two industrial benchmark
sets: ICCAD12 [17] and ICCAD16 [18], as shown in TABLE I. Clips
of ICCAD16 are obtained from the given layouts and labeled using
EUV lithography models as [14]. We can notice that ICCAD16-1,
lacking hotspots, can be ignored in the following experiments.

A. Comparison with PSHD Methods
We first compare the sampling results of the proposed batch mode
strategy with the exact/fuzzy matching methods and two sampling
strategies on ICCAD12 and ICCAD16, as listed in TABLE II. Columns
“PM-exact”, “PM-a95”, “PM-a90”, “PM-e2” correspond to the results
acquired from pattern matching [2] respectively, where “PM-exact”
denotes the exact pattern matching, while the others are three fuzzy
matching methods under certain conditions. Column “TS” lists the
results of a batch sampling method only based on calibrated confidence
after the temperature scaling (TS) method, and column “QP” represents
the method in [14], which applies the diversity metric via addressing a
quadratic programming (QP) problem. Column “Acc(%)” denotes the
accuracy of each method, and column “Litho#” lists the number of

TABLE I Statistics of benchmarks.

Benchmarks HS # NHS # Tech (nm)
ICCAD12 3728 159672 28
ICCAD16-1 0 63 7
ICCAD16-2 56 967 7
ICCAD16-3 1100 3916 7
ICCAD16-4 157 1678 7



TABLE II Full chip pattern sampling and hotspot detection on ICCAD12/16 benchmarks.

Benchmarks
PM exact [2] PM a95 [2] PM a90 [2] PM e2 [2] TS QP [14] Ours

Acc(%) Litho# Acc(%) Litho# Acc(%) Litho# Acc(%) Litho# Acc(%) Litho# Acc(%) Litho# Acc(%) Litho#

ICCAD12 100.00 127746 96.83† 38879† 73.38† 15923† 100.00 124320 98.44 12728 98.25 12280 98.25 9717
ICCAD16-2 100.00 1022 92.86 717 48.21 328 100.00 1022 96.42 752 100.00 881 100.00 640
ICCAD16-3 100.00 4838 99.64 4420 96.73 3717 99.91 4777 99.27 4225 99.74 3589 100.00 3693
ICCAD16-4 95.54 1134 2.55 65 1.91 20 78.34 842 93.63 1429 98.09 1608 100.00 1631

Average 98.89 33685 52.22 11020 55.06 4997 94.56 32740 96.94 4784 99.02 4590 99.56 3920
Ratio 0.993 8.593 0.525 2.811 0.553 1.275 0.989 8.352 0.974 1.220 0.996 1.171 1.000 1.000

†Experiments are conducted on the center 600× 600 region of each clip.

clips being labeled via lithography simulation, including clips in the
final labeled set and false alarms.

It can be seen that our approach can achieve 100% accuracy with less
overhead on average on each case of ICCAD16, which is the highest
accuracy among other previous works. Specifically, 98.25% of accuracy
is achieved on ICCAD12 via the proposed method, with over 13 times
fewer instances that need to be labeled than “PM-exact”. Additionally,
as for three different settings of the fuzzy matching method, results
show that they fail to extract proper instances, obtaining a quite low
accuracy value in some cases. Moreover, compared to QP, another batch
mode sampling method of active learning, the litho-clips cost can be
reduced by 17% in our method with higher accuracy. TS fails to achieve
satisfactory accuracy, as listed in “TS”, performing only 96.44% on
average.

Comparisons of the results of sampling strategies cannot fully
demonstrate the superiority of our method. On one hand, PSHD
problem aims at maximizing detection accuracy while minimizing
lithography overhead, but a higher accuracy always corresponds to
increased overhead. On the other hand, since our workflow adopts CNN
as the machine learning model, uncertain behavior can be introduced
by weights initialization and batch sampling process. Thus another
experiment is designed for trade-off analysis and model stability, as
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Fig. 4 Trade-off of different batch selection strategies. The x-axis rep-
resents various detection accuracy, and the y-axis denotes the average
lithography simulation overhead of multiple processes.

TABLE III Components effectiveness verification of the entropy-based
method on ICCAD12/16 benchmarks.

Benchmarks
w/o.E w/o.D w/o.U Full

Acc(%) Litho# Acc(%) Litho# Acc(%) Litho# Acc(%) Litho#

ICCAD12 98.12 11577 98.31 11648 98.27 11014 98.25 9717
ICCAD16-2 98.33 816 100.00 897 98.21 894 100.00 640
ICCAD16-3 99.83 4010 99.64 3788 99.82 3751 100.00 3693
ICCAD16-4 99.42 1801 99.36 1699 100.00 1747 100.00 1631

Average 98.93 4551 99.33 4507 99.08 4352 99.56 3920
Ratio 0.994 1.161 0.998 1.150 0.995 1.110 1.000 1.000

shown in Fig. 4. QP and TS are also taken into account.
We implement the methods on ICCAD12 and ICCAD16 for a hun-

dred times with alternative parameters. Then we average the lithography
simulation overhead corresponding to different accuracy values, where
the x-axis represents the detection accuracy, and the y-axis denotes the
average lithography simulation overhead. We drop several low accuracy
values and restrict the x-axis bound to better perform the trade-off of
different batch selection methods. As shown in Fig. 4, the proposed
framework obtains satisfactory results in both accuracy and lithography
simulation overhead, while QP results in higher overhead, and TS fails
to gain sufficient accuracy value. Results of ICCAD16-2, for instance,
achieve 100 percent accuracy with 797 average lithography overhead,
while QP yields 886 overhead; TS achieves the lowest simulation
overhead but has a gap on accuracy. Additionally, the proposed method
is further stable since the blue curve lies in a narrow range of the x-axis.

Fig. 5 visualizes outputs of different frameworks on the layout of
ICCAD12-2, including exact pattern matching (PM-exact), TS, QP,
and the proposed method.

B. Ablation Study
We then study the effect of different configurations of our framework.
TABLE III illustrates the contribution of the entropy-based method.
Results in column “w/o.E” derive from the framework without the
entropy-based score. “w/o.D” stands for the framework without the
diversity metric, “w/o.U” represents framework without the uncertainty
metric, and “Full” is the entire framework. The results show that the
framework with entire strategies achieves the best performance, in other
words, uncertainty, diversity, and the entropy-based method are essential
in the sampling framework.

We also test the effectiveness of the entropy weighting method.
In the experiment, the entropy-based score with dynamic weights is
compared with different fixed ω2: 0.2, 0.4, and 0.6. The experiment
results of detection on ICCAD16-3 are shown in Fig. 6(a), where the
x-axis denotes various weights of the diversity score, and the y-axis
represents prediction accuracy and lithography simulation overhead.
Obviously, dynamic weights outperform fixed weights in both criteria,
so the effectiveness of the entropy weighting method is verified.
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Fig. 5 Hotspots distribution and sampled clips of different methods on ICCAD16-2 layout. The red forks denote positions of real hotspots, and
the shadow area represents the overall lithography simulation overhead.
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Fig. 6 Comparison of fixed weight and dynamic weights and runtime
comparison among different solutions.

C. Runtime Comparison

Runtime is also the main improvement of our entropy-based sampling
framework. On one hand, the diversity score we used avoids solving the
convex optimization equation with intensive computation; on the other
hand, our framework can reduce the lithography simulation overhead,
which is the main source of real backend layout verification flow. The
overall runtime is evaluated by the summation of 10s of penalty on
each litho-clip [14] and PSHD overhead, as shown in Fig. 6(b). It can
be seen that the proposed framework is more efficient with performance
optimization.

V. CONCLUSION

A novel batch mode selection strategy has been proposed for hotspot
detection in chip design, consisting of a calibrated hotspot-aware
uncertainty metric and an efficient diversity metric. Embedded in a
pattern sampling and hotspot detection framework, a query set formed
according to posterior probability firstly, and then the entropy-based
score was applied for further sampling, where the entropy weighting
method is conducted to determine the weights. Compared with the
state-of-the-art sampling strategies, the experimental results have shown
that the proposed batch sampling strategy, along with learning model
optimization, can not only effectively benefit model generality, but also
reduce the cost in both lithography simulation overhead and runtime.
We hope this study can offer a new perspective in hotspot detection
with active learning techniques, formulating novel sampling strategies
in terms of uncertainty and diversity metrics from different methods.
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