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Abstract—Dummy filling is widely applied to significantly improve the
planarity of topographic patterns for the chemical mechanical polishing
(CMP) process in VLSI manufacturing. This paper proposes a novel model-
based dummy filling synthesis framework NeurFill, integrated with multiple
starting points-sequential quadratic programming (MSP-SQP) optimization
solver. Inside this framework, a full-chip CMP simulator is first migrated
to the neural network, achieving 8134× speedup on gradient calculation
by backward propagation. Multi-modal starting points search is further
applied in the framework to obtain satisfying filling quality optimums. The
experimental results show that the proposed NeurFill outperforms existing
rule- and model-based methods.

I. INTRODUCTION

Chemical Mechanical Polishing (CMP) is widely applied to layout
planarization in integrated circuit fabrications. To achieve uniform
post-CMP topography, dummy fills are inserted in the sparse regions
of layouts. However, dummy filling could induce additional parasitic
capacitance and deteriorate the circuit performance [1]. The flow for
dummy filling can be divided into two phases: filling synthesis and
filling insertion [2]. The former determines the fill amount in each
filling window, and the latter determines the shapes, locations of
dummies in these windows. Though additional parasitic capacitance
can be reduced by adjusting the shapes and locations of dummies in
filling insertion [3]–[5], it is important to balance the planarization and
performance degeneration in dummy filling synthesis [6].

Methods for dummy filling synthesis can be roughly classified into
two categories: rule-based and model-based. Most research works are
based on empirical knowledge of the CMP process, termed rule, for
example, density variance, density gradient, etc. Rule-based dummy
filling synthesis was first formulated as a linear programming problem
to minimize density variance and fill amount [7]. To achieve better
quality, multiple metrics such as overlay, line deviation, and outliers,
are introduced to evaluate the filling result [8]–[11]. With the advance-
ment of technology nodes, the intrinsic incompleteness of empirical
rules limits the rule-based filling quality [12]. Therefore, model-based
methods are applied. Tian et al. proposed a two-step model-based filling
algorithm of global density assignment followed by local adjustment
[13]. Sinha et al. proposed a model-based filling algorithm to minimize
the post-CMP height range [14]. Both algorithms achieve excellent
results, however, with simplified empirical models. Cai et al. proposed
a full-chip CMP simulator-based filling framework optimizing multiple
objectives and gained significant quality improvement [12]. However,
even with parallel computing on 64 cores, [12] takes hours to complete
computation and its filling quality depends on a single starting point.

Fig. 1 illustrates the basic flow of full-chip CMP model-based
dummy filling synthesis. The target layout is divided into uniform
windows, and the goal is to determine how many dummies to be
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Fig. 1 The flow of model-based dummy filling synthesis and the
motivation of leveraging neural network based CMP simulators.

inserted into each window. Usually, a layout can be divided into
thousands of windows. Therefore, the optimization problem is ex-
tremely high dimensional. Inside the optimizer, the post-CMP height
profile is generated by a full-chip CMP simulator and evaluated by the
metrics. Numerical gradients of the model-based metrics are used to
guide the optimization, which is time-consuming. Huge invocations of
CMP simulators on numerical gradient calculation have become the
bottleneck of model-based filling synthesis.

In fact, massive simulator invocations can be easily observed in
other model-based optimization problems, e.g., the optical proximity
correction (OPC) problem. Recently, Jiang et al. proposed Neural-
ILT for model-based OPC problem, leveraging neural network based
simulation for acceleration [15]. Motivated by their work, we develop
NeurFill to solve the efficiency bottleneck of model-based dummy
filling synthesis. Because of the similarity to the image segmentation
problem and the local effect of the CMP process, the full-chip CMP
simulator is migrated to a pre-trained neural network as Fig. 1,
where gradient calculation can be efficiently performed by backward
propagation. Our main contributions can be summarized as follows.

1) We propose NeurFill, a model-based dummy filling synthesis
framework based on a neural network. After migrating the conven-
tional full-chip CMP simulator into a GPU-based neural network,
we can achieve 188× speedup on objective evaluation and 8134×
speedup on gradient calculation.

2) We leverage prior knowledge-based starting point for fast dummy
filling synthesis. Due to the speedup in gradient calculation,
sequential quadratic programming with multiple starting points
(MSP-SQP) framework and multi-modal starting points search are
proposed to obtain better filling quality without prior knowledge.

3) Experimental results show that the proposed NeurFill can achieve
significant improvement in filling quality and overall score over
the state-of-the-art.

The rest of the paper is organized as follows. Section II lists some
preliminaries. Section III elaborates our motivation. Section IV gives
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Fig. 2 Framework of a full-chip CMP simulator.

the details of the proposed NeurFill framework. Section V presents
experimental results, followed by a conclusion in Section VI.

II. PRELIMINARIES

A. Full-Chip CMP Simulator
After 45nm technology node, full-chip CMP simulators have become
the standard tools for overcoming DFM problems in foundries’ refer-
ence flow. A typical full-chip CMP simulator takes a layout as input
and outputs the predictive dishing, erosion, and average height profile
of post-CMP chip surface. Generally, the simulation includes four steps
as illustrated in Fig. 2: (1) Divide the whole chip into uniform windows
and compute the envelope heights of the windows; (2) Solve the partial
differential equations of contact mechanics and/or fluid mechanics to
obtain the average window pressure [16]; (3) In each window, apply
the density-step height (DSH) model [17] to compute the removal rates
of up and down areas; (4) Compute the removed amounts within a unit
polish time by the Preston equation [18]. All four steps iterate until a
given total polishing time is reached.

B. Problem Formulation
Model-based evaluation metrics are modified from ICCAD 2014
dummy filling contest [8] to balance the planarization and performance
degradation. In model-based dummy filling synthesis, an L-layer layout
is divided into L×N×M windows, and the window size is determined
according to the CMP simulator.

Three objectives are calculated to evaluate the layout planarity,
including height variance σ, line deviation σ∗, and outliers ol as

σ =

L∑
l=1

1

N ×M

N∑
i=1

M∑
j=1

(Hl,i,j − H̄l)2, (1)

σ∗ =

L∑
l=1

N∑
i=1

M∑
j=1

∣∣Hl,i,j − H̄l,j∣∣, (2)

ol =

L∑
l=1

N∑
i=1

M∑
j=1

max(0, Hl,i,j − 3 · σl), (3)

where Hl,i,j is the height of window Wl,i,j , σl is the height variance
of layer l, H̄l and H̄l,j are the average window height of layer l and
of column j in layer l respectively. Two objectives overlay area ov and
total fill amount fa are relevant to performance degradation. Total fill
amount fa is the sum of each window’s fill amount xl,i,j as

fa =

L∑
l=1

N∑
i=1

M∑
j=1

xl,i,j , (4)

Overlay area ov is estimated by the four-type region insertion in
filling synthesis. Though the output file size fs is defined as a quality
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Fig. 3 The forward and backward propagation on neural networks.

criterion, it is hard to formulate and not optimized. The objective of
dummy filling synthesis is to maximize the filling quality score Squal
and can thus be formulated as

max
x

[Squal = Splan + SPD] (5a)

Splan = ασfσ(H) + ασ∗fσ∗(H) + αolfol(H) (5b)

SPD = αovfov(x) + αfaffa(x) (5c)

s.t. xl,i,j ∈[0, sl,i,j ] (5d)

where x and H refer to the vector of fill amount xl,i,j and height Hl,i,j
respectively; sl,i,j is the slack area in window Wl,i,j ; fσ , fσ∗ , fol, fov
and ffa refer to the score function of height variance, line deviation,
outliers, overlay and fill amount respectively. The score function f can
be generalized to

f(t) = max(0, 1− t

β
), (6)

where ασ , ασ∗ , αol, αov , αfa and β are benchmark-related coeffi-
cients.

III. MOTIVATION

In the CMP process, both mechanical and chemical methods are
applied. Due to its complexity, the CMP simulators are regarded as
nonlinear black boxes in existing model-based algorithms. Therefore,
analytic gradient of the CMP model cannot be easily derived, and
numerical gradient is used instead. However, the calculation of nu-
merical gradient requires thousands of CMP simulator invocations. As
the runtime of numerical gradient calculation dominates the runtime of
model-based methods [12], the efficiency is strictly constrained.

A. Acceleration with Neural Network

Fig. 3 illustrates the basic idea of forward and backward propagation
on neural networks. In forward propagation, the activation of l-th layer
al is related to the activation of (l-1)-th layer al−1 by

al = f(wlal−1 + bl), (7)

where wl and bl are the weight matrix and bias vector of l-th layer.
f is the activation function. In back-propagation, the error, as well as
gradient, of l-th layer δl is related to the error of (l+1)-th layer δl+1

by

δl = (wl+1)T δl+1 � f ′(zl), (8)

where � is the Hadamard product, f ′ is the gradient of activation
function and zl is the weighted input of l-th layer as

zl = wlal−1 + bl. (9)

The key idea of forward and backward propagation on neural networks
is that the activation of the current layer is only related to the previous
layer, and the gradient is only related to the latter layer. Therefore,
backward propagation works far faster than other gradient approaches
like numerical gradient calculation.



B. Similarity Between CMP Model and Image Segmentation

If the full-chip CMP model can be migrated to the neural networks,
to some extent, the black box of the CMP model is opened, and fast
gradient calculation can be performed by backward propagation.

Fortunately, we observe the underlying similarity between the CMP
model and the image segmentation problem. In the image segmentation
problem, the input is an image with pixels, which contains the informa-
tion of RGB colors, and the output is a grayscale image indicating the
areas of each segment. On the other hand, the input of the CMP model
is an extracted grid layout, where each window contains parameters
such as pressure, trench height and density, perimeter of coppers, etc.
The output of the CMP model is a post-CMP height profile, providing a
positive height of each window. Besides, due to the contact mechanics
of rough polishing pads in the CMP process, the character length in
the CMP model is ranged from 20∼100 um [16], which limits the
number of correlation windows. The local effect in the CMP model is
similar to the convolutional kernels of neural networks. The intrinsic
similarity between two problems, the local effect in the CMP model,
and the potential acceleration motivate us to leverage pre-trained neural
networks replacing the conventional CMP simulator.

IV. THE NEURFILL FRAMEWORK

Due to the complexity of multi-objective optimization, traditional linear
programming optimization can likely lead to a suboptimal solution.
Therefore, sequential quadratic programming (SQP) [19] with multiple
starting points (MSP) is applied in the NeurFill framework for model-
based dummy filling synthesis.

The key part of MSP-SQP algorithm is to obtain the objective
evaluation and gradient calculation in each iteration. As Equation (5a),
filling quality score Squal can be divided into the planarity score Splan
which involves the CMP model, and the performance degradation score
SPD which does not need simulation. In NeurFill, CMP neural network
with an integrated pre-trained CMP model can fast obtain the score and
gradient of planarity through forward and backward propagation. The
performance degradation score and its analytic gradient are calculated
by performance degradation estimation. A prior knowledge-based start-
ing point is used for fast dummy filling synthesis, while a multi-modal
starting points search is performed for better filling quality.

A. CMP Neural Network

Based on the similarity between the CMP model and the image segmen-
tation problem, we selected UNet [20], a powerful convolutional neural
network, to replace the full-chip CMP simulator. Besides, modern deep
learning toolkit (e.g., PyTorch) provides efficient functions with built-in
CUDA-based forward and backward propagation. Automatic backward
propagation can be done by utilizing the toolkit.

As illustrated in Fig. 4, CMP neural network consists of an extraction
layer, the pre-trained UNet, and objective layers. CMP neural network
takes target GDS file and fill amount x as inputs, and outputs the
planarity score Splan. In the extraction layer, pattern-related parameters
of each window such as density, average width, length, perimeter of
coppers, and process-related parameters such as pressure, heights of
trench side and bottom, are extracted into a layout parameter matrix L.
Pattern-related parameters in L are updated with regard to fill amount x
according to the DSH model [17], and the gradient of extraction layer
∂L
∂x

can be calculated automatically by deep learning toolkit. Given the
layout parameter matrix L, the pre-trained UNet generates the post-
CMP height profile Hn, which is analyzed by the following objective
layers to calculate the planarity score Splan.

By utilizing toolkit functions, height variance σ, line deviation σ∗,

and outliers ol in Equations (1) to (3) can be expressed as:

σ = V AR(Hn), (10a)

σ∗ = SUM(ABS((Hn −MEAN(Hn, 1) ·ONES(1,M))),
(10b)

ol = SUM(SIGMOID(η(Hn − 3 · V AR(Hn))), (10c)

where V AR, SUM , ABS, MEAN , ONES, SIGMOID are func-
tions from torch toolkit, η is a hyper-parameter. Since the definition of
outliers ol in Equation (3) is non-differentiable, sigmoid function with
hyper-parameter η is used to replace the original piecewise function.
The merging layer merges the objective scores to form the planarity
score Splan as Equation (5b). Automatic gradient calculation of toolkit
can be performed on Equation (5b) for ∂Splan

∂σ
, ∂Splan

∂σ∗ , ∂Splan

∂ol
in

merging layer, and on Equation (10) for ∂σ
∂Hn

, ∂σ∗

∂Hn
, ∂ol
∂Hn

in height
variance, line deviation, outliers layer respectively.

Therefore, with CMP neural network, the planarity score Splan can
be calculated by forward propagation, and the gradient ∇Splan can be
calculated by backward propagation through the chain rule:

∇Splan =
∂Splan
∂σ

∂σ

∂Hn

∂Hn

∂L

∂L

∂x
+
∂Splan
∂σ∗

∂σ∗

∂Hn

∂Hn

∂L

∂L

∂x

+
∂Splan
∂ol

∂ol

∂Hn

∂Hn

∂L

∂L

∂x
,

(11)

where ∂Splan

∂σ
, ∂σ
∂Hn

, ∂Hn
∂L

and ∂L
∂x

can be obtained by backward
propagation in the merging layer, the height variance layer, the pre-
trained UNet and the extraction layer respectively as Fig. 4. The
same backward propagation procedure can be done for other parts in
Equation (11).

B. Performance Degradation Estimation

The performance degradation score SPD evaluates the parasitic ca-
pacitance induced by dummy filling as Equation (5c). Since there is
no participation of the CMP model, analytic gradients can be derived.
The analytic gradient of total fill amount ∇fa can be derived from
Equation (4) as

∇fa = JL,N,M , (12)

where JL,N,M is the all-ones matrix.

The overlay area remains unknown until the locations of dummies are
determined. In this paper, four-type region insertion is used to estimate
overlay area. As illustrated in Fig. 5, because overlay only exists in the
vertical direction, fillable slack regions of a window can be divided into
four types according to upper and lower layer conditions. The dummies
of each window are inserted to slacks by the priority from type 1 to
4 as x1l,i,j , ..., x4l,i,j . Total overlay can be divided into dummy-to-wire
overlay ovd−w and dummy-to-dummy overlay ovd−d. Dummy-to-wire
overlay can be calculated as

ovd−w =

L∑
l=1

N∑
i=1

M∑
j=1

x2l,i,j + x3l,i,j + 2x4l,i,j . (13)

In window Wl,i,j , dummy-to-dummy overlay ovd−dl,i,j counts the overlay
with upper layer as

ovd−dl,i,j = max(0, x1l,i,j + x1l+1,i,j − s∗l,i,j), (14)

where s∗l,i,j refers to the area of non-overlap slacks between layer l
and l+1. Therefore, overlay area can be calculated as

ov = ovd−w +

L∑
l=1

N∑
i=1

M∑
j=1

ovd−dl,i,j , (15)
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and analytic gradient of overlay area can be derived as

∇ovl,i,j =


0, if x1l,i,j + x1l+1,i,j < s∗l,i,j ;

2, if x4l,i,j > 0;

1, otherwise.

(16)

Therefore, analytic gradient of performance degradation score
∇SPD can be derived from Equation (5c) as:

∇SPD = −αfa
βfa
∇fa− αov

βov
∇ov, (17)

where αfa, αov , βfa and βov are benchmark-related constants.

C. Prior Knowledge Based Starting Point Generation
Modified from the rule-based target density planning [10], prior
knowledge-based (PKB) starting point for the model-based algorithm
is proposed in [12]. In this method, target layer density tdl is first
determined in advance for each layer, representing each window’s
expected density. After tdl is determined, a trivial solution to fill
dummies for maximum density uniformity can be obtained,

xl,i,j =


0, if tdl < ρl,i,j ;

sl,i,j , if tdl > ρl,i,j + sl,i,j ;

tdl − ρl,i,j , otherwise,

(18)

where ρl,i,j and sl,i,j is the wire density and the slack area of window
Wl,i,j respectively. A linear search of target layer density is performed,
and the solution with the best quality is chosen as the starting point.

D. Multi-modal Starting Points Search
In dummy filling synthesis problem with thousands of dimensions, a
random starting point may be trapped in a suboptimal local maximum.
Even with prior knowledge, there is no guarantee that PKB starting
point’s filling quality is not suboptimal. To maximize the filling quality,
all local optimums of the quality score function should be evaluated.

The problem of locating all the local optimums is termed multi-
modal optimization [21], formulated as

max |XS = {xloi , i = 1, 2, · · · , n}| (19)

where | · | is the size of set, and xloi is the i-th local optimum.
Fig. 6 illustrates the topography of the quality score function of a

layout with two fillable windows. Four peak regions of local optimums
are depicted in red circles. An efficient multi-modal optimization solver
can locate all global and local optimums accurately. In general, multi-
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Fig. 6 The quality score function of a layout with two fillable windows.
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Fig. 7 Framework of model-based MSP-SQP NeurFill Algorithm.

modal solvers are usually combined with evolutionary algorithms,
generating multiple subpopulations. Each subpopulation represents
one peak region of the target function. In this paper, the niching
migratory multi-swarm optimizer (NMMSO) [22] is applied to explore
the problem space. When the NMMSO method converges, it outputs all
the possible subpopulations in the problem space, representing potential
peak regions of the quality score function.

E. MSP-SQP framework of NeurFill
Fig. 7 summarizes the MSP-SQP framework of NeurFill. The starting
points are generated by the PKB method or multi-modal search, then
SQP optimization is applied to these starting points. The scores and
gradients of planarity and performance degradation are calculated by
CMP neural network and performance degradation estimation respec-
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tively, and merged to form the filling quality score and gradient, then
the direction and step size of the current iteration are determined.

F. Pre-training of UNet Model
As depicted in Fig. 4, the UNet architecture consists of a down-
sampling path to capture features and an up-sampling path to generate
the post-CMP height profile. Given a set of extracted layout parameter
matrix L = {L1,L2, · · · ,Ln} and the corresponding post-CMP
height profile set Hs = {Hs1,Hs2, · · · ,Hsn} generated by the full-
chip CMP simulator, the training procedure of UNet is to minimize the
following objective:

ŵ = arg min
w

λ||Hn(L,w)−Hs||22, (20)

where Hn(:,w) is the network output with respect to weights w, and
λ is a configurable hyper-parameter.

The input and output dimensions are fixed for neural networks. In
this paper, the layout size for UNet is 100×100 windows. Layouts
that are smaller than the fixed size will be duplicated several times to
cover the whole input layout. Since it is hard to find enough actual
layouts for UNet training, a two-step random procedure is applied in
this paper to generate training data, as depicted in Fig. 8. First, the three
available layouts are divided into uniform windows. These windows are
randomly assembled to generate 200 layouts of 100×100 windows.
Second, random dummies are inserted into the assembled layouts with
no design rule violation. Finally, 20,000 layouts are generated by
the two-step random procedure and simulated by the full-chip CMP
simulator as the training set. The two-step random procedure aims to
produce training instances that are close to the layouts neural networks
may process in the filling optimization. Besides, the extension ability
of the pre-trained UNet model is verified by the training set generated
by two layouts and a testing set generated by the third.

V. EXPERIMENTAL RESULTS

The NeurFill framework is developed in Python with PyTorch and
runs on a Linux server with 2.6GHz Intel Xeon CPU and Nvidia
Tesla K80 GPU. Compared rule-based algorithms Lin [10], Tao [11]
and model-based algorithm Cai [12] are developed in C/C++ and
run on a Linux server with 64-core 2.6GHz Intel Xeon CPU. The
full-chip CMP simulator is calibrated under a 45nm process of a
foundry, and the accuracy is matched with the CMP Predictor [23],
a commercial full-chip CMP simulator by Cadence. The window sizes
of the full-chip CMP simulator and dummy filling synthesis are both
100um×100um. Three layout designs are used in neural network
training and filling performance comparison. Design A is a CMP
test design with chip size 5cm×5cm and file size 16.4MB. Design
B is a field programmable gate array (FPGA) design with chip size
6.7cm×6.3cm and file size 948.7MB. Design C is a RISC-V CPU
design with chip size 10cm×10cm and file size 80.6MB.

A. The Accuracy of Pre-trained Model
20,000 layout instances in the training set are generated by the two-
step random procedure based on three available layouts. UNet is pre-
trained for 20 epochs on the GPU for 32 hours, then the accuracy of
the pre-trained UNet model is evaluated by a testing set of 1000 layout
instances.
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Fig. 9 Average relative error distribution of height in windows.

TABLE I Runtime Comparisons for Objective Evaluation and Gradient
Calculation

Operation
Full-chip CMP

Simulator
CMP Neural

Network Speedup

(1c) (64c) (GPU) (GPU v.s. 64c)

Objective
Evaluation 4.7s 4.7s 0.025s 188×
Gradient

Calculation 34100s 545s 0.067s 8134×

The average relative error of the post-CMP height profile generated
by the pre-trained UNet and the full-chip CMP simulator in the testing
set is 0.6%. For each window in the layout, average relative error of
height is measured in the testing set, and the distribution is illustrated
in Fig. 9. The maximum average relative error of height in a specific
window is 1.77%, and the average relative error of height is below
1.3% in 90% of the windows. Besides, the average relative error of the
post-CMP height profile in the extension ability testing set is 2.7%.
Therefore, the accuracy of the pre-trained UNet model is acceptable
compared to the full-chip CMP simulator.

B. The Acceleration of CMP Neural Network
TABLE I shows the runtime comparisons for objective evaluation
and gradient calculation between the full-chip CMP simulator and
the proposed CMP neural network. For single-precision performance,
GPU’s computation capability is up to 8.74 TFLOPS, while 64-core
CPU is up to 8.12 TFLOPS. The computation capabilities of two
platforms are considered equivalent.

On a layout design of 100×100 windows, CMP neural network
performs objective evaluation in 0.025s by forward propagation, which
achieves 188× speedup. For gradient calculation, the backward prop-
agation of CMP neural network is 8134× faster than the numerical
gradient calculation of the 64-core full-chip CMP simulator. The
efficiency of CMP neural network enables MSP-SQP framework and
multi-modal starting points search for optimization.

C. Filling Quality Comparison
TABLE II shows the score function coefficients for objectives. TA-
BLE III shows the comparison results of the proposed NeurFill algo-
rithm and existing rule- and model-based methods on three designs. In
the column Method, NeurFill (PKB) is the proposed method of the PKB
starting point followed by SQP optimization in the NeurFill framework.
NeurFill (MM) is the proposed method of MSP-SQP optimization with
multi-modal starting points search in the NeurFill framework.

Considering the runtime and memory usage, NeurFill (PKB) gets the
best overall score over all three existing methods. The overall score of
NeurFill (PKB) is 8.6% better than the best existing method Cai [12]
in Design A, 15.9% better than Tao [11] in Design B, and 2.2% better
than Lin [10] in Design C.

When focusing on filling quality, model-based algorithms outper-
form rule-based algorithms. Compared to state-of-the-art model-based
method Cai [12], NeurFill (PKB) obtains 2% better quality with 58×



TABLE II Score Function Coefficients of Three Layout Designs

#L File Size αov βov αfa βfa ασ βσ ασ∗ βσ∗ αol βol αfs βfs αt βt αm βm

A 3 16.4M 0.15 2400724 0.05 2400724 0.2 209 0.2 78132 0.15 7.1 0.05 32.8M 0.15 20min 0.05 8G
B 3 948.7M 0.15 6596491 0.05 6596491 0.2 133 0.2 23616 0.15 25 0.05 1897.4M 0.15 20min 0.05 8G
C 3 80.6M 0.15 3232445 0.05 3232445 0.2 105 0.2 17281 0.15 17 0.05 161.2M 0.15 20min 0.05 8G

TABLE III Performance Comparison On Three Layout Designs

Design Method ∆H Performance Variation Line Deviation Outliers File Size Runtime Memory Quality Overall

A

Lin [10] 174Å 0.000 0.145 0.445 1.000 0.967 1.000 (1s) 0.756 0.395 0.504
Tao [11] 174Å 1.000 0.142 0.425 1.000 0.970 0.968 (39s) 0.756 0.640 0.695
Cai [12] 139Å 1.000 0.595 0.750 1.000 0.989 0 (1.5h,64c) 0.756 0.835 0.706

NeurFill (PKB) 135Å 0.978 0.613 0.765 1.000 0.976 0.375 (12.5min) 0.832 0.837 0.767
NeurFill (MM) 128Å 0.973 0.625 0.769 1.000 0.971 0 (3.0h) 0.725 0.839 0.708

B

Lin [10] 283Å 0.000 0.425 0.525 0.333 0.683 1.000 (1s) 0.707 0.343 0.459
Tao [11] 283Å 1.000 0.445 0.530 0.380 0.714 0.915 (1.7min) 0.707 0.610 0.660
Cai [12] 219Å 1.000 0.457 0.550 0.973 0.874 0 (3.0h,64c) 0.707 0.739 0.627

NeurFill (PKB) 204Å 0.960 0.571 0.608 1.000 0.823 0.695 (6.1min) 0.832 0.774 0.765
NeurFill (MM) 197Å 0.957 0.577 0.614 1.000 0.817 0 (4.9h) 0.613 0.776 0.651

C

Lin [10] 241Å 1.000 0.424 0.260 1.000 0.822 0.993 (9s) 0.712 0.660 0.712
Tao [11] 240Å 1.000 0.430 0.271 0.999 0.820 0.910 (1.8min) 0.712 0.664 0.703
Cai [12] 198Å 0.277 0.809 0.816 1.000 0.580 0 (17.2h,64c) 0.712 0.699 0.595

NeurFill (PKB) 198Å 0.274 0.843 0.824 1.000 0.558 0.800 (4.0min) 0.832 0.707 0.728
NeurFill (MM) 199Å 0.298 0.844 0.847 1.000 0.607 0 (18.3h) 0.590 0.723 0.608

speedup. With 21% longer runtime compared to Cai [12], NeurFill
(MM) can obtain the highest quality scores, which are 0.5%, 5.0% and
3.4% better on three designs.

Besides, NeurFill (MM) has two advantages. First, the filling quality
of NeurFill (PKB) is unpredictable, while filling quality optimized by
NeurFill (MM) is the best among all available local optimums located
by the multi-modal algorithm. In our opinion, it is worthwhile to spend
extra time for the certainty of better filling quality. Second, the prior
knowledge used in NeurFill (PKB) is based on the empirical rules,
which have shown intrinsic drawbacks in deep-submicron technology.
Even if NeurFill (PKB) is efficient under the 45nm technology node,
it may result in a bad local optimum under other advanced technology
nodes. On the other hand, NeurFill (MM) can be adapted to any
technology node and generate a satisfying filling solution.

VI. CONCLUSION

In this paper, we propose NeurFill, a model-based dummy filling syn-
thesis framework based on a neural network. In NeurFill, CMP neural
network achieves 8134× speedup on gradient calculation by backward
propagation. With multi-modal starting points search and MSP-SQP
framework, the satisfying filling solution can be obtained. Furthermore,
we believe that the proposed framework can be extended to other high-
dimensional model-based optimizations with proper adjustment of the
pre-trained neural network model.

REFERENCES

[1] W.-S. Lee, K.-H. Lee, J.-K. Park, T.-K. Kim, Y.-K. Park, and J.-T. Kong,
“Investigation of the capacitance deviation due to metal-fills and the
effective interconnect geometry modeling,” in Proc. ISQED, 2003, pp.
373–376.

[2] C. Feng, H. Zhou, C. Yan, J. Tao, and X. Zeng, “Efficient approximation
algorithms for chemical mechanical polishing dummy fill,” IEEE TCAD,
vol. 30, no. 3, pp. 402–415, 2011.

[3] B. Jiang, X. Zhang, R. Chen, G. Chen, P. Tu, W. Li, E. F. Young, and
B. Yu, “FIT: Fill insertion considering timing,” in Proc. DAC, 2019, pp.
1–6.

[4] A. B. Kahng and R. O. Topaloglu, “Performance-aware CMP fill pattern
optimization,” Proc. VMIC, pp. 3–9, 2007.

[5] S.-J. Yu, C.-C. Kao, C.-H. Huang, and I. H.-R. Jiang, “Equivalent capac-
itance guided dummy fill insertion for timing and manufacturability,” in
Proc. ASPDAC, 2020, pp. 133–138.

[6] T. Lan, X. Li, J. Chen, J. Yu, L. He, S. Dong, W. Zhu, and Y.-W. Chang,
“Timing-aware fill insertions with design-rule and density constraints,” in
Proc. ICCAD, 2019, pp. 1–8.

[7] A. B. Kahng, G. Robins, A. Singh, and A. Zelikovsky, “Filling algorithms
and analyses for layout density control,” IEEE TCAD, vol. 18, no. 4, pp.
445–462, 1999.

[8] R. O. Topaloglu, “ICCAD-2014 CAD contest in design for manufactura-
bility flow for advanced semiconductor nodes and benchmark suite,” in
Proc. ICCAD, 2014, pp. 367–368.

[9] C. Liu, P. Tu, P. Wu, H. Tang, Y. Jiang, J. Kuang, and E. F. Young, “An
effective chemical mechanical polishing filling approach,” in Proc. ISVLSI,
2015, pp. 44–49.

[10] Y. Lin, B. Yu, and D. Z. Pan, “High performance dummy fill insertion
with coupling and uniformity constraints,” IEEE TCAD, vol. 36, no. 9,
pp. 1532–1544, 2017.

[11] Y. Tao, C. Yan, Y. Lin, S.-G. Wang, D. Z. Pan, and X. Zeng, “A novel
unified dummy fill insertion framework with SQP-based optimization
method,” in Proc. ICCAD, 2016, pp. 1–8.

[12] J. Cai, C. Yan, Y. Tao, Y. Lin, S.-G. Wang, D. Z. Pan, and X. Zeng,
“A novel and unified full-chip CMP model aware dummy fill insertion
framework with SQP-based optimization method,” IEEE TCAD, vol. 40,
no. 3, pp. 603–607, 2021.

[13] R. Tian, D. Wong, and R. Boone, “Model-based dummy feature placement
for oxide chemical-mechanical polishing manufacturability,” IEEE TCAD,
vol. 20, no. 7, pp. 902–910, 2001.

[14] S. Sinha, J. Luo, and C. Chiang, “Model based layout pattern dependent
metal filling algorithm for improved chip surface uniformity in the copper
process,” in Proc. ASPDAC, 2007, pp. 1–6.

[15] B. Jiang, L. Liu, Y. Ma, H. Zhang, B. Yu, and E. F. Young, “Neural-ILT:
Migrating ILT to neural networks for mask printability and complexity
co-optimization,” in Proc. ICCAD, 2020, in press.

[16] C. Feng, C. Yan, J. Tao, X. Zeng, and W. Cai, “A contact-mechanics-based
model for general rough pads in chemical mechanical polishing processes,”
J. Electrochem. Soc., vol. 156, no. 7, p. H601, 2009.

[17] H. Cai et al., “Modeling of pattern dependencies in the fabrication of
multilevel copper metallization,” Ph.D. dissertation, Massachusetts Inst.
Technol., 2007.

[18] L. M. Cook, “Chemical processes in glass polishing,” J. Noncrystalline
Solids, vol. 120, no. 1-3, pp. 152–171, 1990.

[19] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
Numerica, vol. 4, no. 1, pp. 1–51, 1995.

[20] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. MICCAI, 2015, pp. 234–241.

[21] X. Wang, T. Gu, C. Yan, X. Wu, F. Yang, S.-G. Wang, D. Zhou, and
X. Zeng, “An efficient and robust yield optimization method for high-
dimensional SRAM circuits,” in Proc. DAC, 2020, pp. 1–6.

[22] J. E. Fieldsend, “Running up those hills: Multi-modal search with the
niching migratory multi-swarm optimiser,” in Proc. IEEE Congr. Evol.
Comput., 2014, pp. 2593–2600.

[23] Cadence corp., “CMP predictor,” https://www.cadence.com/en US/home/
tools/digital-design-and-signoff/silicon-signoff/cmp-predictor.html.

https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/cmp-predictor.html
https://www.cadence.com/en_US/home/tools/digital-design-and-signoff/silicon-signoff/cmp-predictor.html

