Correlated Multi-objective Multi-fidelity Optimization for HLS Directives Design

Qi Sun1, Tinghuan Chen1, Siting Liu1, Jin Miao2, Jianli Chen3, Hao Yu4, Bei Yu1

1The Chinese University of Hong Kong
2Synopsys
3Fudan University
4SUSTech
Background

High-level synthesis (HLS)

- Translate high-level programming languages (e.g., C/C++) to low-level hardware description languages (HDLs).
- Under the guidance of the HLS directives (pragmas).
- Same high-level descriptions, different HLS directives → different hardware implementations.
- For each application, a group of HLS directives is represented as a configuration vector x.

```pseudo
comp(int in[10], int out[10]):
    #pragma HLS INLINE={ON, OFF}
    for (i = 0; i < 10; i ++) {
        #pragma HLS UNROLL factor={2,5,10}
        in[i] = out[i];
    }
```

Pseudo-codes and HLS directives. The directives are in red. Each directive has some factors, e.g., 2, 5, and 10.
Background

Various types of directives

- **Function**
 - dataflow, inline

- **Loop**
 - unroll, pipeline

- **Resource**
 - DSP, BRAM

- **Array Partition**
 - block, cyclic, complete

Design flow

C/C++

HLS Directives

- **HLS**
 - High Level Synthesis Stage
 - Logic Synthesis Stage
 - Implementation Stage

Post-HLS Reports

- Post-Synth Reports
- Post-Impl Reports

Longer running times, more accurate reports

Multiple conflicting design objectives (three fidelities)

- delay, power consumption, and resource consumption
Background

Various types of directives

HLS Directives
- **Function**
 - dataflow, inline
- **Loop**
 - unroll, pipeline
- **Resource**
 - DSP, BRAM
- **Array Partition**
 - block, cyclic, complete

Design flow

- HLS Directives
- C/C++
- FPGA Design Tool

High Level Synthesis Stage
- Post-HLS Reports

Logic Synthesis Stage
- Post-Synth Reports

Implementation Stage
- Post-Impl Reports

Longer running times, more accurate reports
Background

Various types of directives

- **Function**
 - dataflow, inline

- **Loop**
 - unroll, pipeline

- **Resource**
 - DSP, BRAM

- **Array Partition**
 - block, cyclic, complete

Design flow

- **HLS Directives** -> **C/C++** -> **FPGA Design Tool**

 - **High Level Synthesis Stage**
 - **Logic Synthesis Stage**
 - **Implementation Stage**

 - Post-HLS Reports
 - Post-Synth Reports
 - Post-Impl Reports

Multiple conflicting design objectives (three fidelities)

- delay, power consumption, and resource consumption

Longer running times, more accurate reports
Background

Pareto optimality – find some Pareto-optimal points

- 3 objective functions. \(f_m : \mathcal{X} \rightarrow \mathbb{R} \), for \(m = 1, 2, 3 \).
Background

Pareto optimality – find some Pareto-optimal points

- 3 objective functions. $f_m : \mathcal{X} \rightarrow \mathbb{R}$, for $m = 1, 2, 3$.

- A value point $y = [f_1(x), f_2(x), f_3(x)]$, in the value space \mathcal{Y}.
Background

Pareto optimality – find some Pareto-optimal points

- 3 objective functions. $f_m : \mathcal{X} \rightarrow \mathbb{R}$, for $m = 1, 2, 3$.

- A value point $y = [f_1(x), f_2(x), f_3(x)]$, in the value space \mathcal{Y}.

- For $y_i, y_j \in \mathcal{Y}$, y_i dominates y_j when $y_{i,m} \geq y_{j,m}$, for $\forall m \in \{1, 2, 3\}$, represented as $y_i \succeq y_j$.
Background

Pareto optimality – find some Pareto-optimal points

- 3 objective functions. $f_m : \mathcal{X} \rightarrow \mathbb{R}$, for $m = 1, 2, 3$.

- A value point $y = [f_1(x), f_2(x), f_3(x)]$, in the value space \mathcal{Y}.

- For $y_i, y_j \in \mathcal{Y}$, y_i dominates y_j when $y_{i,m} \geq y_{j,m}$, for $\forall m \in \{1, 2, 3\}$, represented as $y_i \succeq y_j$.

- The non-dominated points are called Pareto-Optimal Set, $\mathcal{P}(\mathcal{Y}) \in \mathcal{Y}$.
Background

Pareto optimality – find some Pareto-optimal points

- 3 objective functions. \(f_m : \mathcal{X} \rightarrow \mathbb{R} \), for \(m = 1, 2, 3 \).

- A value point \(y = [f_1(x), f_2(x), f_3(x)] \), in the value space \(\mathcal{Y} \).

- For \(y_i, y_j \in \mathcal{Y} \), \(y_i \) dominates \(y_j \) when \(y_{i,m} \geq y_{j,m} \), for \(\forall m \in \{1, 2, 3\} \), represented as \(y_i \succeq y_j \).

- The non-dominated points are called Pareto-Optimal Set, \(\mathcal{P}(\mathcal{Y}) \in \mathcal{Y} \).

- Blank cells are dominated

- Pareto hyper-volume \(PV_{v_{ref}}(\mathcal{P}(\mathcal{Y})) \).
Background

Target

- Find the **Pareto-optimal** points in HLS design problem
Background

Target

- Find the **Pareto-optimal** points in HLS design problem

Challenges

- Hard to predict the performance values according to the directives
- Hard to characterize the complicated relationships between the multiple objectives
- Hard to balance the consumption of running time and accuracy of results
Background

Target

- Find the **Pareto-optimal** points in HLS design problem

Challenges

- Hard to predict the performance values according to the directives
- Hard to characterize the complicated relationships between the multiple objectives
- Hard to balance the consumption of running time and accuracy of results

Requirements

- Develop a **flexible and general** method
- Strike a **balance** between optimization workloads and accuracy of results
- Able to characterize the complicated relationships between the **HLS directives and multiple objectives**
Our Solution

Optimization strategy
- Bayesian optimization
- Acquisition function: expected improvement

Multi-fidelity model
- Non-linear Gaussian process model

Multi-objective model
- Pareto learning
- Correlated Gaussian process model
Multi-Fidelity Model

Traditional linear correlation model

\[f_{m}^{h}(x) = \rho^{h} \times f_{m}^{l}(x) + f_{m}^{e}(x). \]

- \(\rho^{h} \): a scaling factor. \(f_{m}^{e}(x) \): error term.

Our non-linear correlation model

The reports of the low fidelity are concatenated as part of the inputs to the next high fidelity.

\[f_{m}^{h}(x) = z_{m}^{h}(f_{m}^{l}(x), x) + f_{m}^{e}(x). \]

- \(z_{m}^{h}(\cdot) \): correlation term, modelled by a GP model.
Multi-Objective Model – Pareto Learning

Acquisition function: expected improvement of Pareto hyper-volume

- At step $t + 1$ of Bayesian optimization, we already have data set $D = \{x_s, y_s\}_{s=1}^t$, with $\mathcal{P}(\mathcal{Y}) = \{y_s\}_{s=1}^t$. Sample a new point x_{t+1}, the predicted value is $y(x_{t+1})$.

$$EIPV(x_{t+1}|D) = \mathbb{E}_{p(y(x_{t+1})|D)} \left[PV_{v_{ref}} \left(\mathcal{P}(\mathcal{Y} \cup y(x_{t+1})) \right) - PV_{v_{ref}} \left(\mathcal{P}(\mathcal{Y}) \right) \right].$$
At step $t + 1$ of Bayesian optimization, we already have data set $D = \{x_s, y_s\}_{s=1}^t$, with $\mathcal{P}(\mathcal{Y}) = \{y_s\}_{s=1}^t$. Sample a new point x_{t+1}, the predicted value is $y(x_{t+1})$.

$$EIPV(x_{t+1}|D) = \mathbb{E}_{p(y(x_{t+1})|D)} \left[PV_{\text{ref}} (\mathcal{P}(\mathcal{Y} \cup y(x_{t+1}))) - PV_{\text{ref}} (\mathcal{P}(\mathcal{Y})) \right].$$
Combined Model

▶ Two dimensions: one for the multi-objective functions, one for the multi-fidelities.
▶ Augment acquisition function:

\[
\text{PEIPV}_i(x_{t+1} | D) = \text{EIPV}_i(x_{t+1} | D) \cdot \frac{T_{\text{impl}}}{T_i}, \ i \in \{\text{hls, syn, impl}\},
\]

\[
\max_i \text{PEIPV}_i, \ i \in \{\text{hls, syn, impl}\}
\]

▶ Select the largest one, and run the compilation flow to that fidelity.
Experiments and Results

Experimental settings

- 5 traditional benchmarks, 1 DNN benchmark
- All HLS code are compiled via Vivado HLS to get the reports (for validation of results of various algorithms).

Quality metric – average distance to reference set (ADRS)

- Γ reference set (real Pareto set).
- Ω learned Pareto set.

$$ADRS(\Gamma, \Omega) = \frac{1}{|\Gamma|} \sum_{\gamma \in \Gamma} \min_{\omega \in \Omega} f(\gamma, \omega)$$
Results

All algorithms use the same input features.

- Bayesian methods: 8 initial samples, at most 40 optimization steps.
- Other methods, each training set has 48 points.

Table: Normalized Experimental Results

<table>
<thead>
<tr>
<th>Model</th>
<th>Normalized ADRS</th>
<th>Normalized Standard Deviation of ADRS</th>
<th>Normalized Overall Running Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ours</td>
<td>FPL18</td>
<td>ANN</td>
</tr>
<tr>
<td>GEMM</td>
<td>0.27</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td>iSmart2</td>
<td>0.65</td>
<td>0.68</td>
<td>1.00</td>
</tr>
<tr>
<td>SORT_RADIX</td>
<td>0.64</td>
<td>0.72</td>
<td>1.00</td>
</tr>
<tr>
<td>SPMV_ELLPACK</td>
<td>0.19</td>
<td>0.47</td>
<td>1.00</td>
</tr>
<tr>
<td>SPMV_CRS</td>
<td>0.22</td>
<td>0.29</td>
<td>1.00</td>
</tr>
<tr>
<td>STENCIL3D</td>
<td>0.39</td>
<td>0.41</td>
<td>1.00</td>
</tr>
<tr>
<td>Average</td>
<td>0.39</td>
<td>0.51</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Example – GEMM

Directives

- INLINE, PIPELINE, UNROLL, Mul_LUT, DSP48, ARRAY_PARTITION, BRAM.

REFERENCES

Thank you!