
Physical Synthesis for Advanced Neural Network Processors
(Invited Paper)

Zhuolun He

Chinese University of Hong Kong

Peiyu Liao

Chinese University of Hong Kong

Siting Liu

Chinese University of Hong Kong

Yuzhe Ma

Chinese University of Hong Kong

Yibo Lin

Peking University

Bei Yu

Chinese University of Hong Kong

Abstract
The remarkable breakthroughs in deep learning have led to a

dramatic thirst for computational resources to tackle interesting

real-world problems. Various neural network processors have been

proposed for the purpose, yet, far fewer discussions have been made

on the physical synthesis for such specialized processors, especially

in advanced technology nodes. In this paper, we review several phys-

ical synthesis techniques for advanced neural network processors.

We especially argue that datapath design is an essential methodology

in the above procedures due to the organized computational graph

of neural networks. As a case study, we investigate a wafer-scale

deep learning accelerator placement problem in detail.

1 Introduction
Deep learning has emerged as one of the most important work-

loads due to its extraordinary performance gains in a number of

disciplines. Despite of that, how to efficiently execute deep neural net-

work (DNN) models remains a crucial concern since the beginning of

deep learning resurgence. Exacerbating the problem is the progres-

sively sophisticated network architectures, as well as the irregularity

due to network pruning and compression, which unarguably im-

pedes the deployment of modern DNNs onto devices. The above

challenge intrinsically highlights the demand for customized physi-

cal synthesis methodologies, since the quality of physical synthesis

directly determine the performance of neural network processors.

As neural network processors getting increasingly hierarchical

and structural, dataflow optimization becomes essential to boost

the system capabilities. Dataflow optimization schedules operation

by data availability, which exposes opportunity for parallelism and

data reuse. To illustrate some achievements in dataflow optimization,

Zhang et al. [1] quantitatively analyze the computing throughput

and required memory bandwidth using various conventional opti-

mization techniques, such as loop tiling and transformation, and then

apply roofline model to balance the resource; Alwani et al. [2] fuse
the processing of adjacent convolutional layers with the data on-chip

and use a pyramid-shaped multi-layer sliding window to minimize

off-chip transfer; Ma et al. [3] present an in-depth analysis of convo-

lution loop acceleration strategy by numerically characterizing the

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-7999-1/21/01. . . $15.00

https://doi.org/10.1145/3394885.3431625

loop optimization techniques and then use multiple optimization

algorithms to optimize the loop operation and the dataflow. Zhang et
al. [4] propose a fine-grained layer-based pipeline architecture and

a column-based cache scheme for higher throughput, lower pipeline

latency, and smaller on-chip memory consumption; Wei et al. [5]
provide an analytical model for performance and resource utilization

and develop an automatic design space exploration framework to

generate a convolutional neural network (CNN) implementation

using systolic arrays. Sun et al. [6] improve the power performance

by combining layer fusion and dataflow optimization techniques.

In addition to optimizing the dataflow itself, dataflow regular-

ity also give rise to new methodologies in physical synthesis, the

critical stage in modern very-large-scale integrated (VLSI) circuit

design flow. In VLSI design, datapaths are characterised by high

degree of bit-wise parallelism, which are placed with high regu-

larity and compactness to achieve high performance [7]. In this

sense, datapath-driven placement approaches have been attracting

researchers’ attention.

The rest of our paper is organized as follows. Section 2 provides

preliminaries about neural network processors and the physical

design flow. Section 3 conducts a comprehensive review of datapath-

driven placement methodologies. Section 4 investigates a wafer-scale

deep learning accelerator placement problem. Section 5 discusses

some advanced technologies for neural network processors, followed

by conclusion in Section 6.

2 Preliminaries
2.1 Neural Network Processor

In deep neural networks, executing inference such as convolu-

tion performs a very large amount of multiply-accumulate (MAC)

operations, since a single convolution comprises of iterating over

every channel and every pixel for each given input, typically with

billions or even trillions of iterations. Besides, the model itself must

be executed once for each new input.

While central processing units (CPUs) are effective at processing

highly serialized instruction streams, machine learning workloads

tend to be highly parallelizable, which is a good fit for graphics

processing units (GPUs). Moreover, neural processing units (NPUs)

benefit from vastly simpler logic because their workloads tend to

exhibit high regularity in the computational patterns of deep neural

networks. For the above reasons, many customized dedicated neural

processors have been developed.

An NPU is a well-partitioned circuit that includes all the control

and arithmetic logic components necessary to execute machine learn-

ing algorithms. NPUs are designed to accelerate the performance

of common machine learning tasks such as image classification,

machine translation, object detection, and various other predictive

https://doi.org/10.1145/3394885.3431625

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, and Bei Yu

models. NPUs might be parts of a large SoC, a plurality of NPUs may

be instantiated on a single chip, or they may be part of a dedicated

neural-network accelerator.

2.2 Physical Design Flow
Physical design is based on a netlist synthesized from an RTL

design to a gate-level description. Generally, the physical design flow

is divided into several steps: floorplanning, partitioning, placement,

clock-tree synthesis, routing, physical verification, and layout post-

processing with mask data generation. Floorplanning, placement,

and routing are the most essential steps in physical design.

Floorplanning determines geometric relations between modules

to optimize some objectives such as area, wirelength, and some

desired performance. A bad floorplan leads to wastage of die area

and routing congestion. As for the circuit performance, lower area

is usually desired, as it indicates shorter interconnect distances,

fewer routing resources used, faster end-to-end signal paths, and

even faster and more consistent place and route time. However,

routing may be more difficult with fewer assigned routing resources.

In general, floorplanning benefits from hierarchy information like

datapaths.

Placement is another crucial stage in physical design. A poor

placement not only affects the chip performance but also makes

it non-manufacturable with an excessive wirelength beyond avail-

able routing resources. Therefore, placement always processes with

several objectives to ensure that a circuit meets its performance

demands. Routing builds on placement and it assigns wires to prop-

erly connect the placed components under all design rules for the

integrated circuits. Together, the placement and routing steps of

integrated circuits design are known as place and route (PnR).

3 Datapath Driven Placement: A Survey
We present in this section some useful techniques in datapath

driven placement.

3.1 Placement with Datapath Constraints
The idea of datapath driven placement can date back to no later

than the work [8] published in the year of 1990, which considers

automatic generation of bit-sliced datapaths in high performance

DSP circuits. The datapath consists of multi-bit operators called

functional building blocks (FBBs), such as adders or registers. The

proposed linear placement tool generates a linear ordering of the

FBBs to minimize the layout area. In their work, the ordering solu-

tion space is represented as an acyclic directed graph, so that the

orderings can be searched with the A
∗
algorithm. The algorithm

achieves good performance and runs much faster than metaheuris-

tics (e.g. simulated annealing), and the authors emphasized that the

algorithm is flexible in adapting various cost functions.

Later on, datapath driven standard cell placementwas proposed [9].

In this work, strongly connected subcircuits (i.e., cones) are extracted

by a breadth-first algorithm augmented with heuristic rules. These

cones are treated as soft macro cells, and are placed by a macro-cell

placement algorithm to reduce the intercone wiring length. Macros

are converted back to cells by a mapping subsystem to preserve the

topological relationship between them.

It is argued that if the datapath is generated separately and simply

merged with netlists of other parts, the placement tool has little

control of the exact location where a cell might be placed [10]. In

this way the regularity information will be lost. Given that, the

Figure 1: Abstract physicalmodel is a bit-sliced abstraction of
a datapath circuit. The figure illustrates the APM of a booth
multiplier [10].

authors proposed an abstract physical model (APM), a bit-sliced

abstraction of a datapath circuit. Figure 1 demonstrates the APM

of a booth multiplier (adopted from [10]). The APM is compiled

from HDL, and the blocks in APM are placed abutted to each other.

Since the linear placement problem is NP-hard, they proposed a two

step heuristic that first determines an initial ordering by a quadratic

optimization procedure, and then a sliding window optimization is

performed to solve wirelength and congestion violations.

Datapath has been considered in detailed placement [11], where

a modified O-tree [12] based placer is able to place components

on reflection lines while obeying design rules. It is also considered

in physical design inside SOC [13, 14], and for parallel multiplier

design [15]. A lot more works for datapath driven general ASIC

design have been presented. In [16], datapath clusters are placed

with constraints that 1) the relative locations of the clusters should

follow the dataflow order and 2) the relative orientations of the

clusters should follow the bit order, and the same bit order should

be preserved throughout the dataflow. The authors name it ‘1.5

dimensional placement’ and proposed to solve it by linear placement

heuristics similar to [10]. A sigmoid-function-based density model

is proposed [17] for separate optimization in horizontal and vertical

directions. Blocks of each functional stage align vertically due to the

regularity in datapaths, which reduces variables in the optimization

problem. In [7], datapathmacros are placedwith other random blocks

by an analytical placement algorithm, while the relative location

of bit-slices can be adjusted inside the datapath macros to optimize

total wirelength. Results have shown that these techniques produce

better results in wirelength (HPWL, StWL) and/or routability.

Systolic arrays are a popular choice to support neural network

computations due to their regular topology and simple interconnec-

tions. Despite the layout-friendly structures, it was reported that

current FPGA CAD tools are unable to synthesize systolic arrays in

high quality [18]. One of the key reasons might be that DSPs are dis-

tributed into columns over the whole FPGA chip. Meanwhile, there

are around 15× more intra-PE nets than inter-PE nets, optimizing

the length of which result in a distorted layout. Given the above,

the authors propose to perform floorplanning and set placement

Physical Synthesis for Advanced Neural Network Processors
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

(a) (b)

Figure 2: PE placement with floorplan constraints. Floorplan-
ning re-organizes PEs more regularly [18].

constraints to restrict fixed locations for PEs. To enable the topology-

aware floorplanning, the region in which the PEs are placed should

provide sufficient hardware resources, and should be as close as pos-

sible to the used I/O banks. Then the PEs are mapped to the available

DSP columns by enumeration. Figure 2 shows the placement result

of PEs with floorplan constraints (adopted from [18]). The authors

reported 1.29× frequency improvement and 1.5TOP/S in deploying

a VGG model onto the Xilinx KCU1500 platform.

Benchmarks are released [19, 20] to evaluate the performance of

the placers.

3.2 Methods for Regularity Extraction
Along with the methodologies in datapath driven placement, var-

ious approaches for regularity extraction have been proposed. We

review some of the representative approaches in this section.

Intuitively, as described in [21], consider cells associated with the

same bit-slice are lined up horizontally, and the cells of the same type

occurring at similar places are stacked alongside forming stages. The
circuit is thus fitted onto a matrix of rectangular buckets that yields

maximum density cell placement. In addition to the above geometric
regularity, the interconnect regularity indicates that almost all nets are

contained either within one slice or within one stage. In [21], a local

regularity metric is defined by interpreting the distribution of the

number of pins, and a regularity extraction algorithm is proposed

by expanding search-waves through the network, stage by stage

according to the regularity metric.

A signature-based regularity extraction algorithm is proposed

later [22]. The signature of a random instance is dictated by its master

cell and its connectivity to datapath instances. Then a connectivity

cost function is defined based on some objective, such as the vertical

distance between two pins. The random instances are sorted based

on the signatures and are partitioned into blocks with the same

signature. Finally, the regular functions are generated taking the

connectivity cost into consideration. The authors also propose a

relaxed function-based signature.

Covering a circuit by templates is another line of research. Be-

sides assuming a library of provided templates, Chowdhary et al. [23]
present an approach to automatically generate all possible templates

for the input circuit. Despite the inherent difficulty in template gener-

ation (which is similar to enumerating isomorphic subgraphs), they

propose to extract only maximum degree of regularity (assumption

1 in their paper), and to assign incoming edges a unique index (as-

sumption 2 in their paper). With the two assumptions, the number

Figure 3: The problem of datapath main frame identification
can be transformed to a network flow problem [24].

of possible tree templates is reduced to withinV 2
from 2

V
. The tem-

plate generation algorithm is then extended to generate multi-output

function. The authors also propose two heuristics to effectively cover

the graph by templates, including largest-fit-first that selects the tem-

plate with the maximum area, and most-frequent-fit-first that selects
the template with the maximum number of subgraphs.

The regularity extraction problem can be converted to a network-

flow problem. In [24], datapath main frame (DMF) is defined as a

set of n disjoint paths from input to output such that the number

of datapath gates on these paths is maximized. To identify DMF,

an optimal network-flow based algorithm is presented. Basically,

capacitiesU and costs C are assigned to the network graph, where

capacity is 1 for all the nodes and edges, and the cost for nodes is a

constant negative number, and 0 for the edges. The min-cost max-

flow algorithmwill be applied to the flow network, which guarantees

the optimality with polynomial runtime. Figure 3 demonstrates the

data main frame identification problem (adopted from [24]).

Properties of bit-slices include 1) small area variance (similar),

2) large area mean (long), and 3) minimized overlaps [25]. In the

same paper [25], the authors propose a two-stage method that first

optimize 1) and 2) with a balanced bipartite edge-cover algorithm,

and minimize 3) with simulated annealing. Since every bit-slice

path is a bit line connecting I/O vectors, a datapath is modeled as a

bipartite graph, where the vertices correspond to either larger I/O

vector or narrow I/O vector, and the edges correspond to the bit lines.

Therefore, the problem of extracting feasible set of bit-slice paths

is transformed to the problem of covering vertices in the bipartite

graph.

It is worth mentioning that these techniques have also been uti-

lized in logic synthesis [26–28]. However, it was also pointed out [29]

that extraction of regularity from synthesized netlists is difficult and

requires counterproductive simplifications to the synthesis process.

3.3 Machine Learning Techniques
Recently, machine learning techniques are utilized for datapath

extraction [30]. Specifically, graph-based (e.g., automorphism) and

physical features (e.g., cell area) are analyzed and extracted from the

netlist. These features are fed to support vector machine (SVM) and

neural networks (NNs) to classify and evaluate datapath patterns.

Both SVM and NNs are to maximize the evaluation accuracies of

datapath and non-datapath patterns, which are defined as the rate

of correctly detected datapath/non-datapath patterns over the total

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, and Bei Yu

Figure 4: PADE effectively handles datapath in placement.
Adopted from [30].

number of corresponding structures. The proposed placer, PADE,

has demonstrated reasonable improvement in wirelength. Figure 4

shows placement result by PADE that effectively handles the datap-

ath (adopted from [30]). The authors also proposed a unified place-

ment flow [31, 32] that handles both random logic and datapath

standard cells on top of a force-directed placer. Several techniques

for structural-aware placement, such as skewed weighting for net

alignment and bit-stack aligned cell swapping, are proposed and

discussed in the paper.

4 Datapath Driven Floorplan: A Case Study
In this section, we focus on a wafer-scale deep learning accelerator

placement problem introduced in ISPD2020 contest [33] as a case

study. We argue that the problem is more like a typical floorplanning

problem, inwhich there are tens or hundreds ofmacro blocks, and the

block shapes are flexible (we actually need to determine the shapes in

the solution). Therefore, the contest has put forward a floorplanning

problem for neural network optimization on awafer-scale computing

engine. Considering that neural networks are a stack of single layers

where each performs a single function, naturally an AI compiler

decomposes such neural network computation into a stack of single

units called kernels. To solve this floorplanning problem, we are

required to assign each compute kernel a two-dimensional position

on the wafer without overlap and utilize computing resources as

much as possible.

4.1 Kernel Description
Formally, a kernel is a parametric program that performs spe-

cific tensor operations. For instance, a convolution kernel performs

several kinds of convolution operations. To better describe how a

kernel is customized on the wafer, its arguments are classified into

two main groups. Formal arguments specify the exact shapes of ten-

sor operations to be performed. They are uniquely determined by

the network architecture, so we consider them to be fixed in our

optimization. Execution arguments describe how the operation is

parallelized across tiles. We are required to find the optimal combi-

nation of execution arguments to obtain a maximum utilization of

computation resources.

Still, we take a convolution kernel as an example. A normal con-

volution kernel contains 8 formal arguments, represented by a tuple

(H ,W ,R, S,C,K ,T ,U). In detail, (H ,W) specify the height and width

of input image respectively; (C,K) represent the number of chan-

nels of input and output image; (R, S) describe the kernel size in

two dimensions; and (T ,U), similarly, are strides in two dimensions,

respectively. They are fixed arguments or intrinsic attributes of a

convolution kernel. On the other hand, four execution arguments

(h′,w ′, c ′,k ′) are free to be specified to maximize resource utiliza-

tion.

4.2 Problem Formulation
Since we are provided with different types of kernels, each type of

kernels have a function to evaluate performance. The performance

of a convolution kernel is evaluated by a 4-tuple (h,w, t ,m) called

performance cuboid, where h,w, t ,m represent height, width, time

and memory this kernel requires, respectively.

The ISPD2020 contest benchmarks provide two main categories

of kernels, convolution kernels and block kernels. The performance

evaluator of a convolution kernel K (denoted type conv hereafter)

with formal arguments µK = (H ,W ,R, S,C,K ,T ,U) is defined as a

function convperf thatmaps execution argumentsxK = (h′,w ′, c ′,k ′)
to a resource cuboid rK = (h,w, t ,m), where

h = h′w ′(c ′ + 1), w = 3k ′,

t =

⌈
H

h′

⌉
·

⌈
W

w ′

⌉
·

⌈
C

c ′

⌉
·

⌈
K

k ′

⌉
·
RS

T 2
,

m = RS
C

c ′
K

k ′
+
W + S − 1

w ′

H + R − 1

h′
K

k ′
.

(1)

Notation ⌈·⌉ represents math ceil function. Each of block kernel

consists of several conv kernels. For example, a block kernel K ,
with formal arguments µK = (H ,W , F) and execution arguments

xK = (h′,w ′, c ′
1
, · · · , c ′n ,k

′
1
, · · · ,k ′n), comprises of n conv kernels

Ki (i = 1, · · · ,n). Specifically, a convolution kernelKi contains xKi =
(h′,w ′, c ′i ,k

′
i) as its execution arguments. The formal argument tuple

µKi of conv kernelKi is determined by µK = (H ,W , F) and specific
attributes of the current block type in detail. The ISPD2020 contest

benchmarks provide us with two types of block kernels, dblock
and cblock.

• dblock. A dblock kernel consists of 3 different conv ker-

nels K1,K2,K3. Corresponding formal arguments are

µK1
= (H ,W , 1, 1, F , F/4, 1, 1),

µK2
= (H ,W , 3, 3, F/4, F/4, 1, 1),

µK3
= (H ,W , 1, 1, F/4, F , 1, 1).

• cblock. A cblock kernel consists of 4 different conv ker-

nels K1,K2,K3,K4. Similarly the corresponding formal argu-

ments are

µK1
= (H , W , 1, 1, F/2, F/4, 1, 1),

µK2
= (H , W , 3, 3, F/4, F/4, 2, 2),

µK3
= (H/2,W /2, 1, 1, F/4, F , 1, 1),

µK4
= (H , W , 1, 1, F/2, F , 2, 2).

Formal arguments of each component conv kernel are uniquely

determined by µK = (H ,W , F). Similar to the performance evaluator

of conv kernels, the performance of a block kernel K consisting of

n different conv kernels Ki (i = 1, · · · ,n) can be evaluated by

blockperf(µK ;xK) = rK = (h,w, t ,m), (2)

where components of 4-tuple rK is formulated as

h = max

1≤i≤n
hi , w =

n∑
i=1

wi ,

t = max

1≤i≤n
ti , m = max

1≤i≤n
mi ;

(3)

Physical Synthesis for Advanced Neural Network Processors
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

(hi ,wi , ti ,mi) := convperf(µKi ;xKi). (4)

To formulate the optimization problem, objective and constraints

must be reasonably specified. Suppose that we are provided with ker-

nel libraryK = {K1,K2, · · · ,Kn }, whereKi is a kernel of type conv,
dblock or cblock. A floorplan solution assigns location vectors

x ,y to these kernels. Then our final objective function contains three

parts:

• Maximum execution time of any placed kernel. Since any

kernel K in the kernel library K will be evaluated and return

a resource cuboid rK containing execution time tK , this term
is normally formulated as max1≤i≤n tKi .

• Total L1 wirelength. It is determined by a floorplan x ,y of

kernels K. We formulate total wirelength as such a function

W (x ,y) of location vectors.

• Protocol differences P between connected kernels.

Suppose that there is a directed edge from kernel K1 to kernel K2,

whose execution arguments are represented by

xK1
= (h′(1),w ′(1), c

′(1)

1
, · · · , c

′(1)
m ,k

′(1)

1
, · · · ,k

′(1)
m),

xK2
= (h′(2),w ′(2), c

′(2)

1
, · · · , c

′(2)
n ,k

′(2)

1
, · · · ,k

′(2)
n).

Note that whenm or n is exactly 1, the kernel type is conv. Then
the protocol number of this edge is defined as

P = 3 − δh′(1),h′(2) − δw ′(1),w ′(2) − δp(1),p(2) , (5)

where p1 = min{c
′(1)
m ,k

′(1)
m }, p2 = min{c

′(2)

1
,k

′(2)

1
} are split numbers

in two dimensions, and δi j is Kronecker delta which takes value 1 if

the two subscripts are equal and 0 otherwise. The protocol number

is uniquely determined by the kernel graph G.
The objective we are about to optimize is the weighted sum of

the three parts mentioned above.

J = max

1≤i≤n
tKi + λ1W (x ,y) + λ2P(G), (6)

where λ1 and λ2 are hyper-parameters provided by benchmarks. J
should be optimized under specific constraints, 1) all kernels must

fit within the fabric area; and 2) kernels must not overlap. The con-

straints are straight-forward for industrial practitioners to follow.

They are discrete enough to make our optimization problem difficult

to solve.

4.3 Algorithm
Considering that a neural network usually is a stack of layers, we

can extract a clear datapath to describe how data is processed during

a forward pass. That inspires us that it is possible to arrange the

floorplan according to the datapath, since we have great flexibility

to control the shape of each module.

4.3.1 One-Row Floorplan
Many cases in ISPD2020 contest benchmarks are a chain-like connec-

tion of kernels. Intuitively, if the total number of kernels is not very

large, we can always place them horizontally one by one following

the dataflow order, shown in Figure 5(a).

Take a look at the performance function of a conv kernel. If we

ignore the math ceil function, it can be easily derived that execu-

tion time t is inversely proportional to kernel area, approximately.

However, three unroll factors h′,w ′,k ′ are capable of affecting the
value of height h, whilew is only affected by c ′. Therefore, it is more

(a) (b)

Figure 5: (a) One-row floorplan; (b) Multi-row Mamba floor-
plan.

(a) (b)

Figure 6: (a) Mamba floorplan; (b) Horizontally compacted
Mamba floorplan.

reasonable to pinch each module to a thin and tall one, so that the

height can shoulder more unrolling burden.

This one-row strategy should work pretty fine especially when the

weight of wirelength λ1 is significantly considerable, since the total

Manhattan distance between connected kernels could be tremen-

dously optimized to an observable value.

4.3.2 Mamba Floorplan
Unfortunately, the one-row floorplan described in the subsection

4.3.1 does not always work. In fact, in most of large cases it will

definitely fail, considering that the width allowed for floorplan is at

most 633 while the minimum width of a block is at least 3. Then it is

natural to extend our solution to multi-row floorplan. Specifically,

to reduce the total wirelength, it should be better to connect the

rows head-to-head and tail-to-tail, and thus we call such floorplan

strategy Mamba floorplan, illustrated in Figure 5(b).

4.3.3 Floorplan Compacting
From Figure 5(b) we observe that our mamba floorplan strategy

can be further compressed. Once the total width of kernels placed

in a row is not strictly equal to the maximum wirelength, we can

always slide them horizontally preserving the kernel order. Figure 6

illustrates our compacting strategy. In Figure 6(a), the blue and red

colored regions are the first and second row respectively, and the

black lines connecting five kernels indicate the datapath.

We observe that neither the two kernels in the first row nor the

three kernels in the second row are able to fill the width of cor-

responding row without any gap. Therefore we can horizontally

move kernels preserving order to further reduce the total wire-

length, shown in Figure 6(b). The abstracted wire connecting the two

rightmost kernels are strictly vertical so that the total wirelength is

guaranteed to be less than that in Figure 6(a).

In general cases where we apply multi-row mamba floorplan,

the total number of rows might be larger. Therefore our row-shift

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, and Bei Yu

will be much more complicated. Assume that we have n rows in

total. For the i-th row, we have three variables ai ,bi , ri determining

its characteristics, where ai is the center horizontal coordinates of
the leftmost kernel, bi is the center horizontal coordinates of the
rightmost kernel, and ri is the total width of all consecutive kernels

placed in this row. The goal of compacting is to find x1, · · · ,xn where

xi represents the distance between the left boundary of region and

the leftmost kernel of the i-th row. This problem can be formulated

as a linear programming.

min

n−1∑
i=1

|xi − xi+1 + ti |

s.t. xi + ri ≤ w, i = 1, · · · ,n,

xi ≥ 0, i = 1, · · · ,n,

t2i = a2i − a2i+1, i = 1, · · · ,

⌊
n − 1

2

⌋
,

t2i−1 = b2i−1 − b2i , i = 1, · · · ,
⌊n
2

⌋
,

(7)

wherew represents the total width of the floorplan region. Any solver

aiming at solving linear programming can be applied to Problem (7).

Empirically the total number of rows is always a small number (less

than 6) to make the solving efficient.

4.3.4 Execution Arguments Selection
We have already determined the floorplan strategy, so the only thing

left is to decide the execution arguments of the kernels. Generally,

execution arguments of kernels are not independent to each other,

however, we tend to consider them separately to reduce the compu-

tational complexity.

For a conv kernel, we simply perform a grid search in all possi-

ble combinations of h′,w ′, c ′,k ′. Note that lots of solutions can be

trivially pruned. For example, c ′ = ⌈C/2⌉ and c ′ = C − 1 yield the

same unroll strategy onC because

⌈
C

⌈C/2⌉

⌉
=
⌈ C
C−1

⌉
, while the latter

one consumes far more processing tiles whenC is large. Specifically,

we have the following results.

Lemma 1. For a positive integer N , there are
⌊√

N
⌋
different integer

pairs (x ,
⌈N
x
⌉
) such that 1 ≤ x ≤

⌈N
x
⌉
and

⌈N
x
⌉
≥ 1.

Theorem 1. For any positive integer N , there are at most 2
⌊√

N
⌋

different integer pairs (x ,
⌈N
x
⌉
) such that x ≥ 1 and

⌈N
x
⌉
≥ 1.

Proof. From Lemma 1 we know that (1, ⌈N ⌉), (2, ⌈N /2⌉), · · · ,(⌈√
N
⌉
,
⌈
N /

⌈√
N
⌉⌉)

are legal pairs. Take arbitrary positive x ≤ N ,

and let y = ⌈N /x⌉. It is obvious that x = ⌈N /y⌉ is also true. There-

fore, if (x ,y) is a legal pair such that x > y according to theorem

description, then (y,x) is also legal and thus y ∈ {1, · · · ,
⌈√

N
⌉
}. If

N is a square number, (
√
N ,

√
N) is legal, then the total number is

2

⌊√
N
⌋
− 1, otherwise it is 2

⌊√
N
⌋
. □

Theorem 1 indicates that, we only need to perform a grid search

in O(
√
HWCK) time complexity, providing that if

⌈
H/h′

1

⌉
=
⌈
H/h′

2

⌉
we always prefer the smaller one min{h′

1
,h′

2
} to make the conv

kernel compact.

For a dblock or cblock kernel, we balance the heights of its

internal conv kernels first, otherwise the resulted empty space due

to the height difference will be wasted. Take a dblock kernel as

an example. It has three conv kernels Ki (i = 1, 2, 3) with execution

arguments xKi = (h′,w ′, c ′i ,k
′
i). To balance the height of kernels

we have c ′
1
= c ′

2
= c ′

3
. Similarly, to balance the runtime we have

k ′
1
: k ′

2
: k ′

3
= 4 : 9 : 4, based on the following results.

Theorem 2. For a dblock or cblock kernel K , its execution ar-
guments (h′,w ′, c ′

1
, · · · , c ′n ,k

′
1
, · · · ,k ′n) is no better than the modified

one (h′,w ′, c ′, · · · , c ′,k ′
1
, · · · ,k ′n) where c = maxi {c

′
i } with respect

to height, width, time and memory.

Proof. The proof is straight-forward, since runtime t and mem-

ory m is non-increasing with respect to c ′, and width w is irrel-

evant to c ′. Height is the maximum of three conv kernels, from

maxi ∈{1, · · · ,n }{h
′w ′(c ′i +1)} = h

′w ′(c ′+1), we know that the height

to this dblock remains unchanged. Therefore the performance of

execution arguments (h′,w ′, c ′, · · · , c ′,k ′
1
, · · · ,k ′n) is no worse than

the original one. It applies to the dblock kernel when n = 3, and

cblock kernel when n = 4. □

The result related to k ′ is not easy to derive because of the ceil
functions. From the argument selecting strategy for conv kernel we

tend to select those numbers that roughtly divide the corresponding

formal arguments as execution arguments, e.g. h′ such that H/h′ is
close to ⌈H/h′⌉. Therefore, it should be reasonable to approximate

⌈H/h′⌉ by H/h′. We define the approximated runtime t̃ of a conv
kernel K with formal arguments µK = (H ,W ,R, S,C,K ,T ,U) and

execution arguments xK = (h′,w ′, c ′,k ′) as follows,

t̃ :=
HWCKRS

h′w ′c ′k ′T 2
. (8)

For block kernels, t̃ is defined as the maximum of that of its conv
kernels. We have the following result.

Theorem 3. Given a dblock kernel K with execution arguments
xK = (h′,w ′, c ′, c ′, c ′,k ′

1
,k ′

2
,k ′

3
), let k ′ = min{k ′

1
,k ′

3
}. Then xK is no

better than (h′,w ′, c ′, c ′, c ′,
⌈
4

9
k ′
2

⌉
,k ′

2
,
⌈
4

9
k ′
2

⌉
) if 4

9
k ′
2
≤ k ′, otherwise

no better than (h′,w ′, c ′, c ′, c ′,k ′,
⌈
9

4
k ′
⌉
,k ′) with respect to height,

width and approximated time defined in Equation (8).

Proof. The height is irrelevant to k ′ so it remains unchanged.

Consider the approximated time.

t̃1 =
HWF 2

4h′w ′c ′k ′
1

, t̃2 =
9HWF 2

16h′w ′c ′k ′
2

, t̃3 =
HWF 2

4h′w ′c ′k ′
3

.

Suppose that
4

9
k ′
2
≤ k ′, then t̃2 ≥ max{t̃1, t̃3} and thus t̃ is not

determined by k ′
1
,k ′

3
. We simply decrease k ′

1
and k ′

3
such that they

are still no less than
4

9
k ′
2
, then t̃ of this kernel must remain unchanged

and additionally total width is reduced.

If
4

9
k ′
2
> k ′, then t̃ = max{t̃1, t̃3} and thus t̃ is determined by

k ′
1
,k ′

3
. We decrease k ′

1
and k ′

3
to k ′, and let k ′

2
be the minimum

number such that
4

9
k ′
2
≥ k ′ (in other words k ′

2
=
⌈
9

4

⌉
k ′), it is clearly

that t̃ remains unchanged butw = 4(k ′
1
+ k ′

2
+ k ′

3
) is reduced. Hence

we completed the proof. □

Theorem 3 indicates that the optimal settings of dblock kernel

execution arguments should have k ′
1
: k ′

2
: k ′

3
≈ 4 : 9 : 4. Similarly, in

cblock kernels, execution arguments k ′
1
: k ′

2
: k ′

3
: k ′

4
≈ 8 : 9 : 4 : 8

Physical Synthesis for Advanced Neural Network Processors
ASPDAC ’21, January 18–21, 2021, Tokyo, Japan

Table 1: Benchmark statistics and experimental results.

Benchmark Statistics TBS SA Algorithm [34] Our Strategy

Case #Kernels λ1 λ2 Max Time WL Protocol Cost Max Time WL Protocol Cost

A 17 1 0 37044 3611.5 11 40655.5 35280 2047 13 37327
B 34 1 0 70560 6657 20 77217 65856 4905 17 70761
C 102 1 0 76608 15696 69 92034 65772 4278 281 70050
D 54 1 0 38304 9327.5 44 47631.5 34944 3071.5 89 38015.5
E 17 10 100 36288 2080.5 7 57793 39690 590 16 47190
F 34 10 100 76608 3237 15 110478 70560 1475 14 86710
G 102 10 100 91728 7784 29 172468 69888 2508 141 109068
H 54 10 100 47040 4450 21 93640 43008 893 115 63438
I 27 4 0 56448 3790 16 71608 52920 612 13 55368
J 81 4 0 63504 8009.5 52 95542 57792 1117.5 286 62262
K 18 4 0 576 236 3 1520 504 400 14 2104

L 54 4 0 1280 910.5 60 4922 504 774 114 3600
M 25 4 0 2359296 9359 24 2396732 2336256 5100 67 2356656
N 28 4 0 2268 707.5 0 5098 1599 448.5 9 3393
O 27 40 400 63504 1202 6 113984 52920 612 13 82600
P 81 40 400 115101 4015 24 285301 66528 2273 102 198248
Q 18 40 400 1152 178 1 8672 504 400 14 22104

R 54 40 400 1372 1443 30 71092 504 774 114 77064

S 25 40 400 2495376 3551 25 2647416 2396160 1899.5 65 2498140
T 28 40 400 5720 555.5 0 27940 2015 367.5 9 20315

Avg 1.17× 1.00×

are reasonably close to optimum. In our argument selecting strategy,

such prior knowledge significantly reduces the search space.

4.4 Experimental Results
We implemented our cupid kernel floorplan engine in C++ pro-

gramming language on a 64-bit Linux machine with a 3.4GHz Intel

Xeon CPU and 32GB RAM. The results are evaluated on the ISPD20

contest benchmark suites [33].

The benchmark statistics and our experimental results are listed

in Table 1. Weights λ1 and λ2 represent the weight of wirelength
and protocol cost in the objective function, respectively. The cost
columns describe the value of the objective in Equation (6). Our

methodology performs much better than the baseline floorplan algo-

rithm [34] based on twin binary sequence (TBS) [35] and simulated

annealing, although the latter one could handle more general cases.

5 Discussion: Advanced Technologies
Advanced technologies have shown great potential to address

scaling challenges. Due to the page limit, we mention a few of them

and refer readers to [36] for a more comprehensive survey.

Processing-in-memory (PIM) provides massive parallelism with

high energy efficiency [37], offering new solutions to address chal-

lenges inmodern computer systems. Recent work have demonstrated

that neural network computation can be implemented in various

emerging non-volatile memories (NVM), such as RRAM [38, 39],

STT-MRAM [40, 41], PCM [42], and memristor [43]. In-memory

analog simulation is another promising approach, for instance [44]

based on memristor crossbar and [45] based on FTJ. Without the

need for moving data between memory and processor, these acceler-

ators substantially improve the performance and efficiency of neural

network execution. However, lots of systems rely on an external

control device that may reduce the benefit of PIM.

The nanophotonic circuit is an alternative neuromorphic com-

puting system due to its ultra-high bandwidth, speed and ultra-

low energy consumption. In nanophotonic, signals are encoded in

the amplitude of optical pulses propagating in the photonic inte-

grated circuit, which implements a multi-layer optical neural net-

work (ONNs) [46] . Recent advances include exploring nonlinear

functions with ONNs [47] and reducing area overhead of ONNs [48].

Different 3D technologies are available to offer a wide spectrum

of integration schemes. A neural network accelerator Tetris [49]

implemented with through-silicon-via (TSV) 3D memory achieves

4.1× and 1.5× performance and energy improvements. Specifically,

the memory substrate of Tetris is hybrid memory cube (HMC) [50],

one of the well-known realizations of 3D memory (another is high

bandwidth memory (HBM) [51]). ThruChip Interface (TCI), an alter-

native to TSV, is a high-performance wireless vertical interconnect

technology used to transmit signals between multiple stacked dies.

QUEST [52] is a DNN inference engine stacked with multiple SRAMs

using TCI, which enables large memory capacitance. It is also studied

whetherMonolithic 3D (M3D) can benefit deep learning hardware de-

sign [53, 54], where a Gaussian Mixture Model for acoustic modeling

is mapped to both 2D and M3D designs for comparison. Experiments

conclude that M3D is a good fit for low-power DNN hardware imple-

mentation, especially for architecture with complex combinational

logic.

Emerging beyond-CMOS devices give rise to new solutions for

low-power designs. It is shown that HyperFET, a MOSFET replace-

ment, greatly lowers the power consumption of spiking neural net-

works compared to the CMOS-based counterpart [55]. Similar at-

tempts include Cellular Neural Networks on TFET [56]. [57] reviews

emerging materials for next-generation computing technologies.

ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Zhuolun He, Peiyu Liao, Siting Liu, Yuzhe Ma, Yibo Lin, and Bei Yu

6 Conclusion
In this paper, we discussed physical synthesis for advanced neural

network processors. Due to the regularity of neural network proces-

sors, we reviewed existing literature on datapath driven placement

that takes circuit topology into physical design consideration. We

also scrutinized a wafer-scale deep learning accelerator placement

problem, a case study of specific physical synthesis for advanced

neural network processors. Experimental results show that datap-

ath driven floorplan greatly outperforms standard methods such

as simulated annealing. Advanced technologies for neural network

processor design are additionally discussed.

References
[1] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing FPGA-based

accelerator design for deep convolutional neural networks,” in Proc. FPGA, 2015.
[2] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer CNN accelerators,”

in Proc. MICRO, 2016.
[3] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing loop operation and dataflow

in FPGA acceleration of deep convolutional neural networks,” in Proc. FPGA, 2017.
[4] X. Zhang, J. Wang, C. Zhu, Y. Lin, J. Xiong, W.-m. Hwu, and D. Chen, “DNNBuilder:

an automated tool for building high-performance DNN hardware accelerators for

FPGAs,” in Proc. ICCAD, 2018.
[5] X. Wei, C. H. Yu, P. Zhang, Y. Chen, Y. Wang, H. Hu, Y. Liang, and J. Cong, “Auto-

mated systolic array architecture synthesis for high throughput CNN inference on

FPGAs,” in Proc. DAC, 2017.
[6] Q. Sun, T. Chen, J. Miao, and B. Yu, “Power-driven DNN dataflow optimization on

FPGA,” in Proc. ICCAD, 2019.
[7] Y. Wang and H. Shin, “Effective regularity extraction and placement techniques

for datapath-intensive circuits,” IET Circuits, Devices & Systems, 2017.
[8] H. Cai, S. Note, P. Six, and H. De Man, “A data path layout assembler for high

performance DSP circuits,” in Proc. DAC, 1990.
[9] Y.-W. Tsay and Y.-L. Lin, “A row-based cell placement method that utilizes circuit

structural properties,” IEEE TCAD, 1995.
[10] T. T. Ye and G. De Micheli, “Data path placement with regularity,” in Proc. ICCAD,

2000.

[11] T. Serdar and C. Sechen, “Automatic datapath tile placement and routing,” in

Proc. DATE, 2001.
[12] P.-N. Guo, C.-K. Cheng, and T. Yoshimura, “An o-tree representation of non-slicing

floorplan and its applications,” in Proc. DAC, 1999.
[13] J. Tong, H. Xianlong, C. Yici, X. Jingyu, Y. Changqi, Z. Yiqian, Z. Qiang, and

W. Weimin, “Challenges to data-path physical design inside SOC,” CHINESE JOUR-
NAL OF SEMICONDUCTORS-CHINESE EDITION-, 2002.

[14] T. Jing, X.-L. Hong, Y.-C. Cai, J.-Y. Xu, C.-Q. Yang, Y.-Q. Zhang, Q. Zhou, andW.Wu,

“Data-path layout design inside SOC,” in Proc. ICCCAS, 2002.
[15] S. Bae, H.-O. Kim, J. Choi, and J. Park, “Coarse-grained structural placement for a

synthesized parallel multiplier,” in Proc. ISPD, 2015.
[16] T. T. Ye, S. Chaudhuri, F. Huang, H. Savoj, and G. De Micheli, “Physical synthesis

for ASIC datapath circuits,” in Proc. ISCAS, vol. 3, 2002.
[17] S. Chou, M.-K. Hsu, and Y.-W. Chang, “Structure-aware placement for datapath-

intensive circuit designs,” in Proc. DAC, 2012.
[18] J. Zhang, W. Zhang, G. Luo, X. Wei, Y. Liang, and J. Cong, “Frequency improvement

of systolic array-based CNNs on FPGAs,” in Proc. ISCAS, 2019.
[19] S. Ono and P. H. Madden, “On structure and suboptimality in placement,” in

Proc. ASPDAC, vol. 1, 2005.
[20] S. I. Ward, D. A. Papa, Z. Li, C. N. Sze, C. J. Alpert, and E. Swartzlander, “Quantifying

academic placer performance on custom designs,” in Proc. ISPD, 2011.
[21] R. X. Nijssen and J. A. Jess, “Two-dimensional datapath regularity extraction,” in

Proc. IWLS, 1996.
[22] S. R. Arikati and R. Varadarajan, “A signature based approach to regularity extrac-

tion,” in Proc. ICCAD, vol. 97, 1997.
[23] A. Chowdhary, S. Kale, P. K. Saripella, N. K. Sehgal, and R. K. Gupta, “Extraction

of functional regularity in datapath circuits,” IEEE TCAD, 1999.
[24] H. Xiang, M. Cho, H. Ren, M. Ziegler, and R. Puri, “Network flow based datapath

bit slicing,” in Proc. ISPD, 2013.
[25] C.-C. Huang, B.-Q. Lin, H.-Y. Lee, Y.-W. Chang, K.-S. Wu, and J.-Z. Yang, “Graph-

based logic bit slicing for datapath-aware placement,” in Proc. DAC, 2017.
[26] T. Kutzschebauch and L. Stok, “Regularity driven logic synthesis,” in Proc. ICCAD,

2000.

[27] T. Kutzschebauch, “Efficient logic optimization using regularity extraction,” in

Proc. ICCD, 2000.
[28] A. P. Rosiello, F. Ferrandi, D. Pandini, and D. Sciuto, “A hash-based approach for

functional regularity extraction during logic synthesis,” in Proc. ISVLSI, 2007.
[29] P. Ienne and A. Grießing, “Practical experiences with standard-cell based datapath

design tools. do we really need regular layouts?” in Proc. DAC, 1998.

[30] S. Ward, D. Ding, and D. Z. Pan, “PADE: A high-performance placer with automatic

datapath extraction and evaluation through high-dimensional data learning,” in

Proc. DAC, 2012.
[31] S. I. Ward, M.-C. Kim, N. Viswanathan, Z. Li, C. Alpert, E. E. Swartzlander Jr, and

D. Z. Pan, “Keep it straight: teaching placement how to better handle designs with

datapaths,” in Proc. ISPD, 2012.
[32] S. I. Ward, M.-C. Kim, N. Viswanathan, Z. Li, C. J. Alpert, E. E. Swartzlander, and

D. Z. Pan, “Structure-aware placement techniques for designs with datapaths,”

IEEE TCAD, 2013.
[33] “ISPD 2020 contest: Wafer-scale deep learning accelerator placement,” https://

www.cerebras.net/ispd-2020-contest/.

[34] B. Jiang, J. Chen, J. Liu, L. Liu, F. Wang, X. Zhang, and E. F. Young, “CU. POKer: Plac-

ing DNNs on wafer-scale Al accelerator with optimal kernel sizing,” in Proc. ICCAD,
2020.

[35] E. F. Young, C. C. Chu, and Z. C. Shen, “Twin binary sequences: a nonredundant

representation for general nonslicing floorplan,” IEEE TCAD, 2003.
[36] D. Ielmini and S. Ambrogio, “Emerging neuromorphic devices,” Nanotechnology,

2019.

[37] F. Wang, G. Luo, G. Sun, J. Zhang, P. Huang, and J. Kang, “Parallel stateful logic in

RRAM: Theoretical analysis and arithmetic design,” in Proc. ASAP, vol. 2160, 2019.
[38] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “PRIME: A novel

processing-in-memory architecture for neural network computation in ReRAM-

based main memory,” ACM SIGARCH Computer Architecture News, 2016.
[39] X. Sun, S. Yin, X. Peng, R. Liu, J.-s. Seo, and S. Yu, “XNOR-RRAM: A scalable and

parallel resistive synaptic architecture for binary neural networks,” in Proc. DATE,
2018.

[40] H. Yan, H. R. Cherian, E. C. Ahn, and L. Duan, “Celia: A device and architecture co-

design framework for STT-MRAM-based deep learning acceleration,” in Proc. SC,
2018.

[41] Y. Pan, P. Ouyang, Y. Zhao, W. Kang, S. Yin, Y. Zhang, W. Zhao, and S. Wei, “A

multilevel cell STT-MRAM-based computing in-memory accelerator for binary

convolutional neural network,” IEEE Transactions on Magnetics, 2018.
[42] B. Kim, S. H. Lee, H. Kim, D.-T. Nguyen, M.-S. Le, I. J. Chang, D. Kwon, J. H. Yoo,

J. W. Choi, and H.-J. Lee, “PCM: precision-controlled memory system for energy

efficient deep neural network training,” in Proc. DATE, 2020.
[43] P. Yao, H. Wu, B. Gao, J. Tang, Q. Zhang, W. Zhang, J. J. Yang, and H. Qian, “Fully

hardware-implemented memristor convolutional neural network,” Nature, 2020.
[44] C. Li, D. Belkin, Y. Li, P. Yan, M. Hu, N. Ge, H. Jiang, E. Montgomery, P. Lin, Z. Wang

et al., “Efficient and self-adaptive in-situ learning in multilayer memristor neural

networks,” Nature communications, 2018.
[45] J. Li, C. Ge, J. Du, C. Wang, G. Yang, and K. Jin, “Reproducible ultrathin ferroelectric

domain switching for high-performance neuromorphic computing,” Advanced
Materials, 2020.

[46] Y. Shen, N. C. Harris, S. Skirlo, M. Prabhu, T. Baehr-Jones, M. Hochberg, X. Sun,

S. Zhao, H. Larochelle, D. Englund et al., “Deep learning with coherent nanopho-

tonic circuits,” Nature Photonics, 2017.
[47] Y. Zuo, B. Li, Y. Zhao, Y. Jiang, Y.-C. Chen, P. Chen, G.-B. Jo, J. Liu, and S. Du,

“All-optical neural network with nonlinear activation functions,” Optica, 2019.
[48] J. Gu, Z. Zhao, C. Feng, M. Liu, R. T. Chen, and D. Z. Pan, “Towards area-efficient

optical neural networks: An FFT-based architecture,” in Proc. ASPDAC, 2020.
[49] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris: Scalable and efficient

neural network acceleration with 3d memory,” in Proc. ASPLOS, 2017.
[50] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architecture increases

density and performance,” in Proc. VLSIT, 2012.
[51] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim, D. S. Kim,

H. B. Park, J. W. Shin et al., “25.2 a 1.2 v 8gb 8-channel 128gb/s high-bandwidth
memory (HBM) stacked DRAM with effective microbump I/O test methods using

29nm process and TSV,” in Proc. ISSCC, 2014.
[52] K. Ueyoshi, K. Ando, K. Hirose, S. Takamaeda-Yamazaki, J. Kadomoto, T. Miyata,

M. Hamada, T. Kuroda, and M. Motomura, “QUEST: A 7.49 TOPS multi-purpose

log-quantized DNN inference engine stacked on 96MB 3D SRAM using inductive-

coupling technology in 40nm CMOS,” in Proc. ISSCC, 2018.
[53] K. Chang, D. Kadetotad, Y. Cao, J.-s. Seo, and S. K. Lim, “Monolithic 3D IC designs

for low-power deep neural networks targeting speech recognition,” in Proc. ISLPED,
2017.

[54] K. Chang, D. Kadetotad, Y. Cao, J.-S. Seo, and S. K. Lim, “Power, performance,

and area benefit of monolithic 3D ICs for on-chip deep neural networks targeting

speech recognition,” ACM JETC, 2018.
[55] W.-Y. Tsai, X. Li, M. Jerry, B. Xie, N. Shukla, H. Liu, N. Chandramoorthy, M. Cotter,

A. Raychowdhury, D. M. Chiarulli et al., “Enabling new computation paradigms

with HyperFET-an emerging device,” IEEE TMSCS, 2016.
[56] I. Palit, X. S. Hu, J. Nahas, and M. Niemier, “TFET-based cellular neural network

architectures,” in Proc. ISLPED, 2013.
[57] C. Liu, H. Chen, S. Wang, Q. Liu, Y.-G. Jiang, D. W. Zhang, M. Liu, and P. Zhou,

“Two-dimensional materials for next-generation computing technologies,” Nature
Nanotechnology, 2020.

https://www.cerebras.net/ispd-2020-contest/
https://www.cerebras.net/ispd-2020-contest/

