Network Flow-based Simultaneous Retiming and Slack Budgeting for Low Power Design

Bei Yu¹ Sheqin Dong¹ Yuchun Ma¹ Tao Lin¹
Yu Wang¹ Song Chen² Satoshi GOTO²

¹Department of Computer Science & Technology
Tsinghua University, Beijing, China

²Graduate School of IPS
Waseda University, Kitakyushu, Japan
Outline

1. Introduction
 - Previous Works
 - Problem Formulation

2. Methodology
 - MILP Formulation
 - Remove Redundant Constraint
 - Convex Cost Dual Flow Algorithm

3. Experimental Results
Timing constraint and Low Power become significant requirement.

- Retiming: relocate flip-flops (FFs)
- Slack Budgeting: relax the timing constraints of components

Simultaneous Retiming and Slack Budgeting
Previous Works

– Retiming:
 - [C.E. Leiserson et al. Algorithmica 1991]: first work
 - [N. Maheshwari et al. TCAD 1998]: flow based Min-area retiming
 - [H. Zhou, ASPDAC 2005]: incremental Min-period retiming
 - [J. Wang & H. Zhou DAC 2008]: incremental Min-period retiming

– Slack Budgeting:
 - [R. Nair et al. TCAD 1989]: ZSA, suboptimal heuristic
 - [C. Chen et al. TCAD 2002]: Maximum-Independent-Set, NP-complete
 - [S. Ghiasi et al. ICCAD 2004]: Flow based algorithm
Previous Works (Cont.)

- **Retiming + Slack Budgeting:**
 - [Y. Hu et al. DAC 2006]: dual-Vdd, MILP
 - [S. Liu et al. ASPDAC 2010]: heuristic; MIS based

- **In previous works:**
 - A few works consider simultaneous Retiming and Slack Budgeting
 - MILP method or heuristic method

- **In our works:**
 - Network-Based Algorithm
 - Speedup
Problem Formulation

Input:
- Directed graph $G = (V, E, d, w)$ as synchronous sequential circuit.
 - $i \in V$: combinational gate
 - $e_{ij} \in E$: signal passing from gate i to j
 - d_i: delay of gate i
 - w_{ij}: number of FF on edge e_{ij}
- period constraint T
- power-slack tradeoff for each slack level

Output: reallocation represented by r, so
- minimize power consumption
- under the period constraint
MILP Formulation

Condition for $\Phi(G) \leq T$

\[
\begin{align*}
 a_i &\geq d_i + s_i \quad \forall i \in V \\
 a_i &\leq T \quad \forall i \in V \\
 r_i - r_j &\leq w_{ij} \quad \forall (i, j) \in E \\
 a_j &\geq a_i + d_i + s_i \quad \text{if } r_i - r_j = w_{ij}
\end{align*}
\]

Suppose $R_i = r_i + a_i / T$

$\Rightarrow a_i = T \cdot R_i - T \cdot r_i.$

\[
\begin{align*}
 \min \quad & \sum_{i \in V} P(\bar{s}_i) \\
 \text{s.t.} \quad & \bar{R}_i - \bar{r}_i \geq \bar{s}_i \quad \forall i \in V \quad (IIa) \\
 & \bar{R}_i - \bar{r}_i \leq T \quad \forall i \in V \quad (IIb) \\
 & \bar{r}_j - \bar{r}_i \geq -T \cdot w_{ij} \quad \forall (i, j) \in E \quad (IIc) \\
 & 0 \leq \bar{R}_i, \bar{r}_i \leq \bar{N}_{ff} \quad \forall i \in V \quad (IId) \\
 & \bar{s}_i = \{\bar{s}_i^1, \ldots, \bar{s}_i^k\} \quad \forall i \in V \quad (IIe) \\
 & 0 \leq \bar{s}_i \leq T \quad \forall i \in V \quad (IIf) \\
 & \bar{R}_j - \bar{R}_i \geq t_{ij} \quad \forall (i, j) \in E \quad (IIg) \\
 & t_{ij} \geq \bar{s}_j - T \cdot w_{ij} \quad \forall (i, j) \in E \quad (IIh)
\end{align*}
\]
MILP Formulation (cont.)

- Solved by ILP Solver, but unacceptable runtime
- Need more effective method
 - Without two constraints, convex cost dual network algorithm [R. K. Ahuja et al. 2003]
 - Removes constraint (IIh), add penalty function $P(t_{ij})$:
 - Generate new problem (III)

\[
\begin{align*}
\min & \quad \sum_{i \in V} P(\bar{s}_i) \\
\text{s.t.} & \quad \bar{R}_i - \bar{r}_i \geq \bar{s}_i & \forall i \in V & (\text{IIa}) \\
& \quad \bar{R}_i - \bar{r}_i \leq T & \forall i \in V & (\text{IIb}) \\
& \quad \bar{r}_j - \bar{r}_i \geq -T \cdot w_{ij} & \forall (i, j) \in E & (\text{IIc}) \\
& \quad 0 \leq \bar{R}_i, \bar{r}_i \leq \bar{N}_{ff} & \forall i \in V & (\text{IIId}) \\
& \quad \bar{s}_i = \{\bar{s}_i^1, \ldots, \bar{s}_i^k\} & \forall i \in V & (\text{IIe}) \\
& \quad 0 \leq \bar{s}_i \leq T & \forall i \in V & (\text{IIf}) \\
& \quad \bar{R}_j - \bar{R}_i \geq t_{ij} & \forall (i, j) \in E & (\text{IIg}) \\
& \quad t_{ij} \geq \bar{s}_j - T \cdot w_{ij} & \forall (i, j) \in E & (\text{IIh})
\end{align*}
\]
MILP Formulation (cont.)

- Solved by ILP Solver, but unacceptable runtime
- Need more effective method
- Without two constraints, convex cost dual network algorithm [R. K. Ahuja et al. 2003]
- Removes constraint (IIh), add penalty function $P(t_{ij})$:
- Generate new problem (III)

\[
\begin{align*}
\text{min} & \quad \sum_{i \in V} P(\bar{s}_i) \\
\text{s.t.} & \quad \bar{R}_i - \bar{r}_i \geq \bar{s}_i \quad \forall i \in V \tag{IIa} \\
& \quad \bar{R}_i - \bar{r}_i \leq T \quad \forall i \in V \tag{IIb} \\
& \quad \bar{r}_j - \bar{r}_i \geq -T \cdot w_{ij} \quad \forall (i, j) \in E \tag{IIc} \\
& \quad 0 \leq \bar{R}_i, \bar{r}_i \leq \bar{N}_{ff} \quad \forall i \in V \tag{IId} \\
& \quad \bar{s}_i = \{\bar{s}_i^1, \ldots, \bar{s}_i^k\} \quad \forall i \in V \tag{IIe} \\
& \quad 0 \leq \bar{s}_i \leq T \quad \forall i \in V \tag{IIf} \\
& \quad \boxed{R_j - R_i \geq t_{ij}} \quad \forall (i, j) \in E \tag{IIg} \\
& \quad t_{ij} \geq \bar{s}_j - T \cdot w_{ij} \quad \forall (i, j) \in E \tag{IIh}
\end{align*}
\]
MILP Formulation (cont.)

\[
\begin{align*}
\min \quad & \sum_{i \in V} P(\bar{s}_i) + \sum_{(i,j) \in E} P(t_{ij}) \quad (III) \\
\text{s.t.} \quad & (IIa) - (IIg) \\
& t_{ij} \geq -T \cdot w_{ij}, \quad \forall (i, j) \in E \\
\end{align*}
\]

Given solutions of (III), heuristic generate solution of (II):

\[
\bar{s}_j = \min(t_{ij} + T \cdot w_{ij}, \bar{s}_j), \quad \forall i \in FL(j)
\]
Remove Redundant Constraint

- Denote \(s_i^* \) where \(P(\bar{s}_i) \) is minimum
- Define \(Q(\bar{s}_i) \):
 \[
 Q(\bar{s}_i) = \begin{cases}
 P(\bar{s}_i^*) & \text{if } \bar{s}_i \leq s_i^* \\
 P(\bar{s}_i) & \text{if } \bar{s}_i > s_i^*
 \end{cases}
 \]
- Consider new problem (III'), which replaces (IIa) and (IIb) by \(\bar{R}_i - \bar{r}_i = \bar{s}_i \)

\[
\begin{align*}
\min & \sum_{i \in V} Q(\bar{s}_i) + \sum_{(i,j) \in E} P(t_{ij}) \\
\text{s.t.} & (IIc) - (Ilg) \\
& \bar{R}_i - \bar{r}_i = \bar{s}_i \quad \forall i \in V \\
& t_{ij} \geq -T \cdot w_{ij} \quad \forall (i,j) \in E
\end{align*}
\]

\[
\begin{align*}
\min & \sum_{i \in V} P(\bar{s}_i) + \sum_{(i,j) \in E} P(t_{ij}) \\
\text{s.t.} & (IIa) - (Ilg) \\
& t_{ij} \geq -T \cdot w_{ij} \quad \forall (i,j) \in E
\end{align*}
\]

Theorem 1
For every optimal solution \((\bar{R}, \bar{r}, \bar{s}) \) of problem (III), there is an optimal solution \((\bar{R}, \bar{r}, \hat{s}) \) of problem (III'), and the converse also holds.

Theorem 2
The constraint (IIb) in problem (III) can be removed.
Remove Redundant Constraint

- Denote s_i^* where $P(\bar{s}_i)$ is minimum
- Define $Q(\bar{s}_i)$:

$$Q(\bar{s}_i) = \begin{cases}
P(\bar{s}_i^*) & \text{if } \bar{s}_i \leq s_i^* \\
P(\bar{s}_i) & \text{if } \bar{s}_i > s_i^*
\end{cases}$$

- Consider new problem (III'), which replaces (IIa) and (IIb) by $\bar{R}_i - \bar{r}_i = \bar{s}_i$

$$\min \sum_{i \in V} Q(\bar{s}_i) + \sum_{(i,j) \in E} P(t_{ij}) \quad (III')$$

\text{s.t.} (IIc) - (Ilg)

$$\bar{R}_i - \bar{r}_i = \bar{s}_i \quad \forall i \in V$$

$$t_{ij} \geq -T \cdot w_{ij} \quad \forall (i, j) \in E$$

\text{Theorem 1}

For every optimal solution $(\bar{R}, \bar{r}, \bar{s})$ of problem (III), there is an optimal solution $(\bar{R}, \bar{r}, \hat{s})$ of problem (III'), and the converse also holds.

\text{Theorem 2}

The constraint (IIb) in problem (III) can be removed.
Solve problem (III) by Convex Cost Dual Flowa:
Step 1: Transformation to Primal Network Flow Problem
- Split vertex i into two vertex \bar{r}_i and \bar{R}_i
- $\left(\bar{r}_i, \bar{R}_i \right) \in \bar{E}_1$, $\left(\bar{R}_i, \bar{R}_j \right) \in \bar{E}_2$, $\left(\bar{r}_i, \bar{r}_j \right) \in \bar{E}_3$
- Further simplify problem as follow:

$$\min \sum_{(i,j) \in \bar{E}} P(s_{ij}) \quad (IV)$$

subject to:

- $\mu_j - \mu_i \geq s_{ij} \quad \forall (i,j) \in \bar{E} \quad (IVa)$
- $0 \leq \mu_i \leq \bar{N}_{ff} \quad \forall i \in \bar{V} \quad (IVb)$
- $l_{ij} \leq s_{ij} \leq u_{ij} \quad \forall (i,j) \in \bar{E} \quad (IVc)$

MILP Formulation
Remove Redundant Constraint
Convex Cost Dual Flow Algorithm

Primal Network Flow Problem (cont.)

Step 1: Transformation to Primal Network Flow Problem (cont.)

\[
\min \sum_{(i,j) \in \bar{E}} P(s_{ij}) \tag{IV}
\]

s.t. \(\mu_j - \mu_i \geq s_{ij} \) \(\forall (i, j) \in \bar{E} \) \(\tag{IVa} \)

0 \(\leq \mu_i \leq \bar{N}_f \) \(\forall i \in \bar{V} \) \(\tag{IVb} \)

\(l_{ij} \leq s_{ij} \leq u_{ij} \) \(\forall (i, j) \in \bar{E} \) \(\tag{IVc} \)

Remove constraints by \(\bar{P}(s_{ij}) \) and \(B(\mu_i) \)

\[
\bar{P}(s_{ij}) = \begin{cases}
P(u_{ij}) + M(s_{ij} - u_{ij}) & \text{if } s_{ij} > u_{ij} \\
\bar{s}_{ij} > s_{ij} > l_{ij} & \text{if } 0 \leq \bar{s}_{ij} \leq T \\
P(s_{ij}) & \text{if } \bar{s}_{ij} < l_{ij}
\end{cases}
\]

\[
B(\mu_i) = \begin{cases}
M \cdot (\mu_i - \bar{N}_f) & \text{if } \mu_i > \bar{N}_f \\
0 & \text{if } 0 \leq \bar{\mu}_i \leq \bar{N}_f \\
-M \cdot \mu_i & \text{if } \mu_i < 0
\end{cases}
\]

Get Primal Network Flow Problem:

\[
\min \sum_{(i,j) \in \bar{E}} \bar{P}(s_{ij}) + \sum_{i \in \bar{V}} B(\mu_i) \tag{V}
\]

s.t. \(\mu_j - \mu_i \geq s_{ij} \) \(\forall (i, j) \in \bar{E} \)
Primal Network Flow Problem (cont.)

Step 1: Transformation to Primal Network Flow Problem (cont.)

\[
\begin{aligned}
\min & \quad \sum_{(i,j) \in \bar{E}} P(s_{ij}) \\
\text{s.t.} & \quad \mu_j - \mu_i \geq s_{ij} \quad \forall (i, j) \in \bar{E} \\
& \quad 0 \leq \mu_i \leq \bar{N}_{ff} \quad \forall i \in \bar{V} \\
& \quad l_{ij} \leq s_{ij} \leq u_{ij} \quad \forall (i, j) \in \bar{E}
\end{aligned}
\]

Remove constraints by \(P(s_{ij})\) and \(B(\mu_i)\)

\[
\bar{P}(s_{ij}) = \begin{cases}
P(u_{ij}) + M(s_{ij} - u_{ij}) & \text{if } \bar{s}_{ij} > u_{ij} \\
P(s_{ij}) & \text{if } 0 \leq \bar{s}_{ij} \leq T \\
P(l_{ij}) - M(s_{ij} - l_{ij}) & \text{if } \bar{s}_{ij} < l_{ij}
\end{cases}
\]

\[
B(\mu_i) = \begin{cases}
M \cdot (\mu_i - \bar{N}_{ff}) & \text{if } \mu_i > \bar{N}_{ff} \\
0 & \text{if } 0 \leq \bar{\mu}_i \leq \bar{N}_{ff} \\
-M \cdot \mu_i & \text{if } \mu_i < 0
\end{cases}
\]

Get Primal Network Flow Problem:

\[
\begin{aligned}
\min & \quad \sum_{(i,j) \in \bar{E}} \bar{P}(s_{ij}) + \sum_{i \in \bar{V}} B(\mu_i) \\
\text{s.t.} & \quad \mu_j - \mu_i \geq s_{ij} \quad \forall (i, j) \in \bar{E}
\end{aligned}
\]
Step 2: Lagrangian Relaxation

- Lagrangian relaxation to eliminate constraints
- Lagrangian sub-problem:

\[
L(\vec{x}) = \sum_{e(i,j) \in \bar{E}} \bar{P}(s_{ij}) + \sum_{i \in \bar{V}} B_i(\mu_i) - \sum_{e(i,j) \in \bar{E}} (\mu_j - \mu_i - s_{ij})x_{ij}
\]

- Introduce start node \(v_0 \)
- Final Lagrangian subproblem:

\[
L(\vec{x}) = \min \sum_{e(i,j) \in E} [P_{ij}(s_{ij}) + x_{ij}s_{ij}] \quad (1)
\]

s.t.
\[
\sum_{j: e(i,j) \in E} x_{ij} - \sum_{j: e(j,i) \in E} x_{ji} = 0 \quad \forall i \in V
\]

\[
x_{ij} \geq 0 \quad \forall (i,j) \in E_1 \cup E_2 \cup E_3
\]
Convex Cost-scaling Approach

Step 3: Convex Cost-scaling Approach

- Define function \(H_{ij}(x_{ij}) = \min_{s_{ij}} \{ P_{ij}(s_{ij}) + x_{ij}s_{ij} \} \):
 - \(H_{ij}(x_{ij}) \) is concave, so \(C_{ij}(x_{ij}) = -H_{ij}(x_{ij}) \) is convex
 - Final problem is a min-cost flow problem:

 \[
 L(\tilde{x}) = \min_{e(i,j) \in E} \sum_{e(i,j) \in E} C_{ij}(x_{ij}) \\
 \text{s.t.} \sum_{j : e(i,j) \in E} x_{ij} - \sum_{j : e(j,i) \in E} x_{ji} = 0 \quad \forall i \in V \\
 0 \leq x_{ij} \leq M \quad \forall (i,j) \in E_1 \cup E_2 \cup E_3 \\
 -M \leq x_{ij} \leq M \quad \forall (i,j) \in E_4
 \]

- For optimal flow \(x^* \), construct residual network \(G(x^*) \)
- In \(G(x^*) \), solve shortest path distance \(d(i) \)
- Apply \(\mu(i) = d(i) \) and \(s_{ij} = \mu(i) - \mu(j) \)
- Final solve the problem!!
Experiments Setup

- Implemented in C++
- 3.0GHz CPU and 6GB Memory
- 19 cases from the ISCAS89

<table>
<thead>
<tr>
<th>Case Name</th>
<th>Gate #</th>
<th>Edges #</th>
<th>Max Output</th>
<th>Max Inputs</th>
<th>Tmin</th>
</tr>
</thead>
<tbody>
<tr>
<td>s27.test</td>
<td>11</td>
<td>19</td>
<td>4</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>s208.1.test</td>
<td>105</td>
<td>182</td>
<td>19</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>s298.test</td>
<td>120</td>
<td>250</td>
<td>13</td>
<td>6</td>
<td>24</td>
</tr>
<tr>
<td>s382.test</td>
<td>159</td>
<td>312</td>
<td>21</td>
<td>6</td>
<td>44</td>
</tr>
<tr>
<td>s386.test</td>
<td>160</td>
<td>354</td>
<td>36</td>
<td>7</td>
<td>64</td>
</tr>
<tr>
<td>s344.test</td>
<td>161</td>
<td>280</td>
<td>12</td>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>s349.test</td>
<td>162</td>
<td>284</td>
<td>12</td>
<td>11</td>
<td>46</td>
</tr>
<tr>
<td>s444.test</td>
<td>182</td>
<td>358</td>
<td>22</td>
<td>6</td>
<td>46</td>
</tr>
<tr>
<td>s526.test</td>
<td>194</td>
<td>451</td>
<td>13</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>s526n.test</td>
<td>195</td>
<td>451</td>
<td>13</td>
<td>6</td>
<td>42</td>
</tr>
<tr>
<td>s510.test</td>
<td>212</td>
<td>431</td>
<td>28</td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td>s420.1.test</td>
<td>219</td>
<td>384</td>
<td>31</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td>s832.test</td>
<td>288</td>
<td>788</td>
<td>107</td>
<td>19</td>
<td>98</td>
</tr>
<tr>
<td>s820.test</td>
<td>290</td>
<td>776</td>
<td>106</td>
<td>19</td>
<td>92</td>
</tr>
<tr>
<td>s641.test</td>
<td>380</td>
<td>563</td>
<td>35</td>
<td>24</td>
<td>238</td>
</tr>
<tr>
<td>s713.test</td>
<td>394</td>
<td>614</td>
<td>35</td>
<td>23</td>
<td>262</td>
</tr>
<tr>
<td>s838.1.test</td>
<td>447</td>
<td>788</td>
<td>55</td>
<td>4</td>
<td>80</td>
</tr>
<tr>
<td>s1238.test</td>
<td>509</td>
<td>1055</td>
<td>192</td>
<td>14</td>
<td>110</td>
</tr>
<tr>
<td>s1488.test</td>
<td>654</td>
<td>1406</td>
<td>56</td>
<td>19</td>
<td>166</td>
</tr>
</tbody>
</table>
Experimental Results

Results for Power Consumption and Total Slacks

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>T</th>
<th>Power Consumption</th>
<th>Total Slacks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Optimal ILP</td>
<td>[18]</td>
</tr>
<tr>
<td>s27.test</td>
<td>20</td>
<td>800</td>
<td>824</td>
</tr>
<tr>
<td>s208.1.test</td>
<td>28</td>
<td>3542</td>
<td>9118</td>
</tr>
<tr>
<td>s298.test</td>
<td>24</td>
<td>6498</td>
<td>8888</td>
</tr>
<tr>
<td>s382.test</td>
<td>44</td>
<td>6456</td>
<td>9038</td>
</tr>
<tr>
<td>s386.test</td>
<td>64</td>
<td>8836</td>
<td>12870</td>
</tr>
<tr>
<td>s344.test</td>
<td>46</td>
<td>9876</td>
<td>11848</td>
</tr>
<tr>
<td>s349.test</td>
<td>46</td>
<td>9938</td>
<td>12472</td>
</tr>
<tr>
<td>s444.test</td>
<td>46</td>
<td>8938</td>
<td>14032</td>
</tr>
<tr>
<td>s526.test</td>
<td>42</td>
<td>7602</td>
<td>14106</td>
</tr>
<tr>
<td>s526n.test</td>
<td>42</td>
<td>7752</td>
<td>11734</td>
</tr>
<tr>
<td>s510.test</td>
<td>42</td>
<td>13976</td>
<td>17492</td>
</tr>
<tr>
<td>s420.1.test</td>
<td>50</td>
<td>4574</td>
<td>17920</td>
</tr>
<tr>
<td>s832.test</td>
<td>98</td>
<td>13652</td>
<td>14518</td>
</tr>
<tr>
<td>s820.test</td>
<td>92</td>
<td>13552</td>
<td>17694</td>
</tr>
<tr>
<td>s641.test</td>
<td>238</td>
<td>13334</td>
<td>20408</td>
</tr>
<tr>
<td>s713.test</td>
<td>262</td>
<td>13018</td>
<td>21228</td>
</tr>
<tr>
<td>s838.1.test</td>
<td>80</td>
<td>6004</td>
<td>18898</td>
</tr>
<tr>
<td>s1238.test</td>
<td>110</td>
<td>6096</td>
<td>10444</td>
</tr>
<tr>
<td>s1488.test</td>
<td>166</td>
<td>21292</td>
<td>23799</td>
</tr>
</tbody>
</table>

| Avg | 9249.3 | 14070 | 11947.9 | 5457.7 | 3744.3 | 4573.8 |
| Diff | 1 | +52% | +29% | 1 | -31% | -16% |

1 S.Liu et al., ”Simultaneous slack budgeting and retiming for synchronous circuits optimization”, ASPDAC 2010
Experimental Results

Results for Runtime:

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>T</th>
<th>Runtime(s)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Optimal ILP [18]</td>
<td>ours</td>
<td></td>
</tr>
<tr>
<td>s27.test</td>
<td>20</td>
<td>0.02</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>s208.1.test</td>
<td>28</td>
<td>0.39</td>
<td>0.44</td>
<td>0.06</td>
</tr>
<tr>
<td>s298.test</td>
<td>24</td>
<td>0.78</td>
<td>0.69</td>
<td>0.07</td>
</tr>
<tr>
<td>s382.test</td>
<td>44</td>
<td>>1000</td>
<td>10.56</td>
<td>0.12</td>
</tr>
<tr>
<td>s386.test</td>
<td>64</td>
<td>4.58</td>
<td>1.03</td>
<td>0.1</td>
</tr>
<tr>
<td>s344.test</td>
<td>46</td>
<td>0.82</td>
<td>2.53</td>
<td>0.09</td>
</tr>
<tr>
<td>s349.test</td>
<td>46</td>
<td>0.79</td>
<td>4.49</td>
<td>0.11</td>
</tr>
<tr>
<td>s444.test</td>
<td>46</td>
<td>>1000</td>
<td>12.04</td>
<td>0.12</td>
</tr>
<tr>
<td>s526.test</td>
<td>42</td>
<td>42.57</td>
<td>1.67</td>
<td>0.17</td>
</tr>
<tr>
<td>s526n.test</td>
<td>42</td>
<td>30.32</td>
<td>4.72</td>
<td>0.17</td>
</tr>
<tr>
<td>s510.test</td>
<td>42</td>
<td>>1000</td>
<td>1.62</td>
<td>0.17</td>
</tr>
<tr>
<td>s420.1.test</td>
<td>50</td>
<td>1.29</td>
<td>16.91</td>
<td>0.14</td>
</tr>
<tr>
<td>s832.test</td>
<td>98</td>
<td>71.96</td>
<td>151.26</td>
<td>0.24</td>
</tr>
<tr>
<td>s820.test</td>
<td>92</td>
<td>68.98</td>
<td>13.18</td>
<td>0.25</td>
</tr>
<tr>
<td>s641.test</td>
<td>238</td>
<td>2.24</td>
<td>92.97</td>
<td>0.26</td>
</tr>
<tr>
<td>s713.test</td>
<td>262</td>
<td>2.27</td>
<td>121.1</td>
<td>0.27</td>
</tr>
<tr>
<td>s838.1.test</td>
<td>80</td>
<td>1.48</td>
<td>256.9</td>
<td>0.4</td>
</tr>
<tr>
<td>s1238.test</td>
<td>110</td>
<td>0.23</td>
<td>448.6</td>
<td>0.34</td>
</tr>
<tr>
<td>s1488.test</td>
<td>166</td>
<td>>1000</td>
<td>670.7</td>
<td>0.53</td>
</tr>
<tr>
<td>Avg</td>
<td></td>
<td>-</td>
<td>95.3</td>
<td>0.19</td>
</tr>
<tr>
<td>Diff</td>
<td></td>
<td>-</td>
<td>1</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Thank You!