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An Introduction to Trajectory Tracking Control for
Autonomous Underwater Vehicle

Heng Zhang, Weiwei Xu, Jian Zhang, Hongran Li, Yunling Li,
Jiangsu Ocean University

1 Introduction

Autonomous underwater vehicle (AUV), as a cable-free underwater vehicle, is an important tool for the exploration
and development of marine resources. It applies artificial intelligence, automatic control, pattern recognition, infor-
mation fusion and system integration and other technologies to traditional carriers [1]. It does not have physical
connection with the mother ship. It can complete the scheduled tasks with its own power and machine intelligence
under the consideration of unmanned circumstance.

AUV is widely applied in the field of military, including anti-submarine warfare, mine warfare, intelligence
reconnaissance, patrol surveillance, logistics support, topographic mapping and underwater construction [2, 3, 4].
Therefore, all countries are committed to the research of advanced AUV system to enhance national defense capabil-
ity. In America, the Navy Space and Naval Warfare Systems Center, the Navy Research Institute, the Massachusetts
Institute of Technology Marine and many other research institutions have developed a large number of AUVs which
are applied to short term and long term mine reconnaissance system. In 1990, the Norwegian Defense Research Insti-
tute made a long-term development plan for the AUV, among which the HUGlN series AUVs have participated in the
mine-hunting demonstration of the Royal Norwegian Navy for many times. Meanwhile, Britain, France, Germany,
Russia and other countries have also carried out a lot of research work on the AUV in military [5].

In the civil field, AUV is mainly used for marine environment investigation, exploration of seabed mineral and
biological resources, maritime rescue, marine archaeology and construction and maintenance of submarine optical
cable project [6]. With the support of China Ocean Mineral Resources Research Association, China and Russia
jointly developed the CR-01 and CR-02 AUV, which can complete acoustic, optical and hydrological surveying
tasks in the polymetallic working environment of the Submarine flat terrain. In 2013, the Tesla offshore has used the
“bluefin-21” AUV to carry out the offshore pipeline maintenance services and the mapping of seabed geographical
environment. In 2014, the “bluefin-21” AUV played an important role in the search for the missing Malaysia airlines
flight 370.

In 2015, the “Dorado” AUV was launched in the Juan DE Fuca Ridge by the American Monterey Marine
Research Institute, which has a minimum sailing height of 50m above the seabed. The AUV is equipped with
multi-beam sonar that can accurately map the seabed topography around the crater. In 2016, the “VideoRav” AUV
developed by Lnuktun of Canada successfully completed the underwater biological monitoring of the inlet of the
marine cooling system in the Daya Bay nuclear power plant. In the case of strong flow and complex underwater
conditions, the AUV successfully obtained the pictures of the inlet of the cooling system by relying on its excellent
underwater resistance performance and strong underwater power.

To ensure the successful completion of underwater environmental survey, underwater search, underwater round-
ing up, underwater transmission and other control tasks, the tracking control problem is needed to solved firstly.
The tracking control problem is an important aspect of underwater vehicle technology, it mainly includes the path
following and the trajectory tracking. The main difference of which is that a tracking trajectory is related to time or
not. The former has nothing to do with time and the latter is related to time. The path following can be viewed as a
special case of the trajectory tracking. Due to the difficulty of accurately obtaining the self-dynamic model and the
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characteristics of strong coupling and nonlinearity, conventional model-based control strategies of AUV are difficult
to meet the control requirements. In addition, compared with the condition of ground mobile vehicles, the complex
underwater environment and time-varying ocean currents also make the research of underwater trajectory tracking
and control more challenging.

2 The trajectory tracking technology of AUV

In view of the complex and changeable marine environment, the main research methods of trajectory tracking and
control of AUV at present include PID control, adaptive control, sliding mode control, neural network control,
backstepping control, etc.

2.1 PID control

PID control is a control strategy for single input single output system which was established based on the linear
system theory. Its controller design is relatively simple, while the system of AUV is belong to multiple input and
multiple output nonlinear system, and the complex environment time-varying interference is also a problem when
the AUV works at the bottom of the ocean. Therefore, single PID control mode in the motion control of the AUV
has been unable to obtain ideal control effect [7, 8]. Usually the PID algorithm was combined with other intelligent
algorithms, such as PID neural network controller proposed by Huang et. al. [9]. A beneficial motion control which
is based on two degree-of-freedom PID and extreme learning machine for AUV was proposed by Liu et. al. [10],
and a fractional order PID strategy that is based on seeker optimization algorithm for AUV was proposed by Wan et.
al. [11].

2.2 Adaptive control

Adaptive control can improve the robustness of controlled system. Compared with general controller, the parameters
of adaptive controller are changing, and it has a mechanism which can automatically on-line correct these parameters
according to the signal of system. When the parameters change, the controller can adjust the control rules of system
by learning and identification on time [12]. At present, the application of adaptive control in nonlinear objects is
relatively limited. In most cases, more applications have been obtained in the control of AUV by combining adaptive
control with other control methods. Wang et. al. presented an Self-adaptive path following control which was based
on virtual guidance [13]. Li et. al. put forward to a modified adaptive hybrid fuzzy control algorithm with Mamdani
inference [14]. Hu et. al. proposed a command filtering based adaptive fuzzy backstepping method [15]. Jiang et. al.
designed an adaptive control strategy which can solve the horizontal trajectory tracking problem in consideration of
parameters perturbation and current disturbances [16]. However, its structure is more complicated, and it is difficult
to obtain a unified standardization method for designing controller.

2.3 Sliding mode control

The basis of the sliding mode control is to design a proper switching function and control law, which can make the
system state trajectory to reach the designed switching manifold under the limited time and slide to balance with
the appropriate speed [17]. After entering the ideal sliding mode, the system have a stronger robustness to external
disturbance. Due to its robust control performance, sliding mode control is insensitive to the changeable parameters
and can suppress disturbances. It does not require accurate modeling of dynamic model, so it is often used for
dynamic tracking control of AUV. Jiang et. al. utilized integral sliding mode control to deal with the problem of
horizontal trajectory tracking under the condition of parameter perturbation [18]. Zhang et. al. presented a terminal
sliding mode variable structure control system which was used to solve the nonlinear control problem of AUV with
changeable parameters [19]. Konar et. al. designed a fractional order sliding mode controller for depth control of
AUV [20]. However, the critical problem of sliding mode control is its high frequency switching control behavior
(buffeting problem). Buffeting problem makes heat loss highly in the electrical power circuit and motor, which
affects the accuracy of underwater vehicles.
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2.4 Neural network control

Neural network control is a control strategy which is produced by simulating the function and structure of the nerves
in human brain. It can fully approach any complex nonlinear system and use neural network to fit the nonlinear
performance of AUV. Neural network control has the characteristics of nonlinear, self-learning and other intelligent
characteristics, which can adapt to and learn the dynamic characteristics of the system through adjusting the weight.
This feature is very suitable for the motion control of AUV. For instance, an adaptive neural network control of
AUV which controlled input nonlinearities through using reinforcement learning was investigated by Cui et. al. [21].
Miao et. al. proposed that the error could be calculated by applying radial basic function neural networks. They
constructed an adaptive neural network controller by minimal learning parameter and dynamic surface control. This
proposed method could track the stable trajectories [22]. However, neural networks control is not only difficult to
obtain training samples, but also lags in the learning process of samples, which make the real-time performance of
the control system poor.

2.5 Backstepping control

Backstepping controller is widely used in the tracking control of mobile vehicle. Now, it has been applied to the
control system of AUV. The backstepping algorithm can stabilize the closed-loop control system by designing the
speed controller under the condition of large initial error. Its design is relatively simple and can be rigorously proved
by lyapunov stability theory. For instance, Zhang et. al. proposed a backstepping control approach to realize the 3D
trajectory tracking under the condition of external interference [23]. Gharesi et. al. designed a backstepping controller
to track the trajectory in the desired depth [24]. Cervantes et. al. put forward to a controller which output is based
on backstepping control to tracking the trajectories [25]. Xu et. al. proposed a intelligent system of underwater
salvage where the controller of AUV was based on backstepping control [26]. However, due to the design of the
backstepping control is directly related to the state error, it will be generated larger changeable speed under the
larger initial state error. In another word, the AUV usually face the phenomenon of jumping speed when the motion
state have a jumping change. Considering the dynamic factors, the required acceleration and force in jumping points
may be out of control constraints when the backstepping control law is applied.

3 Future research

The study of AUV has far-reaching implications for enhancing the capability of detecting marine resources [27,
28]. In the future, after the technology of trajectory tracking for single AUV is mature, it should be considered to
improve the tracking performance through researching the formation control of multi-AUVs. We will obtain the
whole tracking performance by dynamic researching the adaptive formation control of multi-AUVs. However, the
research for multi-AUVs has the following difficulties, which is also the direction of future research.

• The limitations of underwater communication and the problem of asynchronous transmission between be-
tween the AUVs in formation.

• The difficulties on the distributed control of multi-AUVs.

• The study on the adaptive control of formation network for multi-AUVs.

• The research on path planning of AUVs under optimal control.

In the process of navigation, the off-line global route can be used as a reference trajectory. The horizontal and
vertical tracking can be applied respectively to establish an objective function for online tracking. The optimal
control of the tracking can be realized through constructing the Hamilton function to calculate the tracking error
in which the linearized lateral motion equation of AUV is acted as constraint. At the same time, we can solve the
problem by employing the differential equations of classical variational extremum which can combine the methods
of gradient iteration and one-dimensional search.
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Challenges of 3D NAND Flash Storage for Cyber-Physical Systems

Shuo-Han Chen, Academia Sinica

1 Introduction

NAND flash memory is widely regarded as a great storage medium for cyber-physical systems with its high read/write
speed, small size, and shock resistance. In the past few years, 3D NAND flash technology has gathered the atten-
tion from both industry and academia as a high-density memory technology to increase storage density and cost-
effectiveness of flash storage devices. The developing trend of 3D NAND flash well suit the high storage capacity
and low-cost needs of today’s cyber-physical systems. Comparing to the conventional planar (i.e., 2D) NAND flash,
3D NAND flash hugely improves the storage density of NAND flash devices by stacking memory cell vertically. The
vertical structure allows 3D NAND flash to have high capacity without facing the downscaling issues, such as en-
durance, insufficient programming/erasing efficiency, and interference coupling issue, of 2D NAND flash. However,
owing to the special vertical structure, 3D NAND flash reveals new challenges for the management flash devices.
These challenges include (1) layer-to-layer process variation and (2) transient Vth shift phenomenon.

2 Structure of 3D NAND Flash

As stated in previous work [1], the minimal thickness of the tunnel oxide in 2D NAND flash should be at least
6 nm for preventing serious charge leakage and retaining enough data retention time. To overcome this issue, the
charge-trap flash memories, such as SONOS and TANOS, has been proposed [2, 3, 4, 5] and regarded as the next-
generation candidate for flash memory storage devices. Based on charge-trap material, building the charge trap
flash memories in a 3D structure has also gathered increasing attention due to its high density and reasonable cost.
Nevertheless, instead of vertically stacking planar flash memory cells, 3D charge trap flash memories are built with
the “vertical channel.” These vertical-channel 3D NAND flash memories include BiCS [6], TCAT [7], and SGVC
[8]. The manufacturing process and the structure of 3D NAND flash can be summarized as Figure 1.
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Figure 1: The manufacturing process and structure of 3D NAND flash [12].

As shown in Figure 2(a), the manufacturing process of vertical-channel 3D NAND flash is known as “punch-
and-plug” method, in which liquid chemicals are utilized to erode through multiple gate stack layers. Owing to the
physical characteristic of liquid chemicals, the created cylindrical channel will have a bigger opening at the top
layer and a smaller opening at the bottom layer. In the end, this physical phenomenon results in asymmetric feature
process size across the gate stack layers. Then, instead of filling floating gate materials, each cylindrical channel is
filled with charge trap materials, as shown in Figure 2(b), to store bits at each gate stack layer. Finally, the structure of
3D NAND flash can be visualized as shown in Figure 2(c), the vertical channel 3D charge trap flash involves several
vertical cylindrical channels and gate stack layers. Notably, the vertical channels of 3D NAND flash are regarded as
blocks, while the channel sections located at each gate stack layer are mapped as pages [10, 11]. Meanwhile, even
though both the planar NAND flash and 3D charge trap flash use Fowler-Nordheim Tunneling (FN) for conducting
the program and erase operations, the voltage for programming or erasing 3D charge trap flash memory is lower than
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that of planar NAND flash, thus resulting in less energy consumption and inducing less wear to the flash memory
cells [14].

Notably, although 3D NAND flash memory has been developed, its distinct characteristics impose new chal-
lenges for the internal management, also known as flash translation layer (FTL) (e.g., FAST [9]), on flash devices.
This is because flash memory has few inherent constraints, including the asymmetric access/erase units, erase-
before-write property, and the limited number of program/erase (P/E) cycles. Notably, the block, which contains a
fixed number of pages, is the basic unit of erase operations, and pages are the unit of access operations, including
read and write operations. In addition, due to these inherent constraints, FTL needs to perform garbage collection
and wear leveling mechanisms for reclaiming invalid pages and ensuring flash pages will not wear out prematurely.
In the end, on top of these constraints, the management challenges of the next-generation 3D NAND flash have
emerged with 3D NAND flash’s distinct characteristics.

3 Challenges of 3D NAND Flash Storage

In this section, the challenges of the emerging 3D NAND Flash will be introduced in two folds, including (1) layer-
to-layer process variation and (2) transient Vth shift phenomenon. First, due to the layer-to-layer process variation,
the process size of each pages in a 3D NAND flash block are different. Then, the asymmetric feature process size
at each gate stack layer results in the different strengths of the electric field along the vertical channels. As shown
in Figure 3, the large the opening is, the smaller the electric field will be. In addition, prior studies [15, 16] also
show that the threshold voltage shift speed will increase and the program latency will lengthen as the electric field
increases. Therefore, accessing bits stored in layers with higher electric field strength will have shorter latency than
accessing those bits stored at layers with smaller electric field strength. Furthermore, as the number of gate stacked
layers become higher, the access speed difference of the top and bottom layers will be come larger. According to
Figure 2, the electric field strength of 3D charge trap memory could go upto 2× to 5× difference with 0.25 to 0.75
nm difference in hole diameter. As the vertical channel sections located at each gate stack layer are mapped as pages
and the vertical channels are managed as blocks, pages of the same block will have inconsistent access speed due to
the unique cylindrical shape of vertical channels. In practice, the irregular page access speed feature of 3D charge-
trap flash can be exploited to enhance the performance of flash based storage [12]. On the other hand, the process
variation also affect the reliability of each pages; thus, pages of a single block also have different bit error rates.
Therefore, the FTL management should be carefully considered to deal with the layer-to-layer process variation in
terms of access performance and reliability.
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Figure 2: The electric field variation of 3D NAND flash.

Another distinct feature of 3D charge-trap NAND flash is the transient Vth shift phenomenon of performing erase
operations on flash cells. As illustrated in Figure 3, the transient Vth shift phenomenon refers to the condition that the
voltage of memory cells do not settle to a final value immediately after the flash cells is erased. Note that, in Figure 3,
the gate voltage, Vgate , is initially connected to the ground before the erase voltage, Verase , is applied to erase the
cell content. Even though the actual causes of the transient Vth shift phenomenon is still under investigation by
researchers, the negative impaces of this transient Vth shift phenomenon can already been observed during conducting
the erase operation on 3D NAND flash devices. This is beasue the final voltage verification of an erase operation are
delayed until the voltage of the erase flash cell settles to the final value after the transient Vth shift phenomenon. In
addition, studies show the phenomenon of transient Vth shift actually become worse as the the number of P/E cycle
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grows on flash devices [17]. Furthermore, according to previous investigation results, the latency of erasing flash
cells on 3D charge trap NAND flash grows drastically as the P/E cycle grows larger than certain threshold (e.g.,
104 [8]). In the end, the erase efficiency of 3D charge trap flash becomes worse and becomes a major concern in
the garbage collection performance. This worsened erase efficiency also impose another management challenge for
FTL management.
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Figure 3: The transient Vth shift phenomenon of 3D NAND flash [13].

4 Conclusion

In this article, we summarize the structure and the management challenges of 3D NAND flash. Based on different
characteristics of 3D NAND flash, various excellent studies have been proposed to either exploit the nice features
or resolve the management difficulties of 3D NAND flash. Nevertheless, as the manufacturing process technology
downscales, new challenges may surface and provide research opportunities for optimizing storage performance on
cyber-physical systems.
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1 Introduction

About 15% of the world’s population lives with a disability according to the annual world report on disability [45].
Moreover, 100 to 190 million individuals face significant difficulties in functioning. For instance, about 70 million
people suffer from movement disorders, such as Parkinson’s disease (PD), essential tremor (ET), epilepsy, and
stroke [14]. State-of-the-art methodologies for diagnosis, treatment, and rehabilitation of this population rely on
evaluations by medical professionals in a clinical environment [19]. However, as soon as patients leave the clinic
it is not possible to monitor their symptoms due to lack of standard approaches [19]. Recent work suggests that
wearable internet-of-things (IoT) devices that combine sensing, processing, and wireless communication can help in
improving the quality of life of this population [38, 18, 22, 32].

Wearable sensors and mobile health applications are emerging as attractive solutions to augment clinical treat-
ment and enable telepathic diagnostics [19, 14, 1]. Wearable devices have been recently used for monitoring of
patients in a free-living home environment [28]. This capability allows doctors to understand the progression of
symptoms over time [12]. Wearable devices have also shown promising results in the diagnosis and management of
many movement disorders. For example, studies in [44, 36] use wearable sensors and machine learning algorithms
to identify ET in patients. Similarly, Ryvlin et al. employ wearable devices to identify biomarkers that enable detec-
tion of generalized tonic-clonic seizures in patients with epilepsy [41]. Wearable technology has also been widely
used in the diagnosis and treatment of PD patients [48, 11]. Despite these promising results, widespread adoption of
wearable sensors and devices has been limited. Instead, they have been primarily used in research studies that occur
in a more controlled environment.

This review summarizes how wearable devices are used in health monitoring. Specifically, it overviews the use
of wearable devices in diagnosis, monitoring, and rehabilitation of movement disorders. Then, it discusses the major
challenges and potential solutions to the adoption of wearable devices.

2 Wearable Devices in Health Monitoring

State-of-the-art methods for assessment and treatment of movement disorders are based on the tests performed in
clinical examinations during which patients perform specific tasks. Diagnosis and evaluation of disease progression
by visual inspection is sub-optimal as it can be affected by subjectivity of the clinician. Therefore, recent studies
have explored the usage of wearable devices in the diagnosis and treatment of movement disorders [39, 37, 43].
To study the trends in the usage of wearable devices for movement disorders, we present a review of recent re-
search in the following application areas: Diagnosis, prognosis/monitoring, predicting response to treatment, and
therapy/rehabilitation.
Diagnosis/Early Diagnosis: Recent research on the diagnosis of movement disorders focuses mainly on assessing
gait and tremor as these are some of the most commonly observed symptoms. The work in [47] employs an ac-
celerometer to differentiate PD patients with gait disorder from healthy controls. Similarly, Zhang et al. [48] use
data from wearable accelerometers and electromyography (EMG) sensors to develop a posture assessment system to
differentiate between the tremor observed in ET and PD. Raethjen et al. study corticomuscular coherence of Parkin-
sonian tremor with the help of electroencephalogram (EEG) and EMG sensors [37]. Smartphones have also been
used to aid in the diagnosis of ET and PD [44].

In addition to gait and tremor, many studies focus on diagnosis using non-motor symptoms, such as speech
disorders and sleep disorders. For instance, Campos-Roca et al. use an acoustic data set from 40 healthy subjects and
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40 PD patients to classify PD patients from the control subjects [10]. In summary, research on movement disorder
diagnosis using wearable devices focuses on one of the following problems:

• Early diagnosis of PD patients

• Differentiate patients with PD from healthy controls or patients with a different neurological disorder

• Differentiating tremors caused by PD and ET

Prognosis/Monitoring the Severity of Symptoms: Objective measures are required for analysis of disease progres-
sion in patients since feedback from diaries and memory is subject to low compliance and recall bias [31]. Therefore,
recent research has considered the following problems related to monitoring of patients:

• Home-based or remote monitoring of patients: Bächlin et al. developed a wearable system that uses accelerom-
eters to detect freezing of gait events in PD patients [2]. Similarly, the study in [4] uses an accelerometer and a
smartphone to analyze gait, dyskinesia, and motor states in real-time. Pulliam et al. [36] propose a system for
continuous in-home monitoring of ET. A system for the detection of seizures in epilepsy patients is proposed
in [5].

• Evaluating the progression of movement disorders in patients: Contreras et al. [12] propose a system that uses
smartphones to analyze the severity of tremors in PD patients. The authors conclude that the proposed system
can be used to evaluate the progression of PD in stages 3 and 4. Non-motor symptoms have also been used to
monitor the progression of PD [29]. These studies use sensor data to analyze the emotional states of patients
to better understand non-motor symptoms, such as anxiety and depression.

• Evaluating the severity of symptoms in a patient: Symptoms, such as tremor, can greatly affect the quality
of life of patients. Therefore, recent studies have used wearable devices to evaluate the severity of tremor.
Specifically, the works in [12, 36] use wearable sensors, such as gyroscope, to measure tremor amplitudes.
For instance, Pulliam et al. use motion sensors to quantify the intensity of tremor in ET patients. Furthermore,
the authors in [49] use four inertial sensors to assess bradykinesia and hypokinesia in PD patients.

Predicting Response to Treatment: Levodopa is one of the most commonly used medication to manage the symp-
toms of PD [40]. The dosage of Levodopa required varies as a function of the severity of symptoms. Currently,
doctors measure the efficacy of treatment based on patients’ diaries and observations. However, these inputs are
highly subjective. Therefore, researchers employ wearable devices to analyze how patients are responding to treat-
ment [34, 40]. Ruanola et al. [40] use recordings from a wireless EMG sensor mounted at the forearm to measure
the effect of Levodopa in advanced PD patients. Wearable devices are also being used to understand how patients
react to treatment in ET. Specifically, wearable technology can be used to monitor side-effects of ET treatment, such
as heart problems [24].
Therapy and Rehabilitation: Wearable devices are also used for physiotherapy and other types of feedback in
patients. For example, auditory cues and vibration-based devices have been used to help patients who experience
freezing of gait [11, 43]. These methods are useful in alleviating symptoms like tremor and freezing of gait. For
instance, Chomiak et al. [11] employ the sensors in an iPod touch to calculate the step height in walking. This data
is then used to trigger auditory feedback to patients. Their results show that such a system is useful for stepping
in place training. Similarly, Vidya et al. [43] use vibration motors on patients’ wrists to reduce hand tremor. In
summary, these studies show that wearable devices can be used effectively for therapy and rehabilitation in patients.

The study in [15] classifies 778 articles related to PD into one of the four application areas above. Figure 1 shows
the composition of application areas for the 778 papers. We observe that the highest percentage (37%) of papers focus
on diagnosis or assisting in the diagnosis of Parkinson’s Disease. This is followed by the “Prognosis/Monitoring the
Severity of Symptoms” category that has 36% of the papers. The other two application areas have a lower percentage
of studies in the period 2008–2018. Specifically, 18% of the studies focus on therapy and rehabilitation of patients
and 9% of the studies are classified in the category of predicting response to treatment. The lower number can be
attributed to the fact that it is generally harder to predict the response to treatment as it requires monitoring as well.
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Figure 1: Percentage of publications on Parkinson’s disease between 2008-2018 by application area

In summary, this review shows that wearable devices are making a high impact on movement disorders research
by enabling patients and doctors to obtain more objective measures for the diagnosis and improving home monitoring
of patients.

3 Wearable Challenges and Solutions Proposed in the Literature

The PD case study shows that wearable devices offer a great potential to improve the quality of life of patients.
However, the current application of wearable devices is mainly limited to research studies. Recent research has
focused on identifying the reasons that hinder the widespread adoption of wearable devices despite their potential in
improving healthcare [21, 19, 23, 31]. The International Movement Disorders Task force states that non-compatible
platforms, and limited applicability of “big data” acquired from the wearable devices as some of the reasons for lack
of adoption [19]. Another study by Ozanne et al. [31] reports that many social and technical issues contribute to
limited adoption by patients. According to surveys in [31], participants fear that bulky and rigid devices may lead
to unwanted attention and a feeling of being watched. Instead, users prefer devices that are stretchable and flexible
such that they can easily be worn under clothes. The surveys also highlight technical challenges, such as inconclusive
recordings, privacy of data, and need for frequent recharging. Similarly, the review in [23] describes the needs of
participants with various movement disorders. PD patients have typically expressed a need for wearable devices to
assist in physiotherapy, while epilepsy patients want features that improve seizure management. The study in [27]
states that about 32% of users stop using wearable devices after 6 months and addressing some of the issues above
can enable a higher adoption rate for these devices. Therefore, a significant amount of research efforts focus on
addressing one or more of these challenges [30, 1, 6]. In what follows, we overview recent research in the following
areas:

1. Wearable IoT devices using Flexible Hybrid Electronics,

2. Energy-neutral operation through optimal energy harvesting and management,

3. New wearable applications that provide meaningful data to their users.

3.1 Wearable IoT Devices using Flexible Hybrid Electronics (FHE)

One of the major challenges faced by existing wearable devices is that they are typically rigid, which leads to patients
stopping their use after a few weeks or months [31]. Flexible and stretchable electronics is emerging as an attractive
technology to enable wearable devices. They can be used in applications such as electronics shirts and jackets [9].
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However, the performance of pure flexible electronics is still much lower than that of conventional CMOS technolo-
gies. Flexible hybrid electronics has emerged as an attractive solution to bridge the gap between flexible electronics
and CMOS technology [20, 26]. FHE technology has been used in developing health monitoring devices. For in-
stance, Poliks et al. [35] use it to propose a wearable EEG monitor that can monitor a user, process the signal and
transmit the data to a host. The work in [46] proposes a skin temperature monitor and an electrocardiogram (ECG)
sensor using the FHE technology. We use FHE technology to propose an open-source wearable device that can help
alleviate non-compatibility among wearable devices [6]. Our device integrates a TI-CC2650 microcontroller, inertial
motion units, and multiple communication protocols to enable monitoring of movement disorders. We envision that
the wearable prototype and extensions to it can be used to create an open-source hardware/software ecosystem for
health monitoring by bringing health professionals and researchers together.

3.2 Energy-Neutral Operation

Energy limitation is one of the major challenges faced by wearable IoT devices. Large and inflexible batteries are not
suitable for wearable use, whereas flexible printed batteries have limited capacities. Moreover, frequent recharging
is cumbersome for patients suffering from functional disability [19]. Therefore, ensuring a long lifetime is one of
the most critical requirements for the success of wearable devices. Dagdeviren et al. [13] propose a piezoelectric
generator that is able to harvest energy from movements of the heart, lung, and diaphragm. This device can be easily
integrated into a wearable health monitoring device to harvest energy from the human body. Similarly, solar energy
harvesting for wearable devices has been studied in [33]. Ambient energy harvesting necessitates the development
of algorithms to efficiently manage the harvested energy such that device lifetime can be maximized. To this end,
Kansal et al. [25] propose the concept of energy-neutral operation where the energy by the device in any given period
is equal to the harvested energy. Algorithms for energy-neutral operation are proposed in [25, 8]. These algorithms
enable energy-neutral operation by maximizing the harvested energy and allocating it optimally.

3.3 Applications Areas for Wearable Devices

High impact applications using wearable devices are instrumental to the success of wearable devices [23]. Therefore,
recent research has focused on developing meaningful applications using wearable devices. One of the most com-
monly implemented use cases is the monitoring of physical activity [17]. These devices help users in tracking their
activity and in achieving fitness goals. Furthermore, human activity recognition has been a popular research area due
to its applications in movement disorders. Human activity recognition using wearable devices has been proposed
in [7, 3]. Another popular application is using wearable devices for vital sign monitoring, as surveyed in [16]. Sleep
monitoring using wearable devices has also received attention recently due to its potential benefits in improving user
wellness [42]. In conclusion, these application areas along with FHE technology and energy-neutral operation have
the potential to significantly improve the adoption rates of wearable devices.

4 Conclusion

Wearable devices offer great potential to improve the quality of life for patients and the general population. This
article presented a review of how wearable technology is being used in the diagnosis, monitoring, rehabilitation of
movement disorder patients. Then, it discussed the major challenges that hinder the widespread adoption of wearable
devices. Finally, it presented new proposals that aim to improve the adoption of wearable devices. Specifically, it
focused on flexible hybrid electronics, energy-neutral operation, and health applications. We envision that these
solutions will lead to wider adoption of wearable devices.
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1 Introduction

Convolutional neural network (CNN) architectures have been around for over two decades. Compared with other
neural network models such as multiple layer perceptron (MLP), CNN is designed to take multiple arrays as input
and then process the input using convolution operator within a local field by mimicking eyes perceiving images.
Therefore, it shows excellent performance in solving computer vision problems such as image classification, recog-
nition, object detection and understanding [1, 2, 3, 4]. It is also effective for a wide range of fields such as autonomous
driving [5], speech recognition that requires correlated speech spectral representations [6], VLSI physical design [7],
multi-media compression [8] comparing with the traditional DCT transformation and compressive sensing methods
[9, 10], and cancer detection from a series of condition changing images [11].

However, in order to receive good performance of prediction and accomplish more difficult goals, CNN archi-
tecture becomes deeper and more complicated. At the same time, more pixels are packed into one image thanks to
high resolution acquisition devices. As a result, CNN training and prediction are very computationally expensive
and become limited for implementation due to its slow speed. In many situations, CNN training is not as often as
inference. Once the network is well-trained, inference is made every time the new input is given in a feed forward
flow. Therefore, inference speed is critical when implementing the well-trained network. Although acceleration for
CNN inference has been explored since it was brought up, recently this seems to be keener as it has such good
industrial impact.

In this article, we review many recent works and summarize inference acceleration methods in software level
and hardware level. Many methods improve the training efficiency, which results in the acceleration on the inference.
That will also be covered in this work. This article is organized as following. In Section 2, an overview of modern
CNN structure is given with the description of different typical layers. In Section 3 we present our taxonomy for
recent CNN inference acceleration methods followed by the detailed inference acceleration methods in two levels
summarized in Section 4 and in Section 5 respectively. Finally, Section 6 concludes this article with some future
challenges.

2 Convolutional Neural Network

The modern convolutional neural networks proposed by LeCun [12] is a 7-layer (excluding the input layer) LeNet-5
structure. It has the following structure C1, S2, C3, S4, C5, F6, OUTPUT as shows in Fig. 1, where C indicates con-
volutional layer, S indicates subsampling layer, and F indicates fully-connected layer. There are many modifications
regarding the structure of CNNs in order to handle more complicated datasets and problems, such as AlexNet (8 lay-
ers) [13], GoogLeNet (22 layers) [14], VGG-16 (16 layers) [15], and ResNet (152 layers) [16]. Table 1 summarizes
the state-of-the-art CNNs. As we can see from the table, the number of parameters in modern CNNs is large, which
usually takes a long time for training and for inference. Plus, higher dimensional input, large number of parameters,
and complex CNN configuration challenge hardware in terms of processing element efficiency, memory bandwidth,
off-chip memory, communication and so on [17].

Among these different structures, they share four key features including weight sharing, local connection, pool-
ing, and the use of many layers [20]. Also, there are some commonly used layers such as convolutional layers,
subsampling layers (pooling layers), and fully-connected layers. Usually, there is a convolutional layer after the
input. The convolutional layer is often followed by a subsampling layer. This combination repeats several times to
increase the depth of CNN. The fully-connected layers are designed as the last few layers in order to map from
extracted features to labels. These four layers are introduced as follows.
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Figure 1: Illustration of LeNet-5.

Model Layer Size Configuration Feature Parameter
Size

Application

LeNet
[12]

7 layers 3C-2S-1F-RBF
output layer

60,000 Document
recognition

AlexNet
[13]

8 layers 5C-3S-3F Local response
normalization

60,000,000 Image classifica-
tion

NIN [18] - 3mlpconv-global
average pooling
(S can be added
in between the
mlpconv)

mlpconv layer:
1C-3MLP;
global average
pooling

- Image classifica-
tion

VGG
[15]

11-19 lay-
ers

VGG-16: 13C-5S-
3F

Increased depth
with stacked
3×3 kernels

133,000,000
to
144,000,000

Image classifica-
tion and local-
ization

ResNet
[16]

Can be
very deep
(152
layers)

ResNet-152:
151C-2S-1F

Residual module ResNet-20:
270,000;
ResNet-
1202:
19,400,000

Image classifica-
tion, object de-
tection

GoogLeNet
[14]

22 layers 3C-9Inception-5S-
1F

Inception module 6,797,700 Image classifica-
tion, object de-
tection

Xception
[19]

37 layers 36C-5S-1F Depth-wise
separable convo-
lutions

22,855,952 Image classifica-
tion

Table 1: CNN model summary.
C: convolutional layer, S: subsampling layer, F: fully-connected layer

a) Input Layer: In CNNs, input layers usually take multiple arrays and are often size-fixed. Comparing to
ordinary fully-connected neural networks, the CNN input do not need size-normalization and centralization. Because
CNN enjoys the characteristic of translation invariance [21].
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b) Convolutional Layer: As a key feature layer that makes CNNs different from other ordinary neural networks,
neuron units of convolutional layers are first computed by convolution operation over small local patches of input,
and then followed by activation functions (tanh, sigmoid, ReLU, etc.), and form a 2D feature map (3D feature map
channel).

c) Subsampling Layer (pooling layer): Convolutional layers are usually followed by subsampling layers to
reduce the feature map resolution. The amount of parameters and computation are also reduced accordingly.

d) Fully-connected Layer: After several layers, high-level features are extracted and require mapping to labels.
In fully-connected layer, neuron units are transformed from 2D into 1D. Each unit in the current layer is connected
to all the units in the previous layer such like regular neural networks. It not only extracts features in a more complex
way in order to dig deep for more information, but patterns in different locations are connected as well.

e) Output Layer: As a feed-forward neural network, the output layer neuron units are fixed. They are usually
linked with previous neurons in a fully-connected way and they are the final threshold for predicting.

In general, CNNs have gained a lot of interest in researching the meaning behind the combination of those differ-
ent layers. The advantages brought by the structure of CNNs include reduced number of parameters and translation
invariance.

3 Acceleration Method Taxonomy

Our taxonomy shows in Fig. 2. For the CNN structure, there is redundancy in both weights and the number of bits for
representation. For the redundancy in weights, layer decomposition, network pruning, block-circulant projection and
knowledge distillation methods can be applied. For the redundancy in representation, using fixed-point representation
is the mainstream. Considering that convolutional layers are computationally intensive, we are also interested in
the convolution operation complexity. Therefore, we also summarize some efficient convolution methods that are
adopted in the CNN. As for the hardware level, the mainstream GPU, FPGA, ASIC are discussed. Recently, people
see a promising future for fast implementation of CNN as neuromorphic engineering develops. Some new devices
are also presented in this article. The acceleration approaches of each level is orthogonal and can be combined with
those in other levels. By researching such a wide range of methods, we expect to provide a general idea on CNN
acceleration.

HARDWARE LEVEL

Extend Memory

Explore Parallelism

Reduce Data Movement

GPU

FPGA

ASIC

New Device

SOFTWARE LEVEL

Redundancy
In Weights

Redundancy
In Representation Fixed-point Representation

Efficient 
Convolution

Layer decomposition

Pruning

Block-circulant Projection

Knowledge Distillation

Fixed-point RepresentationFixed-point Representation

FFT

im2col-based Algorithm 
Winograd Algorithm

Group Convolution
Depthwise

Separable Convolution

Figure 2: Taxonomy of CNN inference acceleration methods.
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4 Software Level

The training and inference process can be accelerated by reducing redundancy in network structures. There is redun-
dancy both in weights and in the way how weights are represented. Two perspectives of acceleration methods will
be summarized as follows in terms of redundancy in weights and redundancy in representations. Also, by chang-
ing how convolution performs, such as using im2col-based Algorithm, Winograd Algorithm, Group Convolution,
Depthwise Separable Convolution, or transforming into frequency domain, it can improve convolution speed and
reduce memory consumption.

4.1 Redundancy In Weights

There is significant redundancy in the parameterization of some neural networks. As Denil et al. and Sainath et
al. observe that some weights learned in networks are correlated with each other, they demonstrate that some of the
weights can either be predicted or be unnecessary to learn [22, 23].

4.1.1 Layer Decomposition

Low-rank approximation can be adopted to reduce redundancy in weights [24, 25]. An efficient low-rank approx-
imation of kernels can be applied in first few convolutional layers of CNN to exploit the linear structure of the
over-parameterization within a filter. For example, Denton et al. reduce the computation work for redundancy within
kernels. It achieves 2 ∼ 2.5× speedup with less than 1% drop in classification performance for a single convolutional
layer. It uses singular value decomposition method to exploit the approximation of kernels with assumptions that the
singular values of the kernels decay rapidly so that the size of the kernels can be reduced significantly [26].

Instead of treating kernel filters as different matrices, kernels in one layer can be treated as a 3D tensor with
two spatial dimensions and the third dimension representing channels. Lebedev et al. use CP-decomposition for
convolutional layers, which achieves 8.5× CPU speedup at the cost of 1% error increase [27]. Tai et al. utilize
tensor decomposition to remove the redundancy in the convolution kernels, which achieves twice more efficiency
of inference for VGG-16 [28]. Wang et al. propose to use group sparse tensor decomposition for each convolu-
tional layer, which achieves 6.6× speed-up on PC and 5.91× speed-up on mobile device with less than 1% error
rate increase [29]. Tucker decomposition is also used recently to decompose pre-trained weights with fine-tuning
afterwards [30, 31].

Weight matrix decomposition method can not only be applied to convolutional layers, but also fully-connected
layers. Applying the low-rank approximation to the fully-connected layer weight can achieve a 30 ∼ 50% reduction
of number of parameters with little loss in accuracy, which is roughly an equivalent reduction in training time [23].

The decomposition technique is layer oriented and can be interleaved with other modules such as ReLU modules
in CNN. It can also be applied to the structure of neural networks. Rigamonti et al. apply this technique to the general
frameworks and reduce the computational complexity by using linear combinations of fewer separable filters [32].
This method can be extended for multiple layers (e.g. > 10) by utilizing low-rank approximation for both weights
and input [33]. It can achieve 4× speedup with 0.3% error increase for deep network models VGG-16 by focusing
on reducing accumulated error across layers using generalized singular value decomposition.

The methods above can be generalized as layer decomposition for filter weight matrix dimension reduction,
while pruning is another method for dimension reduction.

4.1.2 Network Pruning

Network pruning originates as a method to reduce the size and over-fitting of a neural network. As neural network
implementation on hardware becomes more popular, it is necessary to reduce the limitation such as its intensive
computation and large memory bandwidth requirement. Nowadays, pruning is usually adopted as a method to reduce
the network size and to increase the network inference speed so that it can be applied in specific hardware such as
embedded systems.
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There are many pruning methods in terms of weights, connections, filters, channels, feature maps, and so on.
Unlike layer decomposition in which computational complexity is reduced through reducing the total size of layers,
selected neurons are removed in pruning. For pruning weights, the unimportant connections of weights with mag-
nitudes smaller than a given threshold are dropped. Experiments are taken on NVIDIA TitanX and GTX980 GPUs,
which achieves 9× and 13× parameter reduction for AlexNet and VGG-16 models respectively with no loss of
accuracy [34]. Zhou et al. incorporate sparse constraints to decimate the number of neurons during training, which
reduces the 70% number of neurons without accuracy sacrifice [35]. Channel pruning method is to eliminate lowly
active channels, which means filters are applied in fewer number of channels in each layer. Polyak et al. propose
a channel-pruning based method Inbound Prune to compress a redundant network. Their experiment is taken on
the platform of Samsung Galaxy S6 and it achieves 1.59× speedup [36]. Recently, pruning is combined with other
acceleration techniques to achieve speedup. For example, Han et al. combine pruning with trained quantization
and Huffman coding to deep compress the neural networks in three steps. It achieves 3× layer-wise speedup on
fully-connected layer over benchmark on CPU [34].

Some of these pruning methods result in structured sparsity, while others cause unstructured sparsity such as
weight-based pruning. Many techniques are proposed to deal with problems of unstructured sparsity being unfriendly
to hardware. Wen et al. propose a method called Structured Sparsity Learning (SSL) for regularizing compressed
structures of deep CNNs and speeding up convolutional computation by group Lasso regularization and locality
optimization respectively. It improves convolutional layer computation speed by 5.1x and 3.1x over CPU and GPU
[37]. He el al. propose a channel pruning method by iteratively reducing redundant channels through solving LASSO
and reconstructing the outputs with linear least squares. It achieves 5x speed increase in VGG-16 and 2x speedup in
ResNet/ Xception [38].

4.1.3 Block-circulant Projection

A square matrix could be represented by a one-block-circulant matrix, while a non-squared matrix could be repre-
sented by block-circulant matrix. Block-circulant based CNN has been explored nowadays as it has small storage
requirements.

Cheng et al. apply the circulant matrix in the fully connected layer and achieve significant gain in efficiency with
little decrease in accuracy [39]. Yang et al. focus on reducing the computational time spent in fully-connected layer
by imposing the circulant structure on the weight matrix for dimension reduction with little loss in performance
[40]. Ding et al. propose to use block-circulant structure in both fully-connected layers and convolutional layers in
non-square-matrix situations to further reduce the storage waste. They also mathematically prove that fewer weights
in circulant form do not harm the ability of a deep CNN without weight redundancy reduction [41].

4.1.4 Knowledge Distillation

Knowledge distillation is a concept that information obtained from a large complex ensemble neural networks can
be utilized to form a compact neural network [42]. The way that knowledge is transferred can be depicted in the
following Fig. 3. Information flow from one complex network to a simpler one by training the latter one with data
labeled by the former network. By using synthetic data generated from a complex network to train a compact model,
it is less likely to cause overfitting and can approximate the functions very well. More importantly, it provides a new
perspective for model compression and complicated neural network acceleration.

Bucilu et al. lay a foundation for mimicking a large machine learning model by experimenting three ways to
generate pseudo data, which are random, naive bayes estimation, and MUNGE respectively [43]. Some researches
propose teacher-student format, which also adopts knowledge distillation concepts with different methods for synthe-
sizing data. For example, Hinton et al. compress a deep teacher network into a student network using data combined
from teacher network outcome and the true labeled data [44].
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Figure 3: Illustration of knowledge distillation

4.2 Redundancy in Representations

Many weights in neural networks have very small values. Most arithmetic operations in neural networks use 32-
floating point representation in order to achieve a good accuracy. As a trade-off, that increases the computation
workload and memory size for the neural networks. However, arithmetic operations in fixed-point instead of floating-
point can achieve enough good performance for neural networks [45]. A 16-bit fixed-point representation method is
proposed by using stochastic rounding for training CIFAR-10 dataset [46]. A further compression of 10-bit dynamic
fixed-point is also explored [47]. Han et al. quantize pruned CNNs to 8-bit and achieve further storage reduction with
no loss of accuracy [34]. In terms of binarization, there are many works focusing on binary input, binary weights of
the network, and binary operations [48, 49, 50, 51, 52, 53]. Ternary CNNs are proposed recently as a more expressive
method comparing to binary CNNs, which seeks to achieve a balance between binary networks and full precision
networks in terms of compression rate and accuracy [54, 55, 56].

Stochastic computing (SC) is a type of technique that simplifies numerical computations into bit-wise operations
by representing continuous values with random bit streams. It provides many benefits for neural networks such
as low computation footprint, error tolerance, simple implementation in circuits and better trade-off between time
and accuracy [57]. Many works contribute to exploring potential space in optimization and in deep belief networks
[58, 59, 60]. Recently it starts to gain attentions in CNN field and regarded as a promising technique for deep CNN
implementation [61, 62].

Although errors may accumulate due to representation approximation, its hardware implementation can achieve
a much faster speed and lead to less energy consumption.

4.3 Efficient Convolution

4.3.1 im2col-based Algorithm

For the direct convolution in the CNN, convolution kernels slide over the two dimensions of the input and the output
is obtained by dot product between the kernels and the input. While for the im2col-based algorithms, the input matrix
is linearized into multiple lowered vectors, which can be later efficiently computed [63, 64, 65]. Cho et al. further
reduce the linearization memory-overhead and improve the computational efficiency by modifying both the lowered
vectors and the vectorized kernels [66].
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4.3.2 Winograd Algorithm

Winograd based methods are to incorporate Winograd’s minimal filtering algorithms to compute minimal convolu-
tion over small filters. Coppersmith Winograd algorithm is known as a fast matrix multiplication algorithm. Wino-
grad based convolution reduces the multiplications by increasing the number of additions and it reduces the memory
consumption on GPU [67, 68]. Winograd’s minimal filtering algorithms can help reduce convolution computation at
the expense of memory bandwidth. Xiao et al utilize Winograd’s minimal filtering theory combined with heteroge-
neous algorithms for a fusion architecture to mitigate memory bandwidth problem [69].

4.3.3 FFT

Based on the experiment that FFT can be applied in MLP to accelerate the first layer inference [70], Mathieu et
al. first apply FFT on weights of CNN and achieve good performance and speedup for large perceptive areas [71].

The concept of implementing CNN in frequency is to replace convolution operation in time domain with multi-
plication in frequency domain. It takes time to transform back and forth. As a result, it performs well on large feature
maps. Development is made to suit for small feature maps such as training network directly in frequency domain.
Compared with other algorithms, FFT method requires additional memory for padding the filters to the same size of
the input and storing frequency domain intermediate results. This leads to a trade-off for hardware implementation.
On one hand, it can take use of power in GPU parallelism to speedup convolution computation dramatically. On the
other hand, more delicate GPU memory allocation is required due to limit memory.

4.3.4 Group Convolution

Group convolution is first applied to AlexNet for incorporating two GPUs working together [13]. The input fea-
ture maps are partitioned into groups and within each group, regular convolution is implemented. Recently, some
works focus on CNN acceleration using group convolution [72, 73, 74, 75], which not only reduces the convolution
computation but also can improve the performance.

4.3.5 Depthwise Separable Convolution

A standard convolution can be decomposed into a depthwise convolution and a pointwise convolution. For the
depthwise convolution, it can extract the spatial information of one feature map. On the other hand, the pointwise
convolution fuses the information across different channels. By manipulating the separable convolution, new CNN
structures can be created, which can achieve high accuracy [76] or reduce many parameters [77].

5 Hardware Level

Neural networks regain their vigor due to high performance hardware recently. CPU used to be the main stream for
implementing machine learning algorithms about twenty years ago, because matrix multiplication and factorization
techniques were not popular back then. Nowadays, GPU, FPGA, and ASIC are utilized for accelerating training and
predicting process. Besides, much new device technology is proposed to meet requirement for very large models
and large training datasets. In the following, hardware based accelerators are summarized in terms of GPU, FPGA,
ASIC and frontier new device that is promising for accelerating deep convolutional neural networks.

5.1 GPU

In terms of GPU, clusters of GPUs can accelerate very large neural networks with over one billion parameters in
a parallel way. The mainstream of GPU cluster neural networks usually work with distributed SGD algorithms as
illustrated in Fig. 4. Many researches further exploit the parallelism and make efforts on communication among
different clusters. For example, Baidu Heterogeneous Computing Group uses two types of parallelism called model-
data parallelism and data parallelism to extend CNN architectures to 36 servers, each with 4 NVIDIA Tesla K40m
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Figure 4: Illustration of CNN distributed system.

GPUs and 12GB memory. The strategies include butterfly synchronization and lazy update, which makes good use
of overlapping in computation and communication [78]. Coates et al. propose a clustering of GPU servers using
Commodity Off-The-Shelf High Performance Computing (COTS HPC) technology and high-speed communication
infrastructure for parallelism in distributed gradient decent algorithm, which reduces 98% number of machines used
for training [79]. In terms of non-distributed SGD algorithms, Imani et al. propose a nearest content addressable
memory block called NNCAM, which stores highly frequent patterns for reusing. It accelerates CNNs over general
purpose GPU with 40% speedup [80].

GPU supports several teraFLOPS throughput and large memory access, but consumes a lot of energy. In terms
of economy, GPU costs to set up for large deep convolutional neural networks.

5.2 ASIC

For ASIC design, despite of using methods in software level such as block-circulant projection in Section 4.1.3 and
SC in Section 4.2, memory can be expanded and locality can be increased to reduce data transporting within systems
for deep neural network accelerating. Tensor Processing Unit (TPU) is designed for low precision computation with
high efficiency. It uses a large on-chip memory of 28MiB to execute the neural network applications, which can
achieve at most 30× faster speed than an Nvidia K80 GPU [81]. TETRIS is an architecture using 3D memory
proposed by Gao et al. It saves more area for processing elements and leaves more space for accelerator design [82].

Luo et al. create an architecture of 64-chip system that minimizes data moving between synapses and neurons
by storing them closely. It reduces the burden on external memory bandwidth and achieves a speedup of 450× over
a GPU with 150× energy reduction [83]. Wang et al. propose to group adjacent process engines (PEs) into dual-
channel PEs called Chain-NN to mitigate huge amount of data movements. They simulate it under TSMC 28nm
process and achieve a peak throughput of 806.4 GOPS in AlexNet [84]. Single instruction multiple data (SIMD)
processors are used on a 32-bit CPU to design a system targeted for ASIC synthesis to perform real-time detection,
recognition and segmentation of mega-pixel images. They optimize the operation in CNN with available parallelism
in hardware. The ASIC implementations outperform the CPU conventional methods in terms of frames/s [85].

Recently, some ASIC designs target for sparse networks with irregularity. For example, Zhang et al. propose an
accelerator called Cambricon-X. It consists an Indexing Module, which can efficiently schedule processing elements
that store irregular and compressed synapses. The accelerator can reach 544 GOP/s in 6.38mm2 [86]. Kwon et al.
design a reconfigurable accelerator called MAERI to adapt various layer dataflow patterns. They can efficiently
utilize compute resources and provides 6.9× speedup at 50% sparsity [87]. Network pruning could induce sparsity
and irregularity as discussed in Section 4.1.2. With such designs, better performance is expected to achieve when
combined.

Comparing to GPU, ASIC is specialized hardware and can be delicately designed to maximize its benefits such
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as power-efficiency and large throughput in CNN implementation. However, once CNN algorithms are implemented
on ASIC, it is difficult to change the hardware design. On the other hand FPGA is easy to be programmed and
reconfigured. It is more convenient for prototyping.

5.3 FPGA

There are many parallelism levels in hardware acceleration, such as coarse-grain, medium-grain, fine-grain, and
massive [88]. FPGA outperforms in terms of its fine grain and coarse grain reconfiguration ability and its hierarchical
storage structure and scheduling mechanism can be optimized flexibly. Flexible hierarchical memory systems can
support complex data access mode of CNN. It is often used to improve the efficiency of on-chip memory and to
reduce the energy consumption in deep neural network implementation [89].

Peemen et al. experiment on Virtex 6 FPGA board and show that the accelerator design can achieve 11× speedup
with very complicated address mapping of data access [90]. Zhang et al. take data reuse, parallel processing, and off-
chip memory bandwidth into consideration in FPGA accelerator. The accelerator achieves 17.42× faster speed than
CPU in AlexNet CNN architecture [91]. Martinez et al. take advantage of the FPGA reconfiguration characteristics
by unfolding the loop execution on different cascading stages. As the number of multipliers for convolution increases,
the proposed method can achieve 12 GOPS at most [92]. A hardware acceleration method for CNN is proposed by
combining fine grain in operator level parallelism and coarse grain parallelism. Compared with 4xIntel Xeon 2.3
GHz, 1.35 GHz C870, and a 200 MHz FPGA, the proposed design achieves a 4× to 8× speed boost [93]. Wang et al.
propose an on-chip memory design called Memsqueezer that can be implemented on FPGA. They shrink the memory
size by compressing data, weights, and intermediate data from the perspectives of hardware, which achieves 80%
energy reduction compared with conventional buffer designs [94]. Zhang et al. design an FPGA accelerator engine
called Caffeine that decreases underutilized memory bandwidth. It reorganizes the memory access according to
their proposed matrix-multiplication representation applied to both convolutional layers and fully-connected layers.
Caffeine’s implementation on Xilinx KU060 and Virtex 7690t FPGA achieves very high peak performance of 365
GOPS and 636 GOPS respectively [95]. Rahman et al. present a 3D array architecture, which can benefit all layers
in CNNs. With optimization of on-chip buffer sizes for FPGAs, it can outperform the state-of-the-art solutions by
22% in terms of MAC [96]. Alwani et al. explore the design space of dataflow across multiple convolutional layers,
where a fused layer accelerator is designed that reduces feature map data transfer from and to off-chip memory [97].

Compared with GPU, FPGA throughput is tens of gigaFLOPS and it has limited memory access. Plus, it does
not support floating-point natively. But it is more power-efficient. Due to its limited memory access, many proposed
methods are focused on accelerating inference time of neural network since inference process requires less memory
access comparing to training process. Others are emphasized on external memory optimization for large neural
network acceleration. Different models need different hardware optimization and even for the same model, different
designs result in quite various acceleration performance [34]. In terms of economy, FPGA is reconfigurable and is
easier to evolve hardware, frameworks and software. Especially for various models of neural networks, its flexibility
shortens design cycle and costs less.

5.4 New Devices

As new device technology and circuits arise, deep convolutional neural networks can be potentially accelerated by
orders of magnitude. In terms of new device, very large scale integration systems are explored to mimic complex
biological neuron architectures.

Some of them are in their theoretical demonstration state for training deep neural networks. For example, Gok-
men and Vlasov from IBM research center propose a resistive processing unit (RPU) device, which can both store
and compute parameters in this unit. It has extremely high processing speed with 30000× higher than state-of-art
microprocessors (84000 GigaOps/s/W) [98]. As neuromorphic engineering develops, more new device emerges to
handle high frequency and high volume information transformation through synapses. Some are in theoretical state
that have not been implemented on neural networks for classification and recognition, such as nano-scale phase
change device [99] and ferroelectric memristors [100].
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Resistive memories are treated as one of the promising solutions for deep neural network accelerations due to
its nonvolatility, high storage density, and low power consumption [101]. Its architecture mimics neural networks,
where weight storage and computation can be done simultaneously [102, 103]. As CMOS memories become larger,
its scale becomes limited. Therefore, besides the main stream CMOS based memory, nonvolatile memory becomes
more popular in storing weights, such as resistive random access memory (RRAM) [104, 105, 106, 107] and spin-
transfer torque random access memory (STT-RAM) [108].

Memristor crossbar array structure can deal with computational expensive matrix multiplication and have been
explored in CNN hardware implementations. For example, Hu et al. develop a Dot-Product Engine (DPE) utilizing
memristor crossbar, which achieves 1000× to 10,000× speed-efficiency product compared with a digital ASIC
[109]. Xia et al. address energy consumption problem between crossbars and ADC/DAC and can save more than
95% energy with similar accuracy of CNN [110]. Ankit et al. propose a hierarchical reconfigurable architecture with
memristive crossbar arrays called RESPARC. It is 15× more energy efficient and has 60× more throughput for deep
CNNs [111].

In general, for any CNN hardware implementation, there are a lot of potential solutions to be explored in design
space. It is not trivial to design a general hardware architecture that can be applied to every CNN, especially when
limitations on computation resource and memory bandwidth are considered.

6 Conclusion

In this article, we summarize the recent advances in CNN Inference acceleration methods in terms of software level
and hardware level. In software level, CNN is compressed without losing significant accuracy since there is redun-
dancy in most of the CNN architectures. Convolution calculation is also an important factor for CNN. FFT method
introduces a frequency perspective for training neural networks. In hardware level, characteristics for different hard-
ware such as FPGA and GPU are explored combined with CNN features. CNN performs better in computer vision
field as its structure goes deeper and the amount of data becomes larger, which makes it time consuming and com-
putationally expensive. It is imperative and necessary to accelerate CNN for its further implementation in life. For
now, there is no generalized evaluation system to test the acceleration performance for comparison among different
methods in different levels. Researches use case by case dataset benchmark and different criterion in each level.
Therefore, it is challenging in acceleration performance evaluation as well.
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Technical Activities

1 Conferences and Workshops

• IEEE International Conference on Cyber Physical and Social Computing (CPSCom 2019)

• DAC-2019 Workshop on Design Automation for Cyber-Physical Systems (DACPS-2019)

• IEEE International Conference on Embedded Software and Systems (ICESS)

• IEEE International Conference on Industrial Cyber-Physical Systems (ICPS)

2 Special Issues in Academic Journals

• IEEE/CAA Journal of Automatica Sinica special issue on Resilient Control in Large-Scale Networked Cyber-
Physical Systems
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Newsletter of Technical Committee on Cyber-Physical Systems
(IEEE Systems Council)

The newsletter of Technical Committee on Cyber-Physical Systems (TC-CPS) aims to provide timely updates on
technologies, educations and opportunities in the field of cyber-physical systems (CPS). The letter will be published
twice a year: one issue in February and the other issue in October. We are soliciting contributions to the newsletter.
Topics of interest include (but are not limited to):
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• Resilient and robust system design for CPS

• Security issues for CPS

• Formal methods for modeling and verification of CPS

• Emerging applications such as automotive system, smart energy system, internet of things, biomedical device,
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Please directly contact the editors and/or associate editors by email to submit your contributions.

Submission Deadline:

All contributions must be submitted by Jan. 15, 2020 in order to be included in the February issue of the newsletter.

Editors:

• Bei Yu, Chinese University of Hong Kong, Hong Kong, byu@cse.cuhk.edu.hk

Associate Editors:

• Xianghui Cao, Southeast University, China, xhcao@seu.edu.cn

• Long Chen, Sun Yat-Sen University, China, chenl46@mail.sysu.edu.cn
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