
OCR Acceleration
and NVIDIA Ecosystem

Yang.Bai

Outline:
● Using TensorRT to Accelerate OCR on NVIDIA GPUs

○ Text Detection Acceleration
○ RCNN Recognition Acceleration
○ Configuration of Acceleration

● Using MNN to Accelerate OCR on mobile devices
● NVIDIA Ecosystem

What is TensorRT?
A high-performance neural network inference optimizer and runtime engine for
production deployment.

Why TensorRT?
1. Using the training framework to perform inference is easy, but lower

performance on a given GPU
2. Training frameworks tend to implement more general purpose code which

stress generality, focus on efficient training
3. Labor-intensive and specialized knowledge to reach a high-level of

performance on a modern GPU, not translate fully to other GPUs

TensorRT: by combining a high-level API that abstracts away specific
hardware details and optimizes inference

TensorRT Optimizations and Performance

1. Weight & Activation Precision Calibration
2. Layer & Tensor Fusion
3. Kernel Auto-Tuning
4. Dynamic Tensor Memory
5. Multi-Stream Execution

5 Critical factors to measure software:
1. Throughput

a. The volume of output within a given period
b. Measured in inference / second or samples / second

2. Efficiency
a. Amount of throughput delivered per unit-power
b. Expressed as performance/watt

3. Latency
a. Time to execute an inference
b. Measured in milliseconds

4. Accuracy
a. Deliver the correct answer
b. Different tasks: top-5 or top-1 or mAP

5. Memory Usage
a. Host and Device memory

OCR Acceleration Pipeline by TensorRT

Text Detection Part Text Recognition Part

PyTorch Model
 (.pth)

ONNX Model
 (.onnx)

TensorRT Engine
 (.trt)

CUDA C++ Inference
 (.cpp/cu)

torch.onnx.export

 onnx-tensorrt

 nvcc

Text Detection Configuration
● input batch size = 1
● input shape = (1, 3, 672, 768)
● output shape = (1, 3, 672, 768)

 Backbone Neck Box HeadImage

 ↑↑↑↑
pre-processing

↑↑↑↑: Accelerate

 ↑↑↑↑
post-processing

 ↑↑↑↑
 CUDA

 ↑↑↑↑
TensorRT & CUDA

Performance Comparison
1. Image Pre-processing

a. BGR -> RGB
b. HWC -> CHW
c. Normalization

2. Backbone
a. Upsampling Operator implemented by

CUDA
b. Computation Graph optimized by

TensorRT
3. Neck

a. text computation
b. seg_map2 computation

4. Box Head
a. resize
b. addWeight
c. findContours
d. drawContours

1. Image pre-processing
a. PyTorch with opencv python: 0.09889s
b. TensorRT :

i. cuda on gpu: 0.016267s
ii. opencv on cpu: 0.026738s

c. Speedup: 6.079x
2. Backbone

a. Upsampling operator is compulsory
3. Neck

a. Pytorch with opencv python: 0.51290s
b. C++ on CPU: 0.062755
c. CUDA on GPU: 0.052585

d. Speedup: 9.753x
4. Box Head for visualization

a. Slightly slow (CPU v.s. GPU)

Text detection (mobilenet_v2_035)

Input Image TensorRT Result PyTorch Result

TensorRT
 Problem

Text Recognition Configuration
● input_batch_size = 1
● input_shape = (1, 3, 32, 400)
● output_shape = (6141, 1) -> depends on alphabets.txt

Image Backbone Label

 ↑↑↑↑
pre-processing

 ↑↑↑↑
TensorRT & CUDA

↑↑↑↑: Accelerate

 code2str

 str2code

 visulation

 evaluation

Text Recognition(reslite18)

Detected Image Cropped Bbox

PyTorch: 0.48974s

TensorRT: 0.04704s

Speedup:
10.411x

Evaluation for Accuracy
PyTorch： TensorRT:

Change the Criteria Change the Criteria

Configuration of Acceleration for NVIDIA GPUs

1. Original Version: Pytorch1.4 + CUDA 10.1 with cuDNN

2. Accelerated Version: TensorRT 7.0 + CUDA 10.0 with cuDNN

3. More details can be found: OCR_Acceleration_Documentation

https://docs.google.com/document/d/1_EkxPcIIZbwq4G-TrxHiBJ1IEskM3Htl1EScgQfwMc4/edit?usp=sharing

MNN: Mobile Neural Network

MNN Architecture

Converter and Interpreter
● Converter:

○ Frontends and Graph Optimize
■ Fronteds: Tensorflow, Tensorflow lite, Caffe and ONNX
■ Graph Optimize: Operator fusion, substituion, layout adjustment

● Interpreter:
○ Engine and Backends

■ loading of the model and the scheduling of the computational graph
■ Backends (so important):

● Winograd Algorithm in Conv & Deconv
● Strassen Algorithm in GEMM
● Low-precision Calculation
● Neon Optimization
● Hand-written assembly
● Multi-thread optimization
● Memory Reuse
● Heterogeneous Computing

OCR Acceleration Pipeline by MNN

Text Detection Part Text Recognition Part

PyTorch Model
 (.pth)

ONNX Model
 (.onnx)

 MNN Model
 (.mnn)

C++ Inference
 (.cpp)

torch.onnx.export

MNNConvert

 .bin

Summary about Acceleration and planning
SmartAccel Project:

1. PyTorch model -> ONNX model -> TensorRT Engine
2. Dynamic shapes for memory allociation
3. High Performance C++ Deep Learning Library for Acceleration

NVIDIA Ecosystem
● CUDA
● OpenCL
● TensorRT
● TensorCore
● cuDNN
● cuBLAS

CUDA (Compute Unified Device Architecture)
CUDA is a parallel computing platform and programming model developed by
NVIDIA for general computing on grahical processing units (GPUs)

OpenCL
Open standard for parallel programming of heterogeneous systems

What’s the difference between CUDA and OpenCL:

● CUDA -> NVIDIA GPUs
● OpenCL -> Massively Parallel Processor

○ CPU
○ GPU
○ FPGA
○ DSP
○ AI/Tensor HW
○ Custom Hardware

Programming Model are same!

TensorRT
A high-performance neural network inference optimizer and runtime engine for
production deployment.

TensorCore
● 1st Generation, Volta Architecture

○ InputDataType: FP16
○ Accumulator: FP16 or FP32
○ Matrix Scale: 8 * 8 * 4 (m * n * k)

● 2nd Generation, Turing Architecture
○ New Support: int8, int4, int1
○ Matrix Scale: 8 * 8 * 4 (m * n * k) & 16 * 8 * 8

● 3rd Generation, Ampere Architecture
○ Domain: Specific for Deep Learning and High Performance Computing
○ New Support: bfloat (BF16), tensorfloat32(TF32), double(FP64)
○ New Feature: Sparsity expect for int1 & double(FP64)

TensorCore
Typically, the notion is that CUDA cores are slower, but offer more significant
precision. Whereas a Tensor cores are lightning fast, however lose some precision
along the way.

cuDNN / cuBLAS
● cuDNN: a GPU-accelerated library of primitives for DNN. It provides highly

tuned implementations for standard routines such as forward and backward
convolution, pooling, normalization, and activation layers.

● cuBLAS: an implementation of BLAS (Basic Linear Algebra Subprograms) on
top of the CUDA runtime.

Thanks

