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Introduction
Data augmentation is a technique that aims to increase the amount of data by
adding slightly modified copies of already existing data or newly created synthetic
data from existing data. It acts as a regularizer and helps reduce overfitting when
training a machine learning model.

Examples of data augmentation [1]
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Under-fitting and Over-fitting

Underfitting refers to a model that can neither model the training dataset nor
generalize to new dataset. Overfitting refers to the scenario where a machine
learning model can’t generalize or fit well on unseen dataset.

(a) (b)
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Bias and Variance Tradeoff
Assume a function with noise y = f (x) + ε where noise has zero mean and σ2 variance.
We want to learn a function f̂ (x) that approximates y.
We define Bias f̂ (x) := E[ ˆf (x)]− f (x) and Var ˆf (x) := E[(E( ˆf (x))− ˆf (x))2].
Then we can decompose its expected error:

E[( ˆf (x)− y)2] = E[ ˆf (x)− f (x)− ε+ E[ ˆf (x)]− E[ ˆf (x)])2]

= E[(( ˆf (x)− E[ ˆf (x)]) + (E[ ˆf (x)]− f (x)− ε))2]

= E[( ˆf (x)− E[ ˆf (x)])2 + 2( ˆf (x)− E[ ˆf (x)])(E[ ˆf (x)]− f (x)− ε)
+(E[ ˆf (x)]− f (x)− ε)2]

= E[( ˆf (x)− E[ ˆf (x)])2 + (E[ ˆf (x)]− f (x))2 + ε2

= Bias[ ˆf (x)]2 + Var[ ˆf (x)] + σ.

(1)

Note that f is the true function thus E[f ] = f .
Therefore, we find our expected error can be decided by both true error and complexity term.
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L2 weight decay
Let y =

∑
wx + ε where ε ∈ N(0, σ2), then we rewrite the equation:

Lθ =
∑

(y− wx)2 + λw2 (2)

Suppose P(y|x,w) = N(y|wx, σ2), then the likelihood function is:

L = argmax
θ

ln
∏ 1

σ
√

2π
exp(−1

2
(y− wx))

= − 1
2σ2

∑
(y− wx)2 − m lnσ

√
2π

⇔ argmin
θ

∑
(y− wx)2

(3)

Assume w ∈ N (0, τ 2), then we have the likelihood estimator:

L = argmax
w

ln
∏ 1

σ
√

2π
exp(−1

2
(y− wx))

∏ 1
τ
√

2π
exp(−1

2
(
w
τ
)2)

= − 1
2σ2
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2τ 2
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w2 − m lnσ
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2π − n ln τ

√
2π

⇔ argmin
θ

∑
(y− wx)2 + λ‖w‖22

(4)
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Bayesian interpretation
From the above, we can find that the l2 regularization can be interpreted as a zero mean
Guassian prior. We further derive it from a MAP perspective:

<latexit sha1_base64="YKTePAnbAJ7xvdT7GTHAxSeOzdg=">AAACCHicbZDLSsNAFIYn9VbrLerShYNFaDYlEVE3Qls3LiPYC7ShTKaTdujkwsxEKGmWbnwVNy4UcesjuPNtnLRZaOsPAx//OYcz53cjRoU0zW+tsLK6tr5R3Cxtbe/s7un7By0RxhyTJg5ZyDsuEoTRgDQllYx0Ik6Q7zLSdsc3Wb39QLigYXAvJxFxfDQMqEcxksrq68d2pT5tGNc97HGEE7vSmNYN5Rlpxkba18tm1ZwJLoOVQxnksvv6V28Q4tgngcQMCdG1zEg6CeKSYkbSUi8WJEJ4jIakqzBAPhFOMjskhafKGUAv5OoFEs7c3xMJ8oWY+K7q9JEcicVaZv5X68bSu3ISGkSxJAGeL/JiBmUIs1TggHKCJZsoQJhT9VeIR0glIlV2JRWCtXjyMrTOqtZF1bo7L9caeRxFcAROQAVY4BLUwC2wQRNg8AiewSt40560F+1d+5i3FrR85hD8kfb5Aw1Rl3Q=</latexit>

P (A|B) =
P (B|A)P (A)

P (B)
posterior

marginal

likelihood prior

Bayes’ theorem

θ̂MAP = argmax
θ

P(θ|y)

= argmax
θ

P(y|θ)P(θ)
P(y)

= argmax
θ

P(y|θ)P(θ)

= argmax
θ

logP(y|θ)P(θ)

= argmax
θ

logP(y|θ) + logP(θ).

(5)
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Noise Injection
Adding some noise mask in the input is a typical method of data augmentation. Suppose
the noise ε ∈ N (0, σ2), then we have the new input: x = x + εi. Then we have:

E[(y− ŷ)2] = E[(y− wx− wε)2]

= E[(y− wx)2 − 2(y− wx)wε+ (wε)2]

= E[(y− wx)2]− E2[y− wx]wε+ E[(wε)2]

= E[(y− wx)2] + E[(wε)2]

, (6)

since ε is independent of (y− t), we don not need to take it into consideration.
Though noise injection is not exactly equivalent to L2 weight decay, it has similar effects
compared with l2 penalty.
Suppose we add some noise on output, for some constant ε, the label yt is correct with
1− ε. Then it regularizes a model based on the softmax with k output and replace hard label

i.e., 0 and 1 with
ε

k
and 1− k − 1

k
ε. That can be regareded as the basis of label smoothing.
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Stein’s paradox

Sometimes a mathematical result is strikingly contrary to generally held belief even
though an obviously valid proof is given.

I Assuming you are taking part in a basketball camp, how to measure your shooting
accuracy?
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James-Stein estimator

Let Y ∈ N (θ, σ), Stein demonstrated that in terms of mean squared error E[(θ − θ̂)2], the
least squares estimator θ̂LS is not optimal to a shrinkage based estimators, such as James
Stein estimator θ̂JS, The paradoxical result, that there is a (possibly) better and never any
worse estimate of θ in mean squared error as compared to the sample mean.

If σ2 is known, the James-Stein estimator is given by: θ̂JS = (1− (m− 2)σ2

‖y‖2 )y.

The phenomenon of over-fitting is really an unfortunate property of maximum
likelihood.
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Common augmentations in OCR

Common augmentation methods
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Mix Family in OCR

0.30.7 MixUp

CutOut

CutMix

Mosaic

Mix family[2]–[6]
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Mask family in OCR

Random 
Erase

CutOut Hide and Seek Grid Mask

Mask family [3], [7]–[9]
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Augmentations in OCR

Geometric Augmentation [10]
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Augmentations in OCR

Copy-Paste [11]
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Augmentations in OCR

Context-based augmentation
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Augmentations in OCR

Style transfer [12]
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What makes a good view for data augmentation

Too weak or too strong data augmentation strategy is not we want [13]. Typically, we will miss some important
information if we apply weak data augmentations. In contrast, excess information via strong data
augmentations may ruin the performance of the network because it bring too much noise. We hypothesis
there’s a sweet spot for data augmentations for each task.
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Problem Setting
Assume we have K data augmentation methods and M augmentation
hyper-parameters, the combination of these data augmentation methods is super
large (roughly KM). Therefore, searching a optimal set of data augmentation
methods is an important problem.

How to choose the 
optimal policy of data augmentation

The searching space is super large!19 / 34



Problem Setting
Assume we have a decision system and want to learn a data augmentation policy.
Each time we choose one action to get a policy pt . We define one metric i.e.,
reward for evaluating the fitness of this data augmentation policy.

Decision System

Supervised 
LearningOptimizer

Model
<latexit sha1_base64="b/njoPaGHYnsgCf3115sv/jR10w=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE1GPRi8cK9gOSUDbbTbN0sxt2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZelAluwHW/ncra+sbmVnW7trO7t39QPzzqGpVryjpUCaX7ETFMcMk6wEGwfqYZSSPBetH4bub3npg2XMlHmGQsTMlI8phTAlbyg4QADiBhQAb1htt058CrxCtJA5VoD+pfwVDRPGUSqCDG+J6bQVgQDZwKNq0FuWEZoWMyYr6lkqTMhMX85Ck+s8oQx0rbkoDn6u+JgqTGTNLIdqYEErPszcT/PD+H+CYsuMxyYJIuFsW5wKDw7H885JpREBNLCNXc3oppQjShYFOq2RC85ZdXSfei6V01vYfLRuu2jKOKTtApOkceukYtdI/aqIMoUugZvaI3B5wX5935WLRWnHLmGP2B8/kDCX2RGQ==</latexit>

✓̂

System
Action
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Observation

Reward
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Overview of Decision System
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Problem Definition

data augmentation 
Policy 1

data augmentation 
Policy 2

data augmentation 
Policy 3

data augmentation 
Policy n

Unknown 
Reward probability

Which data augmentation policy to pick next?

Definition:
I We have K data augmentation policies with reward probabilities {θ1, θ2, ..., θK}.
I At each time step t, we take an action on one data augmentation policy and receive a

reward r.
I A is a set of actions, each referring to the one data augmentation policy. The value of

action a is the expected reward Q(a) = E[r|a] = θ. In each time step t, Q(at) = θt.
I R is a reward function. In our problem , R can be the entropy, rank or loss of the

network.
The goal is to maximize the cumulative reward

∑T
t=n rt.21 / 34



Strategy1: greedy algorithm
The first natural candidate algorithm is one which use the best set of data
augmentation at every time step (after some fixed amount of exploration). Algorithm
1 details this algorithm.

Algorithm 1 greedy algo
1: procedure algo(t, cN)
2: while t 6= 0 do

3: t ≤ cN, select a random policy P with probability
1
N

and use it.
4: t > cN, use policy P with highest estimate
5: end while
6: return reward value.
7: end procedure
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Strategy2: ε greedy algorithm
One way to overcome this fixed period of exploration is to force our algorithm to
always explore. More precisely, at every time step t, Algorithm 2 explores a random
arm with some probability ε.

Algorithm 2 ε greedy algo
1: procedure ε greedy algorithm(t, cN)
2: while t 6= 0 do
3: With probability 1− ε, select the policy P with the highest estimate;

4: with probability ε, select a random policy P with probability
1
N

and use it.
5: end while
6: return reward value.
7: end procedure
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Strategy3: UCB [14] algorithm
The mechanics of the upper confidence bound (UCB) algorithm is simple. At each
round, we simply choose the augmentation policy that has the highest empirical
reward estimate up to that point plus some term that’s inversely proportional to the
number of times the arm has been played

Algorithm 3 UCB algo
1: procedure UCB(t, cN)
2: while t 6= 0 do
3: For t = 1, ..,K, where K is the number of the policies, choose policy Pt
4: For t = K + 1, ...,T , choose the policy with the criterion:
5: Pt = argmaxi∈{1,...,K}UCBi,t−1
6: end while
7: return reward value.
8: end procedure

UCB assigns the following value to each policy k at each time t: UCBk,t = θ̂k,t +

√
ln t
nk,t
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AutoAugment[15]: Learning Augmentation Policies from Data
Sample a strategy S

(Operation type, 
Probability and 

magnitude)

The controller (RNN)
Train a child network
with strategy S to get
validation accuracy R

Use R to update 
 the controller 

Overview of our framework of using a search method (e.g., Reinforcement Learning) to search for better data
augmentation policies. A controller RNN predicts an augmentation policy from the search space. A child
network with a fixed architecture is trained to convergence achieving accuracy R. The reward R will be used
with the policy gradient method to update the controller so that it can generate better policies over time.
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Fast AutoAugment[16]

Each sub-policy τ consists of 2 operations; for instance, τ =[cutout, autocontrast] is used in this figure. Each
operation Ō(τ)

i has two parameters: the probability pi of calling the operation and the magnitude λi of the
operation. These operations are applied with the corresponding probabilities. As a result, a sub-policy randomly
maps an input data to the one of 4 images. Note that the identity map (no augmentation) is also possible with
probability (1− p1)(1− p2).
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RandAugment[17]

RandomAugment always select a transformation with uniform probability
1
K
. Given N transformations of the

image, RandomAugment than express KN potential policies.
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Adversarial AutoAugment[18]

The overview of our proposed method. The data of each batch is augmented by multiple pre-processing
components with sampled policies {τ1, τ2, ..., τM}, respectively. Then, a target network is trained to minimize
the loss of a large batch, which is formed by multiple augmented instances of the input batch. We extract the
training losses of a target network corresponding to different augmentation policies as the reward signal. Finally,
the augmentation policy network is trained with the guideline of the processed reward signal, and aims to
maximize the training loss of the target network through generating adversarial policies.
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SelfAugment [19]

The blue box highlights our fully unsupervised training pipeline for instance contrastive representation learning:
data D are augmented with policy T , then encoded into representations, H, which are fed into a projection head
yielding features that determine the InfoNCE loss. As shown by the red arrow, prior work uses supervised
evaluations of the representations, F to inform the training process,
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