
CMSC 5743
Efficient Computing of Deep Neural Networks

Lecture 11: Network Architecture Search

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: September 12, 2021)

Fall 2021



Each node in the graphs corresponds to a layer in a neural network 1

1Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A
survey”. In: JMLR 20.55, pp. 1–21

Basic architecture search

2/31



Normal cell and reduction cell can be connected in different order2

2Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A
survey”. In: JMLR 20.55, pp. 1–21

Cell-based search

3/31



Randomly wired neural networks generated by the classical Watts-Strogatz model 3

3Saining Xie et al. (2019). “Exploring randomly wired neural networks for image recognition”.
In: Proc. ICCV, pp. 1284–1293

Graph-based search space

4/31



Blackbox Optimization



Controller architecture for recursively constructing one block of a convolutional cell 4

Features
• 5 categorical choices for Nth block

• 2 categorical choices of hidden states, each with domain 0, 1, ...,N − 1
• 2 categorical choices of operations
• 1 categorical choices of combination method
• Total number of hyperparameters for the cell: 5B (with B = 5 by default)

• Unstricted search space

• Possible with conditional hyperparameters
(but only up to a prespectified maximum number of layers)

• Example: chain-structured search space
• Top-level hyperparameter: number of layers L
• Hyperparameters of layer K conditional on L ≥ k

4
Barret Zoph, Vijay Vasudevan, et al. (2018). “Learning Transferable Architectures for Scalable Image Recognition”. In: Proc. CVPR

NAS as hyperparameter optimization

6/31



Overview of the reinforcement learning method with RNN 5

Reinforcement learning with a RNN controller

• State-of-the-art results for CIFAR-10, Penn Treebank

• Large computation demands: 800 GPUs for 3-4 weeks, 12, 800 archtectures
evaluated

5Barret Zoph and Quoc Le (2017). “Neural Architecture Search with Reinforcement Learning”.
In: Proc. ICLR

Reinforcement learning

7/31



Reinforcement learning with a RNN controller

J(θc) = EP(a1:T;θc)[R]
where R is the reward (e.g., accuracy on the validation dataset)

Apply REINFORCEMENT rule

5θc J(θc) =
∑T

t=1 EP(a1:T;θc)[5θc log P(at|a(t−1):1; θc)R]

Use Monte Carlo approximation with control variate methods, the graident can be
approximated by

Approximation of gradients
1
m

∑m
k=1

∑T
t=15θc log P(at|a(t−1):1; θc)(Rk − b)

Reinforcement learning

8/31



Another example on GAN search6

Reward define
Rt(s, a) = IS(t)− IS(t − 1) + α(FID(t − 1)− FID(t))

The objective loss function

J(π) =
∑

t=0 E(st,at) p(π)R(st, at) = Earchitecture p(π)ISfinal − αFIDfinal

6Yuan Tian et al. (2020). “Off-policy reinforcement learning for efficient and effective GAN
architecture search”. In: Proc. ECCV.

Reinforcement Learning

9/31



Evolution methods
Neuroevolution (already since the 1990s)

• Typically optimized both architecture and weights with evolutionary methods
e.g., Angeline, Saunders, and Pollack 1994; Stanley and Miikkulainen 2002

• Mutation steps, such as adding, changing or removing a layer
e.g., Real, Moore, et al. 2017; Miikkulainen et al. 2017

Evolution

10/31



Regularized / Aging Evolution methods

• Standard evolutionary algorithm e.g. Real, Aggarwal, et al. 2019
But oldest solutions are dropped from the population (even the best)

• State-of-the-art results (CIFAR-10, ImageNet)
Fixed-length cell search space

Regularized / Aging Evolution

11/31



Baysian optimzation methods

• Joint optimization of a vision architecture with 238 hyperparameters with TPE
bergstra2013making

• Auto-Net

• Joint architecture and hyperparameter search with SMAC
• First Auto-DL system to win a competition dataset against human experts

mendoza2016towards

• Kernels for GP-based NAS

• Arc kernel
Swersky, Snoek, and Adams 2013

• NASBOT
Kandasamy et al. 2018

• Sequential model-based optimization

• PNAS
C. Liu et al. 2018

Baysian Optimization

12/31



Overview of SNAS 7

Continous relaxiation
Ō(i,j)(x) =

∑
o∈O

exp(α(i,j)
O )∑

o′∈O exp(α(i,j)
o′ )

o(x)

7Hanxiao Liu, Karen Simonyan, and Yiming Yang (2019). “DARTS: Differentiable architecture
search”. In: Proc. ICLR

DARTS

13/31



A bi-level optimization

min
α
Lval(w∗(α), α)

s.t. w∗(α) = argmin
w
Ltrain(w, α)

Algorithm 1 DARTS algorithm

Require: Create a mixed operation Ô(i,j) parameterized by α(i,j) for each edge (i, j)
Ensure: The architecture characterized by α

1: while not converged do
2: Update architecture α by descending5αLval(w− ξ 5w Ltrain(w, α), α)
3: (ξ = 0 if using first order approximation)
4: Update weights w by descending5wLtrain(w, α)
5: end while
6: Derive the findal architecture based on the learned α

DARTS

14/31



Overview of SNAS 8

Stochastic NAS
EZ pα(Z)[R(Z)] = EZ pα(Z)[Lθ(Z)]

xj =
∑

i<j Õi,j(xi) =
∑

i<j ZT
i,jOi,j(xi)

where EZ pα(Z)[R(Z)] is the objective loss, Zi,j is a one-hot random variable vector to each
edge (i, j) in the neural network and xj is the intermediate node

8Sirui Xie et al. (2019). “SNAS: stochastic neural architecture search”. In: Proc. ICLR

SNAS

15/31



Apply Gummbel-softmax trick to relax the pα(Z)

Zk
i,j = fαi,j(Gk

i,j) =
exp(

(log αk
i,j+Gk

i,j)

λ )∑n
l=0 exp(

log αl
i,j+Gl

i,j
λ )

where Zi,j is the softened one-hot random variable, αi,j is the architecture
parameter, λ is the temperature of the Softmax function, and Gk

i,j satisfies that

Gumbel distribution
Gk

i,j = − log (− log (Uk
i,j))

where Uk
i,j is a uniform random variable

SNAS

16/31



A comparison between DARTS (i.e., the left) and SNAS (i.e., the right ) 9

Summary

• Deterministic gradients in DARTS and Stochastic gradients in SNAS

• DARTS require that the derived neural network should be retrained while SNAS has
no need

9Sirui Xie et al. (2019). “SNAS: stochastic neural architecture search”. In: Proc. ICLR

Difference between DARTS and SNAS

17/31



Main approaches for making NAS efficient
• Weight inheritance & network morphisms

• Weight sharing & one-shot models

• Discretize methods

• Multi-fidelity optimization
Zela et al. 2018, Runge et al. 2018

• Meta-learning
Wong et al. 2018

Efficient methods

18/31



Network morphisms

Wei et al. 2016

• Change the network structure, but not the modelled function
i.e., for every input the network yields the same output as before applying the
network morphism

• Allow efficient moves in architecture space

Network morphisms

19/31



Cai, Chen, et al. 2017; Elsken, J. Metzen, and Hutter 2017; Cortes et al. 2017; Cai,
J. Yang, et al. 2018

Weight inheritance & network morphisms

20/31



Discretize the search space

Discretize the search space (e.g., operators, path, channels etc.) to achieve efficient NAS
algorithms

Learning both weight parameters and binarized architecture parameters 10

10Han Cai, Ligeng Zhu, and Song Han (2019). “ProxylessNAS: Direct neural architecture search
on target task and hardware”. In: Proc. ICLR

Discretize methods

21/31



Another example: PC-DARTS

Overview of PC-DARTS. 11

11Yuhui Xu et al. (2020). “PC-DARTS: Partial channel connections for memory-efficient
differentiable architecture search”. In: Proc. ICLR

Discretize methods

22/31



Partial channel connection
f PC
i,j (xi; Si,j) =

∑
o∈O

expαo
i,j∑

o′∈O expαo′
i,j
· (Si,j ∗ xi) + (1− Si,j ∗ xi)

where Si,j defines a channel sampling mask, which assigns 1 to selected channels and 0 to
masked ones.

Edge normalization

xPC
j =

∑
i<j

expβi,j∑
i′<j expβi′,j

· fi,j(xi)

Edge normalization can mitigate the undesired fluctuation introduced by partial channel
connection

Discretize methods

23/31



NAS Benchmark



The motivation
NAS algorithms are hard to reproduce normally

• Some NAS algorithms require months of compute time, making these methods
inaccessible to most researchers

• Different proposed NAS algorithms are hard to compare since their different training
procedures and different search spaces

Related works

• Chris Ying et al. (2019). “NAS-Bench-101: Towards reproducible neural architecture
search”. In: Proc. ICML, pp. 7105–7114

• Xuanyi Dong and Yi Yang (2020). “NAS-Bench-102: Extending the scope of
reproducible neural architecture search”. In: Proc. ICLR

Benchmark

25/31



The stem of the search space
Operation on node

The stem is composed of three cells, followed by a downsampling layer. The
downsampling layer halves the height and width of the feature map via max-pooling and
the channel count is doubled. The pattern are repeated three times, followed by global
average pooling and a final dense softmax layer. The initial layer is a stem consisting of
one 3× 3 convolution with 128 output channels.

NAS-Bench-101

26/31



The space of cell architectures is a directed acyclic graph on V nodes and E edges, each
node has one of L labels, representing the corresponding operation. The constraints on the
search space

The search space

• L = 3

• 3× 3 convolution
• 1× 1 convolution
• 3× 3 max-pool

• V ≤ 7

• E ≤ 9

• input node and output node are pre-defined on two of V nodes

Encoding is implemented as a 7× 7 upper-triangular binary matrix, by de-duplication and
verification, there are 423, 000 neural network architectures

NAS-Bench-101

27/31



The dataset of NAS-Bench-101 is a mapping from the (A,Epoch, trial#) to
• Training accuracy

• Validation accuracy

• Testing accuracy

• Training time in seconds

• Number of trainable parameters

Applications

• Compare different NAS algorithms

• Research on generalization abilities of NAS algorithms

NAS-Bench-101

28/31



Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural cell with 4 nodes. Each
cell is a directed acyclic graph, where each edge is associated with an operation selected from a predefined
operation as shown in Bottom-right

Comparison between NAS-Bench-101 and NAS-Bench-201

NAS-Bench-101 uses Operation on node while NAS-Bench-201 uses Operation on edge as
its search space

#architectures #datasets ‖O‖ Search space constraint Supported NAS alogrithms Diagnostic information
NAS-Bench-101 510M 1 3 constrain #edges partial -
Nas-Bench-201 15.6K 3 5 no constraint all fine-grained info. (e.g., #params, FLOPs, latency)

NAS-Bench-201

29/31



Estimation Strategy



Strategy

• Task specific

• Classficiation tasks
e.g., accuracy, error rate, etc.

• Segmentation tasks
e.g., pixel accuracy, MIoU

• Generation tasks
e.g., Inception Score, Frechet Inception Score, etc.

• Latency considered factors

• #FLOPs
• #Parameters

Tips

Different NAS methods can incorporate diverse factors into search consideration

Estimation strategy

31/31


	Search Space Design
	Blackbox Optimization
	NAS as a hyperparameter optimization
	Reinforcement Learning
	Evolution methods
	Regularized methods
	Baysian Optimization
	Differentiable search
	Efficient methods

	NAS Benchmark
	Estimation strategy

