CMSC 5743

Efficient Computing of Deep Neural Networks

Lecture 11: Network Architecture Search

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: September 12, 2021)

Fall 2021

Basic architecture search

Each node in the graphs corresponds to a layer in a neural network '

!Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A
survey”. In: [MLR 20.55, pp. 1-21 2/31

Cell-based search

input

Normal cell and reduction cell can be connected in different order?

“Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A
survey”. In: JMLR 20.55, pp. 1-21 3/31

Graph-based search space

Randomly wired neural networks generated by the classical Watts-Strogatz model ®

3Saining Xie et al. (2019). “Exploring randomly wired neural networks for image recognition”.
In: Proc. ICCV, pp. 1284-1293 4/31

Blackbox Optimization

=
P

NAS as hyperparameter optimization

3

E2
= N
£3
3

Select one Select second
hidden state hidden state

\

Select operation for
first hidden state

Select operation for Select method to
second hidden state. combine hidden state

\

!‘LI
L«JHJHJ\,

; repeat B times {

controller
hidden layer
_ -

Controller architecture for recursively constructing one block of a convolutional cell 4

Features
° 5 categorical choices for N block

2 categorical choices of hidden states, each with domain 0,1, ...,N — 1
2 categorical choices of operations

1 categorical choices of combination method

Total number of hyperparameters for the cell: 5B (with B = 5 by default)

¢ Unstricted search space

¢ Possible with conditional hyperparameters
(but only up to a prespectified maximum number of layers)
¢ Example: chain-structured search space
¢ Top-level hyperparameter: number of layers L
¢ Hyperparameters of layer K conditional on L > k

6/31

Reinforcement learning

Sample architecture A
with probability p

[)

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

Overview of the reinforcement learning method with RNN °

Reinforcement learning with a RNN controller

® State-of-the-art results for CIFAR-10, Penn Treebank

® Large computation demands: 800 GPUs for 3-4 weeks, 12, 800 archtectures
evaluated

SBarret Zoph and Quoc Le (2017). “Neural Architecture Search with Reinforcement Learning”.
In: Proc. ICLR 7/31

Reinforcement learning

Reinforcement learning with a RNN controller

J(6c) = Epay.r:00[R]
where R is the reward (e.g., accuracy on the validation dataset)

Apply REINFORCEMENT rule
Vo (0c) = 31—t Epayri0.) [Ve, 10g P(as|ag_1y.15 60c)R]

Use Monte Carlo approximation with control variate methods, the graident can be
approximated by

Approximation of gradients
L S Ve, log P(a:|ag_1)a; 6c) (R — b)

8/31

Reinforcement Learning

Another example on GAN search®

s s |
Off-policy reinforcment learning module for GANs architecture search > Off-policy data
]

I
New [
H Action [Cell i Memory Buffer
T T e a1
i ; (O (o) (Upsomple) (Shoricut] (Csiin] i Istte acton rewerdnent stae]
R R e e e e A e e H
i) i
1 | [state.action.reward,next state]
! Policy Network -
1 Previous [state,action reward,next state]
|) Cells _J
! 5 Hl
! O @) o i o
current current progressive : - : i
| ot oo [Fom)i |[seastonmovarsron oo
1 : Cells __J 1
Ly’ "
| State + I [[state,action,reward,next state]
1 U

Reward define
Ri(s,a) = IS(t) — IS(t — 1) 4+ a(FID(t — 1) — FID(t))

The objective loss function

J(m) = >0 1—0 Espa) pmyR(5t,) = Borenitecture p(re) ISfinat — @FIDfiga

SYuan Tian et al. (2020). “Off-policy reinforcement learning for efficient and effective GAN
architecture search”. In: Proc. ECCV. 9/31

Evolution

Evolution methods

Neuroevolution (already since the 1990s)

¢ Typically optimized both architecture and weights with evolutionary methods
e.g., Angeline, Saunders, and Pollack 1994; Stanley and Miikkulainen 2002

® Mutation steps, such as adding, changing or removing a layer
e.g., Real, Moore, et al. 2017; Miikkulainen et al. 2017

test accuracy (%)

10/31

Regularized / Aging Evolution

Regularized / Aging Evolution methods

¢ Standard evolutionary algorithm e.g. Real, Aggarwal, et al. 2019
But oldest solutions are dropped from the population (even the best)

¢ State-of-the-art results (CIFAR-10, ImageNet)
Fixed-length cell search space

random search

0.92 Evolution BT o,
e Jﬂ ;_/va—"f"f .

>

9)

@©

.

>

. Q
Comparison of £
evolution, o
RL and =
n

)

[

Q

o

[

11/31

PR LR & PR e Yaval

Baysian Optimization

Baysian optimzation methods

¢ Joint optimization of a vision architecture with 238 hyperparameters with TPE
bergstra2013making

* Auto-Net

¢ Joint architecture and hyperparameter search with SMAC
¢ First Auto-DL system to win a competition dataset against human experts
mendoza2016towards

* Kernels for GP-based NAS

¢ Arc kernel

Swersky, Snoek, and Adams 2013
° NASBOT

Kandasamy et al. 2018

® Sequential model-based optimization
° PNAS
C. Liuetal. 2018
12/31

Overview of SNAS”7

Continous relaxiation
_ (i,f)
(i) (x) = _eplag™)
O (x) EOGO Zoleom’(asﬁ'j))o

(x)

"Hanxiao Liu, Karen Simonyan, and Yiming Yang (2019). “DARTS: Differentiable architecture
search”. In: Proc. ICLR 13/31

A bi-level optimization

min Loy (w* (@), o)
s.t. w*(a) = argmin Ly (w, o)
w

Algorithm 1 DARTS algorithm

Require: Create a mixed operation O(/) parameterized by a(*/) for each edge (i,)
Ensure: The architecture characterized by o

1: while not converged do

2 Update architecture a by descending /o Loa (W — & NV Lirgin(W,), @)

3: (£ = 0if using first order approximation)

4; Update weights w by descending </ Lyyqin (W, @)

5: end while

6: Derive the findal architecture based on the learned «

14/31

SAMPLING

@) H ; >
o a ;
// \
/ “‘ o' 0* 0° o o' 0* 0° o E'
‘ on o o [dlo) oy ofilo o
(n,z].() 0o ©2 0 0 0 1
\ ©3 0 0 0 1 03 0 o Mo
\
A\ ©) 0 0 01 2 w2 o o o i
E wy 0o/1oo0 w3 o o [{lo
@y 0 o [l | 23 01 0 0 N
\) =]
; z® DAG(Z(W) z® DAG(Z®)
ELL]
: 8
Overview of SNAS

Stochastic NAS
Ez po(2)[R(Z)] = Bz p,, (z)[Lo(Z)]

X = Y1 0ij(xi) = Xoi; Z]04(x:)

where Ez ,_ (7)[R(Z)] is the objective loss, Z; ; is a one-hot random variable vector to each

edge (i.]) in the neural network and x; is the intermediate node

8Sirui Xie et al. (2019). “SNAS: stochastic neural architecture search”. In: Proc. I[CLR 15/31

Apply Gummbel-softmax trick to relax the p,(Z)

cou oy

Zi(,] :fa,](Gi]) = .)

I]
og ai,/+ci,j)
A

- 1
g exp(

where Zijis the softened one-hot random variable, «;; is the architecture
parameter,)\ is the temperature of the Softmax function, and G ; satisfies that

Gumbel distribution
Gﬁj = —log (—log (Uf‘]))

where Uf-‘ ; is a uniform random variable

16/31

Difference between DARTS and SNAS

(i) [

1 m

]E[L] - g IE[L]

A comparison between DARTS (i.e., the left) and SNAS (i.e., the right) 9

Summary

¢ Deterministic gradients in DARTS and Stochastic gradients in SNAS

¢ DARTS require that the derived neural network should be retrained while SNAS has
no need 17/31

Efficient methods

Main approaches for making NAS efficient
* Weight inheritance & network morphisms
* Weight sharing & one-shot models
¢ Discretize methods
¢ Multi-fidelity optimization
Zela et al. 2018, Runge et al. 2018

® Meta-learning
Wong et al. 2018

18/31

Network morphisms

Network morphisms
Wei et al. 2016

¢ Change the network structure, but not the modelled function
i.e., for every input the network yields the same output as before applying the
network morphism

¢ Allow efficient moves in architecture space

19/31

Weight inheritance & network morphisms

Cai, Chen, et al. 2017; Elsken, J. Metzen, and Hutter 2017; Cortes et al. 2017; Cai,

J. Yang, et al. 2018
model, model; —
perf. = 82% train perf. =90%
D ——
o“"-\5 | I I O(O“S
\\l“z‘NN pe!
P o
modely modely g forph
ApplyNetMorph v i ~%7 2 pp ph
modelyes; DY | pert =az ﬂ. pert. = 88% 7 modelpesy | ———s
perf. = 82% I 11 I 11 e pert=080 .
I ' = il
\ mOdelnw-agh modclnw_q,‘ \
perf. = 82% train perf. = 84%
I —

I

20/31

Discretize methods

Discretize the search space

Discretize the search space (e.g., operators, path, channels etc.) to achieve efficient NAS
algorithms

Sy Tl PRt Ty el
N POOL Weight CONV o POOL
1SRG~ 380 “Parameters S " el e

x‘k",.-—"" updaleQ \“

update

a B (-} ... ©® «— Architecture Parameters B 5
1 0 :] ... 0 <« Binary Gate (0:prune, 1:keep) — 0 1]
m S @
(1) Update weight parameters fmap notin memory (2) Update architecture parameters

Learning both weight parameters and binarized architecture parameters '°

"Han Cai, Ligeng Zhu, and Song Han (2019). “ProxylessNAS: Direct neural architecture search
on target task and hardware”. In: Proc. I[CLR 21/31

Discretize methods

Another example: PC-DARTS

Partial Channel Connection —

“%

Sample /™

Soz Concat

4
[5o RS

N .
& R

Zoreoexplal)}

[] Edge Normalization
0 Partial Channel LRI
*o Connection

S

Partial Channel fi5 (381

Ak ;-‘/—. D—|;
- X5 S,

x: |, Pa(l:'tlal Cha.nnel f“(L _expB)
onnection T exp(Biry)

\

Xo
55 (%0 So3)

Overview of PC-DARTS. 1!

"yyhui Xu et al. (2020). “PC-DARTS: Partial channel connections for memory-efficient
differentiable architecture search”. In: Proc. I[CLR

22/31

Discretize methods

Partial channel connection
expay ;
i (253 5ij) = Yoco S —oapay, | (Sij* %) + (1= 5ij % x)

where S; ; defines a channel sampling mask, which assigns 1 to selected channels and 0 to
masked ones.

0
o expoy;

Edge normalization

P _ expf,
X = Vi s by fii(%)

Edge normalization can mitigate the undesired ﬂuctuatlon introduced by partial channel
connection

23/31

NAS Benchmark

R

Benchmark

The motivation

NAS algorithms are hard to reproduce normally

¢ Some NAS algorithms require months of compute time, making these methods
inaccessible to most researchers

¢ Different proposed NAS algorithms are hard to compare since their different training
procedures and different search spaces

Related works

¢ Chris Ying et al. (2019). “NAS-Bench-101: Towards reproducible neural architecture
search”. In: Proc. ICML, pp. 7105-7114

¢ Xuanyi Dong and Yi Yang (2020). “NAS-Bench-102: Extending the scope of
reproducible neural architecture search”. In: Proc. ICLR

25/31

NAS-Bench-101

global avg pool

stack 3 @

cell

| downsample] 2i3 @
stack 2 [;eg

| downsample] I @ @

o8

cell @
stack 1 \

| conv stem

The stem of the search space
The stem is composed of three cells, followed by a downsampling layer. The
downsampling layer halves the height and width of the feature map via max-pooling and
the channel count is doubled. The pattern are repeated three times, followed by global
average pooling and a final dense softmax layer. The initial layer is a stem consisting of
one 3 x 3 convolution with 128 output channels.

Operation on node

26/31

NAS-Bench-101

The space of cell architectures is a directed acyclic graph on V nodes and E edges, each
node has one of L labels, representing the corresponding operation. The constraints on the
search space

The search space

e [L=3

® 3 x 3 convolution
® 1 x 1 convolution
¢ 3 x 3 max-pool

s V<7
*E<9

¢ input node and output node are pre-defined on two of V nodes

Encoding is implemented as a 7 x 7 upper-triangular binary matrix, by de-duplication and
verification, there are 423, 000 neural network architectures

27/31

NAS-Bench-101

The dataset of NAS-Bench-101 is a mapping from the (A, Epoch, trial#) to

¢ Training accuracy

Validation accuracy
¢ Testing accuracy

¢ Training time in seconds

Number of trainable parameters
Applications

¢ Compare different NAS algorithms

¢ Research on generalization abilities of NAS algorithms

28/31

NAS-Bench-201

architecture]
f residual block|
image | conv
) s » _
cell cell —> zeroize
Q/\, Q,« ——> skip-connect
— - -) ——=> 1X1 conv

cell cell 3X3 conv
@ Q/T. ——> 3X3 avg pool
N predefined operation set

Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural cell with 4 nodes. Each
cell is a directed acyclic graph, where each edge is associated with an operation selected from a predefined
operation as shown in Bottom-right

Comparison between NAS-Bench-101 and NAS-Bench-201

NAS-Bench-101 uses Operation on node while NAS-Bench-201 uses Operation on edge as
its search space

#architectures | #datasets | [|O]| | Search space constraint | Supported NAS alogrithms Diagnostic information
NAS-Bench-101 510M 1 3 constrain #edges partial E
Nas-Bench-201 15.6K 3 b) no constraint all fine-grained info. (e.g., #params, FLOPs, latency)

29/31

Estimation Strategy

P

Estimation strategy

Strategy

¢ Task specific

¢ Classficiation tasks
e.g., accuracy, error rate, etc.
¢ Segmentation tasks
e.g., pixel accuracy, MloU
¢ Generation tasks
e.g., Inception Score, Frechet Inception Score, etc.

¢ Latency considered factors

° #FLOPs
¢ #Parameters

Tips
Different NAS methods can incorporate diverse factors into search consideration
31/31

	Search Space Design
	Blackbox Optimization
	NAS as a hyperparameter optimization
	Reinforcement Learning
	Evolution methods
	Regularized methods
	Baysian Optimization
	Differentiable search
	Efficient methods

	NAS Benchmark
	Estimation strategy

