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Basic architecture search

Each node in the graphs corresponds to a layer in a neural network '

!Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A
survey”. In: [MLR 20.55, pp. 1-21 2/31



Cell-based search

input

Normal cell and reduction cell can be connected in different order?

“Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A
survey”. In: JMLR 20.55, pp. 1-21 3/31



Graph-based search space

Randomly wired neural networks generated by the classical Watts-Strogatz model ®

3Saining Xie et al. (2019). “Exploring randomly wired neural networks for image recognition”.
In: Proc. ICCV, pp. 1284-1293 4/31



Blackbox Optimization
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NAS as hyperparameter optimization
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Controller architecture for recursively constructing one block of a convolutional cell 4

Features
° 5 categorical choices for N block

2 categorical choices of hidden states, each with domain 0,1, ...,N — 1
2 categorical choices of operations

1 categorical choices of combination method

Total number of hyperparameters for the cell: 5B (with B = 5 by default)

¢ Unstricted search space

¢ Possible with conditional hyperparameters
(but only up to a prespectified maximum number of layers)
¢ Example: chain-structured search space
¢ Top-level hyperparameter: number of layers L
¢ Hyperparameters of layer K conditional on L > k
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Reinforcement learning

Sample architecture A
with probability p

[ )

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ J

Compute gradient of p and
scale it by R to update
the controller

Overview of the reinforcement learning method with RNN °

Reinforcement learning with a RNN controller

® State-of-the-art results for CIFAR-10, Penn Treebank

® Large computation demands: 800 GPUs for 3-4 weeks, 12, 800 archtectures
evaluated

SBarret Zoph and Quoc Le (2017). “Neural Architecture Search with Reinforcement Learning”.
In: Proc. ICLR 7/31



Reinforcement learning

Reinforcement learning with a RNN controller

J(6c) = Epay.r:00[R]
where R is the reward (e.g., accuracy on the validation dataset)

Apply REINFORCEMENT rule
Vo (0c) = 31—t Epayri0.) [ Ve, 10g P(as|ag_1y.15 60c)R]

Use Monte Carlo approximation with control variate methods, the graident can be
approximated by

Approximation of gradients
L S Ve, log P(a:|ag_1)a; 6c) (R — b)
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Reinforcement Learning

Another example on GAN search®

s s |
Off-policy reinforcment learning module for GANs architecture search > Off-policy data
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Reward define
Ri(s,a) = IS(t) — IS(t — 1) 4+ a(FID(t — 1) — FID(t))

The objective loss function

J(m) = >0 1—0 Espa) pmyR(5t, ) = Borenitecture p(re) ISfinat — @FIDfiga

SYuan Tian et al. (2020). “Off-policy reinforcement learning for efficient and effective GAN
architecture search”. In: Proc. ECCV. 9/31



Evolution

Evolution methods

Neuroevolution (already since the 1990s)

¢ Typically optimized both architecture and weights with evolutionary methods
e.g., Angeline, Saunders, and Pollack 1994; Stanley and Miikkulainen 2002

® Mutation steps, such as adding, changing or removing a layer
e.g., Real, Moore, et al. 2017; Miikkulainen et al. 2017

test accuracy (%)

10/31




Regularized / Aging Evolution

Regularized / Aging Evolution methods

¢ Standard evolutionary algorithm e.g. Real, Aggarwal, et al. 2019
But oldest solutions are dropped from the population (even the best)

¢ State-of-the-art results (CIFAR-10, ImageNet)
Fixed-length cell search space

random search
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Baysian Optimization

Baysian optimzation methods

¢ Joint optimization of a vision architecture with 238 hyperparameters with TPE
bergstra2013making

* Auto-Net

¢ Joint architecture and hyperparameter search with SMAC
¢ First Auto-DL system to win a competition dataset against human experts
mendoza2016towards

* Kernels for GP-based NAS

¢ Arc kernel

Swersky, Snoek, and Adams 2013
° NASBOT

Kandasamy et al. 2018

® Sequential model-based optimization
° PNAS
C. Liuetal. 2018
12/31



Overview of SNAS”7

Continous relaxiation
_ (i,f)
(i) (x) = _eplag™)
O (x) EOGO Zoleom’(asﬁ'j))o

(x)

"Hanxiao Liu, Karen Simonyan, and Yiming Yang (2019). “DARTS: Differentiable architecture
search”. In: Proc. ICLR 13/31



A bi-level optimization

min Loy (w* (@), o)
s.t. w*(a) = argmin Ly (w, o)
w

Algorithm 1 DARTS algorithm

Require: Create a mixed operation O(/) parameterized by a(*/) for each edge (i, )
Ensure: The architecture characterized by o

1: while not converged do

2 Update architecture a by descending /o Loa (W — & NV Lirgin(W, ), @)

3: (£ = 0if using first order approximation)

4; Update weights w by descending </ Lyyqin (W, @)

5: end while

6: Derive the findal architecture based on the learned «

14/31



SAMPLING
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Overview of SNAS

Stochastic NAS
Ez po(2)[R(Z)] = Bz p,, (z)[Lo(Z)]

X = Y1 0ij(xi) = Xoi; Z]04(x:)

where Ez ,_ (7)[R(Z)] is the objective loss, Z; ; is a one-hot random variable vector to each

edge (i.]) in the neural network and x; is the intermediate node

8Sirui Xie et al. (2019). “SNAS: stochastic neural architecture search”. In: Proc. I[CLR 15/31



Apply Gummbel-softmax trick to relax the p,(Z)

cou oy

Zi(,] :fa,](Gi]) = . )

I ]
og ai,/+ci,j )
A

- 1
g exp(

where Zijis the softened one-hot random variable, «;; is the architecture
parameter, )\ is the temperature of the Softmax function, and G ; satisfies that

Gumbel distribution
Gﬁj = —log (—log (Uf‘]))

where Uf-‘ ; is a uniform random variable
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Difference between DARTS and SNAS

(i) [

1 m

]E[L] - g IE[L]

A comparison between DARTS (i.e., the left) and SNAS (i.e., the right ) 9

Summary

¢ Deterministic gradients in DARTS and Stochastic gradients in SNAS

¢ DARTS require that the derived neural network should be retrained while SNAS has
no need 17/31



Efficient methods

Main approaches for making NAS efficient
* Weight inheritance & network morphisms
* Weight sharing & one-shot models
¢ Discretize methods
¢ Multi-fidelity optimization
Zela et al. 2018, Runge et al. 2018

® Meta-learning
Wong et al. 2018

18/31



Network morphisms

Network morphisms
Wei et al. 2016

¢ Change the network structure, but not the modelled function
i.e., for every input the network yields the same output as before applying the
network morphism

¢ Allow efficient moves in architecture space

19/31



Weight inheritance & network morphisms

Cai, Chen, et al. 2017; Elsken, J. Metzen, and Hutter 2017; Cortes et al. 2017; Cai,

J. Yang, et al. 2018
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Discretize methods

Discretize the search space

Discretize the search space (e.g., operators, path, channels etc.) to achieve efficient NAS
algorithms
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(1) Update weight parameters fmap notin memory  (2) Update architecture parameters

Learning both weight parameters and binarized architecture parameters '°

"Han Cai, Ligeng Zhu, and Song Han (2019). “ProxylessNAS: Direct neural architecture search
on target task and hardware”. In: Proc. I[CLR 21/31



Discretize methods

Another example: PC-DARTS

Partial Channel Connection —
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Overview of PC-DARTS. 1!

"yyhui Xu et al. (2020). “PC-DARTS: Partial channel connections for memory-efficient
differentiable architecture search”. In: Proc. I[CLR
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Discretize methods

Partial channel connection
expay ;
i (253 5ij) = Yoco S —oapay, | (Sij* %) + (1= 5ij % x)

where S; ; defines a channel sampling mask, which assigns 1 to selected channels and 0 to
masked ones.

0
o expoy;

Edge normalization

P _ expf,
X = Vi s by fii(%)

Edge normalization can mitigate the undesired ﬂuctuatlon introduced by partial channel
connection
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NAS Benchmark
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Benchmark

The motivation

NAS algorithms are hard to reproduce normally

¢ Some NAS algorithms require months of compute time, making these methods
inaccessible to most researchers

¢ Different proposed NAS algorithms are hard to compare since their different training
procedures and different search spaces

Related works

¢ Chris Ying et al. (2019). “NAS-Bench-101: Towards reproducible neural architecture
search”. In: Proc. ICML, pp. 7105-7114

¢ Xuanyi Dong and Yi Yang (2020). “NAS-Bench-102: Extending the scope of
reproducible neural architecture search”. In: Proc. ICLR
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NAS-Bench-101

global avg pool

stack 3 @

cell

| downsample ] 2i3 @
stack 2 [ ;eg

| downsample ] I @ @

o8

cell @
stack 1 \

| conv stem

The stem of the search space
The stem is composed of three cells, followed by a downsampling layer. The
downsampling layer halves the height and width of the feature map via max-pooling and
the channel count is doubled. The pattern are repeated three times, followed by global
average pooling and a final dense softmax layer. The initial layer is a stem consisting of
one 3 x 3 convolution with 128 output channels.

Operation on node

26/31



NAS-Bench-101

The space of cell architectures is a directed acyclic graph on V nodes and E edges, each
node has one of L labels, representing the corresponding operation. The constraints on the
search space

The search space

e [L=3

® 3 x 3 convolution
® 1 x 1 convolution
¢ 3 x 3 max-pool

s V<7
*E<9

¢ input node and output node are pre-defined on two of V nodes

Encoding is implemented as a 7 x 7 upper-triangular binary matrix, by de-duplication and
verification, there are 423, 000 neural network architectures

27/31



NAS-Bench-101

The dataset of NAS-Bench-101 is a mapping from the (A, Epoch, trial#) to

¢ Training accuracy

Validation accuracy
¢ Testing accuracy

¢ Training time in seconds

Number of trainable parameters
Applications

¢ Compare different NAS algorithms

¢ Research on generalization abilities of NAS algorithms

28/31



NAS-Bench-201

architecture]
f residual block|
image | conv
) s » _
cell cell —> zeroize
Q/\, ....... Q,« ——> skip-connect
— - - ) ——=> 1X1 conv

cell cell 3X3 conv
@ ....... Q/T. ——> 3X3 avg pool
N predefined operation set

Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural cell with 4 nodes. Each
cell is a directed acyclic graph, where each edge is associated with an operation selected from a predefined
operation as shown in Bottom-right

Comparison between NAS-Bench-101 and NAS-Bench-201

NAS-Bench-101 uses Operation on node while NAS-Bench-201 uses Operation on edge as
its search space

#architectures | #datasets | [|O]| | Search space constraint | Supported NAS alogrithms Diagnostic information
NAS-Bench-101 510M 1 3 constrain #edges partial E
Nas-Bench-201 15.6K 3 b) no constraint all fine-grained info. (e.g., #params, FLOPs, latency)
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Estimation Strategy
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Estimation strategy

Strategy

¢ Task specific

¢ Classficiation tasks
e.g., accuracy, error rate, etc.
¢ Segmentation tasks
e.g., pixel accuracy, MloU
¢ Generation tasks
e.g., Inception Score, Frechet Inception Score, etc.

¢ Latency considered factors

° #FLOPs
¢ #Parameters

Tips
Different NAS methods can incorporate diverse factors into search consideration
31/31
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