CMSC 5743

Efficient Computing of Deep Neural Networks

Lecture 06: Quantization

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: September 12, 2021)

Fall 2021

Overview

@ Overview

@ Non-differentiable Quantization

® Differentiable Quantization

O Reading List

2/25

Overview

@ Overview

3/25

These slides contain/adapt materials developed by

Hardware for Machine Learning, Shao Spring 2020 @ UCB

8-bit Inference with TensorRT

¢ Junru Wu et al. (2018). “Deep k-Means: Re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions”. In: Proc. ICML

Shijin Zhang et al. (2016). “Cambricon-x: An accelerator for sparse neural networks”.
In: Proc. MICRO. IEEE, pp. 1-12

¢ Jorge Albericio et al. (2016). “Cnvlutin: Ineffectual-neuron-free deep neural network
computing”. In: ACM SIGARCH Computer Architecture News 44.3, pp. 1-13

3/25

Scientific Notation

Decimal representation

mantissa ’//exponent
T~6.02,,x 103

decimal point radix (base)

» Normalized form: no leadings Os (exactly one digit to left of decimal point)
* Alternatives to representing 1/1,000,000,000

* Normalized: 1.0x10°

* Not normalized: 0.1 x10%,10.0 x 1010

4/25

Scientific Notation

Binary representation

mantissa _—exponent
—~1.01,,,x21
“binary point” radix (base)

» Computer arithmetic that supports it called floating point, because it
represents numbers where the binary point is not fixed, as it is for
integers

5/25

Normalized Form

¢ Floating Point Numbers can have multiple forms, e.g.

0.232 x 10* = 2.32 x 10°
=232 x 10?
=2320. x 10°
= 232000. x 102

¢ Itis desirable for each number to have a unique representation => Normalized Form

* We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

¢ [1..2) for BINARY
¢ [1..10) for DECIMAL

6/25

Floating-Point Representation

* Normal format: +1.xxX... X0 2%V Yiwo

3130 23 22 0
[S| Exponent | Significand |

1bit 8 bits 23 bits

* S represents Sign
* Exponent represents y’s
* Significand represents x’s

* Represent numbers as small as
2.0 x 10-38 to as large as 2.0 x 1038

7/25

Floating-Point Representation (FP32)

* IEEE 754 Floating Point Standard
» Called Biased Notation, where bias is number subtracted to get real number
» |IEEE 754 uses bias of 127 for single prec.

» Subtract 127 from Exponent field to get actual value for exponent
» 1023 is bias for double precision

* Summary (single precision, or fp32):
3130 23 22

5| Exponent | Significand
1bit 8 bits 23 bits

¢ (-1)5 x (1 + Significand) x 2(Exponent-127)

8/25

Floating-Point Representation (FP16)

* IEEE 754 Floating Point Standard
 Called Biased Notation, where bias is number subtracted to get real number
» |IEEE 754 uses bias of 15 for half prec.
» Subtract 15 from Exponent field to get actual value for exponent

* Summary (half precision, or fp15):

15 15 10 9 0
IS | Exponent| Significand |
1bit 5 bits 10 bits

*(-1)% x (1 + Significand) x 2(Exponent-15)

9/25

Question:
What is the IEEE single precision number 40C0 00004 in decimal?

10/25

Question:
What is the IEEE single precision number 40C0 00004 in decimal?

¢ Binary: 0100 0000 1100 0000 0000 0000 0000 0000
¢ Sign: +

¢ Exponent: 129 - 127 = +2

Mantissa: 1.100 0000 ..., — 1.5;¢ x 212

— +110.0000 ...,

Decimal Answer = +6.019

10/25

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

11/25

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

* Binary: 1.0... x 271 (in binary)

¢ Exponent: 127 + (-1) = 01111110

Sign bit: 1

Mantissa: 1.000 0000 0000 0000 0000 0000

¢ Binary representation: 1011 1111 0000 0000 0000 0000 0000 0000

11/25

Fixed-Point Arithmetic

* Integers with a binary point and a bias
“slope and bias™:y =s*x + z
* Qm.n: m (# of integer bits) n (# of fractional bits)

s=1,z=0 s=1/4,z2=0 s=4,2=0 s=1.5,z=10
EIEIEISN EQJESEDEN EIEEDNN EOEE -
0 1.5%0 +10
0 0 1 1 0 0 1 1/a 0 0 1 4 0 0 1 1.5*1+10
0 1 0 2 0 1 0 2/4 0 1 0 8 0 1 0 1.5%2+10
0 1 1 3 0 1 1 3/a 0 1 1 12 0 1 1 1.5*3+10
1 0 0 4 1 0 0 1 1 0 0 16 1 0 0 1.5*4+10
1 0 1 5 1 0 1 5/4 1 0 1 20 1 0 1 1.5*5+10
1 1 0 6 1 1 0 6/4 1 1 0o 24 1 1 0 1.5%6+10
1 1 1 7 1 1 1 7/a 1 1 1 28 1 1 1 15*7+10

12/25

Hardware Implications

Multipliers

Sa Sg

Multiplier Example: C=Ax B

e, eg mpa Mg

me

Floating-point multiplier

Fixed-point multiplier

13/25

- @z

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

...
Do we really need bias?

Two matrices:

A = scale A * QA + bias A
B = scale B * OB + bias B

Let’s multiply those 2 matrices:
A * B = scale A * scale B * QA * QOB +
scale A * QA * bias B +

scale B * OB * bias A +
bias A * bias B

- @z

Do we really need bias?

Two matrices:

A = scale A * QA + biasA
B = scale B * OB + bias B

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB +

scale A * OA * hias B +
sga;e_g * OB * bjas_A +

...
Do we really need bias? No!

Two matrices:

A = scale A * QA
B = scale B * QOB

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB

- @z

Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

MINIMUM QUANTIZED VALUE

Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]

If use [-127, 127], s =%

Range is symmetric

1/256 of int8 range is not used. 1/16 of int4 range is not used

If use full range [-128, 127], s = 128

a

Values should be quantized to 128 will be clipped to 127

Asymmetric range may introduce bias

18 <AnviDIA

EXAMPLE OF QUANTIZATION BIAS

05
A=[-22 -11 11 22],B= 8-3 LAB =0
0.5

8bit scale quantization, use [-128, 127]. s

=128/2.2, 55=128/0.5

127
[- —-64 64 127] = —127
127

Dequantize -127 will get -0.00853. A small bias is introduced towards -«

EXAMPLE OF QUANTIZATION BIAS

A=[-22 -11 11 22],B= Igg‘ JAB =0

8-bit scale quantization, use [-127, 127]. s,=127/2.2, sg=127/0.5

127
[-127 —64 64 127]+
127

Dequantize 0 will get 0

MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

MATRIX MULTIPLY EXAMPLE

(—1.54 0.22) . (0.35)

—0.65
—0.26 0.65 —0.51 (04 1)

—0.423
8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

The result has an overall scale of 63.5* . We can dequantize back to float
(—5222) . _ (—0.648)
—3413 63.5 * —0.423

REQUANTIZE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second
(—98 14) " A4) _ (—5222)
—-17 41 —65 —3413
Requantize output to a different quantized representation with fp range [-3, 3]:

_ 127/3 _
(_giﬁ) * 635%127 (—2573)

Overview

@ Non-differentiable Quantization

14/25

Greedy Layer-wise Quantization!

Quantization flow

¢ For a fixed-point number, it representation is:
bw—1

n=Y Bi-27.2,
i=0

where bw is the bit width and f; is the fractional length which is dynamic for different
layers and feature map sets while static in one layer.

° Weight quantization: find the optimal f; for weights:
fi=arg n}inz [Wioat — W(bw, fi),
1

where W is a weight and W(bw, f) represents the fixed-point format of W under the
given bw and f;.

!Jiantao Qiu et al. (2016). “Going deeper with embedded fpga platform for convolutional neural
network”. In: Proc. FPGA, pp. 26-35. 14/25

Greedy Layer-wise Quantization

Quantization flow

* Feature quantization: find the optimal f;
for features:

fi=arg H}Ilnz |xﬁ0at —x*(bw,)],

where xT represents the result of a layer
when we denote the computation of a
layerasx™ = A - x.

[Input images J [CNN model]
J I

¥

Weight quantization phase

Weight dynamic range analysis

~

| Weight quantization configuration

i
Data quantization phase
Fixed-point CNN model Floating-point CNN model
[Layer 1 | [Layer 1 |

[3

[Feature maps —~ Jemrmg—— " Feature mas]
~Dynamic range| analysis and finding,
*_optimal quantization strategy

| Feature maps et Feature maps |
v 3

| Layer N | | Layer N |

1

Weight and data quantization configuration

15/25

Dynamic-Precision Data Quantization Results

Network

Data Bits 16 16 8 8 8

Weight Bits Single-float 16 8 8 8 8
Data Precision N/A 22 22 Impossible 252" Dynamic Dynamic
Weight Precision N/A 215 27 Impossible 27 Dynamic Dynamic

Top-1 Accuracy 68.1% 68.0% 53.0% Impossible 28.2% 66.6% 67.0%

Top-5 Accuracy 88.0% 87.9% 76.6% Impossible 49.7% 87.4%
[Network | CaffeNet VGG16-SVD

Data Bits Single-float 16 8 Single-float 16 8
Weight Bits Single-float 16 8 Single-float 16 8or4
Data Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Weight Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Top-1 Accuracy 53.9% 53.9% 53.0% 68.0% 64.6% 64.1%
Top-5 Accuracy 77.7% 77.1% 76.6% 88.0% 86.7% 86.3%

16/25

Industrial Implementations — Nvidia TensorRT

No Saturation Quantization — INT8 Inference

° o ‘ion: map |max| to 127

-|max| 0.0 - +|max|
969030 —96—96—96——96-969¢—69¢

3¢ 99¢3¢ 3¢ 3¢ J0BC 3¢
-127 0: 127

Map the maximum value to 127, with unifrom step length.

Suffer from outliers.

17/25

Industrial Implementations — Nvidia TensorRT

Saturation Quantization — INT8 Inference

above |threshold| to 127

AT 0.0 - +[T|
BRI IR B B

$3 98 98 3¢ %088 98¢
-127 0: 127

Set a threshold as the maxiumum value.
Divide the value domain into 2048 groups.
Traverse all the possible thresholds to find the best one with minimum KL

divergence. 18/25

Industrial Implementations — Nvidia TensorRT

Relative Entropy of two encodings

® INT8 model encodes the same information as the original FP32 model.
¢ Minimize the loss of information.

¢ Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative
entropy or information divergence).

® P, Q - two discrete probability distributions:

N

Di.(P||Q) = Y " P(x;) log

i=1

P(x;)
Q(x:)

¢ Intuition: KL divergence measures the amount of information lost when
approximating a given encoding.

19/25

Overview

® Differentiable Quantization

20/25

Straight-Through Estimator (STE)?

¢ A straight-through estimator is a way of estimating gradients for a threshold
operation in a neural network.

¢ The threshold could be as simple as the following function:

f(X)={1’ .

0, else

¢ The derivate of this threshold function will be 0 and during back-propagation, the
network will learn anything since it gets 0 gradients and the weights won't get
updated.

2Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). “Estimating or propagating
gradients through stochastic neurons for conditional computation”. In: arXiv preprint
arXiv:1308.3432. 20/25

PArameterized Clipping acTivation Function (PACT)?

® Anew activation quantization scheme in which the activation function has a
parameterized clipping level a.

® The clipping level is dynamically adjusted vias stochastic gradient descent
(SGD)-based training with the goal of minimizing the quantization error.

¢ In PACT, the convolutional ReLU activation function in CNN is replaced with:

0, x € (00,0)
fxX)=05(x|—|x—a|+a)=qx x€0,a)
a, X € [a,+00)

where « limits the dynamic range of activation to [0, a].

3]ungwook Choi et al. (2019). “Accurate and efficient 2-bit quantized neural networks”. In:
Proceedings of Machine Learning and Systems 1. 21/25

PArameterized Clipping acTivation Function (PACT)

¢ The truncated activation output is the linearly quantized to k-bits for the dot-product
computations:
-1«
=round (y - ——) - =——
* With this new activation function, « is a variable in the loss function, whose value
can be optimized during training.

¢ For back-propagation, gradient % can be computed using STE to estimate % as 1.

y=05(x| = |x —a|l + a)
a ay
Jda

a X a X

PACT activation function and its gradient.

22/25

Better Gradients

Is Straight-Through Estimator (STE) the best?

y=05(x| - |x —a|l + a)

Jda

a X a X

PACT activation function and its gradient.

® Gradient mismatch: the gradients of the weights are not generated using the value of
weights, but rather its quantized value.

¢ Poor gradient: STE fails at investigating better gradients for quantization training.

23/25

Knowledge Distillation-Based Quantization*

* Knowledge distillation trains a student model under the supervision of a well
trained teacher model.

¢ Regard the pre-trained FP32 model as the teacher model and the quantized models
as the student models.

L(z; Wr, Wa) = aH(y,p") + BH(y,p*) + vH(=",p") ¢h)
where, W and W4 are the parameters of the teacher and the student (apprentice) network, respec-

tively, y is the ground truth, (-) denotes a loss function and, o, 8 and are weighting factors to
prioritize the output of a certain loss function over the other.

Teacher network

p

U
N
T T
x | [z p
§ —
\
2
0 Hard
Input image Knowledge Ia;el
x Apprentice network distillation
Wa
/—/%

Filter bank

24/25
A A cf AL 1 1IN 11 N IMAAFN A A et TTr 111 T a1 1.

P

Overview

O Reading List

25/25

Further Reading List

¢ Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy (2016). “Fixed point
quantization of deep convolutional networks”. In: Proc. ICML, pp. 2849-2858

¢ Soroosh Khoram and Jing Li (2018). “Adaptive quantization of neural networks”. In:
Proc. ICLR

¢ Jan Achterhold et al. (2018). “Variational network quantization”. In: Proc. I[CLR

¢ Antonio Polino, Razvan Pascanu, and Dan Alistarh (2018). “Model compression via
distillation and quantization”. In: arXiv preprint arXiv:1802.05668

® Yue Yu, Jiaxiang Wu, and Longbo Huang (2019). “Double quantization for
communication-efficient distributed optimization”. In: Proc. NIPS, pp. 44384449

® Markus Nagel et al. (2019). “Data-free quantization through weight equalization and
bias correction”. In: Proc. ICCV, pp. 1325-1334

25/25

	Main Talk
	Overview
	Non-differentiable Quantization
	Differentiable Quantization
	Reading List

