
CMSC 5743
Efficient Computing of Deep Neural Networks

Lecture 05: CUDA Programming

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: October 22, 2021)

Fall 2021



1 GPU Architecture

2 CUDA Programming Model

3 Case Study

Overview

2/54



GPU Architecture



CPU vs GPU

4/54



CPU vs GPU

5/54



CPU vs GPU

6/54



CPU vs GPU

7/54



CPU vs GPU

8/54

Bei Yu
SIMD: single instruction multiple data



GPU Architecture

9/54



Theoretical peak FLOPS comparison

10/54



Memory Hierarchy

11/54



Memory Hierarchy

12/54



Memory Hierarchy

13/54



Memory Hierarchy

14/54



Memory Hierarchy

15/54



Memory Hierarchy

16/54



Memory Hierarchy

17/54



Memory bandwidth comparison

18/54



Nvidia GPU Comparison

19/54



CUDA Programming Model



• SIMT: Single Instruction, Multiple
Threads

• Programmer writes code for a single
thread in simple C program.

• All threads executes the same
code, but can take different paths.

Programming model: SIMT

21/54



• SIMT: Single Instruction, Multiple
Threads

• Programmer writes code for a single
thread in simple C program.

• All threads executes the same
code, but can take different paths.

• Threads are grouped into a block

• Threads within the same block can
synchronize execution

Programming model: SIMT

22/54



• SIMT: Single Instruction, Multiple
Threads

• Programmer writes code for a single
thread in simple C program.

• All threads executes the same
code, but can take different paths.

• Threads are grouped into a block

• Threads within the same block can
synchronize execution

• Blocks are grouped into a grid

• Blocks are independently
scheduled on the GPU, can be
executed in any order.

• A kernel is executed as a grid of blocks
of threads

Programming model: SIMT

23/54



• Each block is executed by one SM and does not migrate.

• Several concurrent blocks can reside on one SM depending on block’s memory
requirement and the SM’s memory resources.

24/54



• A warp consists of 32 thread.

• A warp is the basic schedule unit in kernel execution.

• A thread block consists of 32-thread warps.

• Each cycle, a warp scheduler selects one ready warps and dispatches the warps to
CUDA cores to execute.

Kernel Exectuion

25/54



Control Flow

26/54



Control Flow

27/54



Control Flow

28/54



Control Flow

29/54



Control Flow

30/54



Thread Hierarchy & Memory Hierarchy

31/54



Example: Vector Add

32/54



Example: Vector Add

33/54



Example: Vector Add

34/54



Example: Vector Add

35/54



Example: Vector Add (Host)

36/54



Example: Vector Add (Host)

37/54



• Consider computing the sum of a sliding window over a vector

• Each output element is the sum of input elements within a radius
• Example: image blur kernel

• If radius is 3, each output element is sum of 7 input elements

Example: Sliding Window Sum

38/54

Bei Yu

Bei Yu



A naive implementation

39/54



A naive implementation

40/54



• For each element in the input, how many times it is loaded?

• Each input element is read 7 times!
• Neighboring threads read most of the same elements

• How can we avoid redundant reading of data?

How to improve it?

41/54



• A thread block first cooperatively loads the needed input data into the shared
memory.

Sharing data between threads within a block

42/54



Kernel with shared memory

43/54



Kernel with shared memory

44/54



Case Study: Parallel Reduction



• Sum Reduction: Adding up the elements of an array

• Sequential approach:

1 float sum = 0;
2 for ( int i = 0;i < n;i++ )
3 {
4 sum += array[i];
5 }

Parallel Reduction

46/54



• How can we do this in parallel using threads?

• 1 Create one thread for every pair of elementes
2 All threads add in parallel

• This gives us a bunch of partial sums
3 Repeat from (1) using the partial sums

• Until we have left with a single value

CUDA Programming for Parallel Reduction

47/54



An In-Place Array Implementation

48/54



Synchronization

49/54



Looping through Levels

50/54



• What is the index of each left number?
• 0, 2, 4, 6

• We have:
• level 0: left = id × 2
• level 1: left = id × 4

• What changes between levels?
• stide:

• level 0: stride = 1
• level 1: stride = 2

• We can get left = id × (strides × 2)

Calculating Indices

51/54



• So we have: left = id × (strides × 2)

• If we know left, then: right = left + stride

A General Formula

52/54



1 __global__ void reduce(float *array, int n) {
2 int id = threadIdx.x;
3 int threads;
4 int stride;
5 int left, right;
6 threads = n / 2;
7 for (stride = 1; stride < n; stride *= 2, threads /= 2)
8 { if (id < threads) {
9 left = id * (stride * 2);

10 right = left + stride;
11 array[left] = array[left] + array[right];
12 }
13 __syncthreads();}
14 }

Writing a Kernel

53/54



• Our kernel assumes we have enough threads to run level 0 in a single block

• n
2 threads

• Problem: Max block size on our GPU is 1024 threads

• At level 0, each threads adds 2 elements
• With 1024 threads, we can add a 2048 element array
• Any more, and we need to use another block

• Can we split the summation across multiple blocks?

Limitations to this approach

54/54


	Main Talk
	GPU Architecture
	CUDA Programming Model
	Case Study


