CMSC5743 2021F Homework 2

Due: Nov. 11, 2021
All solutions should be submitted to the blackboard in the format of PDF/MS Word.
Q1 (13\%)
(a) (4\%) Consider a formulation as follows.

$$
\min _{\beta_{1}, \beta_{2}, \beta_{3}} \frac{1}{2}\left\|\left[\begin{array}{c}
1 \\
2
\end{array}\right]-\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]\right\|_{2}^{2}+3\left(\left|\beta_{1}\right|+\left|\beta_{2}\right|+\left|\beta_{3}\right|\right) .
$$

Please transfer above formulation as ADMM formulation form, that is

$$
\begin{array}{lc}
\min _{\boldsymbol{x}, \boldsymbol{z}} & f(\boldsymbol{x})+g(\boldsymbol{z}) \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}=\boldsymbol{c} .
\end{array}
$$

Show that in your ADMM formulation form, $f(\cdot)$ and $g(\cdot)$ are convex.
(b) (7\%) Please use ADMM to handle the formulation in (a). The stopping criterion is set to 2 iterations. All variables are initialized to be 0 .
(c) (2%) Compare the coordinate descent method and ADMM to handle the formulation in (a) by discussing the advantages and disadvantages.

Q2 (12\%)
(a) (4%) Considering the matrix \boldsymbol{A} :

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 2 & 5 & 8 \\
-4 & 3 & -1 & 2
\end{array}\right]
$$

Write down the singular values, and corresponding left and right singular vectors for \boldsymbol{A}.
(b) (4\%) Show \boldsymbol{A} in orthogonal rank 1 form, that is, show \boldsymbol{A} as a sum of outer products that are mutually orthogonal.
(c) (4\%) Show the 2-norm and the Frobenius norm of the error in replacing A by the rank 1 approximation in (b).

Q3 (13\%)
(a) (4\%) Assume $\boldsymbol{A}=\left[\begin{array}{ll}3 & 0 \\ 4 & 5\end{array}\right]$ and rank is 2. Computing Singular Value Decomposition for \boldsymbol{A}, that is $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$.
(b) (4\%) Given a matrix \boldsymbol{A}, prove that $\boldsymbol{A} \boldsymbol{A}^{\top}$ and $\boldsymbol{A}^{\top} \boldsymbol{A}$ have the same singular values.
(c) (5\%) Given a matrix \boldsymbol{A}, prove that $\sigma_{1} \geq|\lambda|_{\max }$, namely, its largest singular value dominates all eigenvalues.

Q4 (12\%)
(a) (4%) Given $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{ccc}5 & 6 & 7 \\ 8 & 9 & 10\end{array}\right]$. Calculate $\boldsymbol{A} \otimes \boldsymbol{B}$ and $\boldsymbol{B} \otimes \boldsymbol{A}$ (Kronecker product).
(b) (4%) Let us have a rank-1 tensor $\boldsymbol{\mathcal { X }}=\left[\begin{array}{cc||cc}1 & \sqrt{2} & \sqrt{2} & 2 \\ \sqrt{2} & 2 & 2 & 2 \sqrt{2}\end{array}\right]$. Calculating $\|\mathcal{X}\|_{F}$ (Frobenius norm)
(c) (4%) Write down the 1 -flattening of \mathcal{X} (1-flattening means only the first dim to flatten).

Q5 (12\%) This exercise provide an example to show the benefit of SVD over Eigen-decomposition.
Suppose $\boldsymbol{A}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$. Assume in real-world scenarios, due to some trouble,
the $A[4,1]$ entry changes from zero to $\frac{1}{60000}$ and mark the new matrix as \boldsymbol{A}^{\prime}. Now \boldsymbol{A}^{\prime} is a full-rank matrix.
(a) (4%) Calculate the eigenvalue of \boldsymbol{A} and \boldsymbol{A}^{\prime}.
(b) (4\%) Calculate the singular value of \boldsymbol{A} and \boldsymbol{A}^{\prime}.
(c) (4%) What do you observe from the calculation results.

Q6 (13\%) Construct a rank-1 matrix \boldsymbol{A} satisfying all the following conditions.

- $\boldsymbol{A} \boldsymbol{v}=12 \boldsymbol{u}$;
- $\boldsymbol{v}=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$;
- $\boldsymbol{u}=\frac{1}{3}\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$.

Q7 (12\%) Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ be a matrix, and let \boldsymbol{A}^{\top} be the transposed matrix of \boldsymbol{A}.
(a) (4\%) Show that both $\boldsymbol{A}^{\top} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{\top}$ are positive semidefinite.
(b) (4\%) Show that $\boldsymbol{A}^{\top} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{\top}$ have exactly the same nonzero eigenvalues.
(c) (4\%) If we know that $m=n$ and \boldsymbol{A} is positive semidefinite, show that the eigenvalues and singular values of \boldsymbol{A} are exactly the same.

Q8 (13\%) Assume that $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n}$ is a matrix, and $\operatorname{tr}(\cdot)$ is the trace function, i.e. $\operatorname{tr}(\boldsymbol{A})=$ $\sum_{i=1}^{n} a_{i i}$ is the sum of diagonal entries.
(a) (3\%) Show that $\|\boldsymbol{A}\|_{F}^{2}=\operatorname{tr}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
(b) (3\%) Assume that $\boldsymbol{M} \in \mathbb{R}^{n}$ is positive semidefinite, show that $\operatorname{tr}(\boldsymbol{M})=\sum_{i=1}^{n} \lambda_{i}$, where $\lambda_{1}, \cdots, \lambda_{n}$ are eigenvalues of \boldsymbol{M}.
(c) (7%) (Hard) You are given the following inequality,

$$
\operatorname{tr}(\boldsymbol{A B}) \leq \sum_{i=1}^{n} \sigma_{i}(\boldsymbol{A}) \sigma_{i}(\boldsymbol{B})
$$

where $\sigma_{1}(\boldsymbol{A}) \geq \cdots \geq \sigma_{n}(\boldsymbol{A})$ and $\sigma_{1}(\boldsymbol{B}) \geq \cdots \geq \sigma_{n}(\boldsymbol{B})$ are singular values of \boldsymbol{A} and \boldsymbol{B}, respectively. Find an optimal solution to the following low rank approximation,

$$
\min _{\substack{\boldsymbol{X} \in \mathbb{R}^{m \times n} \\ \operatorname{rank}(\boldsymbol{X}) \leq k}}\|\boldsymbol{X}-\boldsymbol{Y}\|_{F}^{2}
$$

where matrix $\boldsymbol{Y} \in \mathbb{R}^{m \times n}$ is fixed and has a full rank. The rank upper bound $k \leq \min \{m, n\}$. (Hint: use the results in the above questions, and consider singular values of the two matrices.)

