
CMSC5743 2021F Homework 2

Due: Nov. 11, 2021
Solutions
All solutions should be submitted to the blackboard in the format of PDF/MS Word.

Q1 (13%)

(a) (4%) Consider a formulation as follows.

min
β1,β2,β3

1

2

∥∥∥∥∥∥
[
1
2

]
−
[
3 4 5
6 7 8

]β1β2
β3

∥∥∥∥∥∥
2

2

+ 3(|β1|+ |β2|+ |β3|).

Please transfer above formulation as ADMM formulation form, that is

min
x,z

f(x) + g(z)

s.t. Ax+Bz = c.

Show that in your ADMM formulation form, f(·) and g(·) are convex.
(b) (7%) Please use ADMM to handle the formulation in (a). The stopping criterion is

set to 2 iterations. All variables are initialized to be 0.
(c) (2%) Compare the coordinate descent method andADMM to handle the formulation

in (a) by discussing the advantages and disadvantages.

A (a)

min
β1,β2,β3

1

2

∥∥∥∥∥∥
[
1
2

]
−
[
3 4 5
6 7 8

] β1
β2
β3

∥∥∥∥∥∥
2

2

+ 3 (|β1|+ |β2|+ |β3|)

= min
β

1

2
‖
[
1
2

]
−
[
3 4 5
6 7 8

]
β||22 + 3

3∑
i=1

|βi|

min
β,α

1

2
‖
[
1
2

]
−
[
3 4 5
6 7 8

]
β||22 + 3

3∑
i=1

|αi| st. β − α = 0

(b) The answer is not unique since it relies on your predefined ρ. Let ρ = 1, and initializes
all variables to zero.
Iteration 1:

β1 =

 −0.2598425197 0.188976378
−0.007874015748 0.05118110236
0.2440944882 −0.08661417323

 y


α1 =

 −0.7795275591 0.5669291339
−0.02362204724 0.1535433071
0.7322834646 −0.2598425197

 y


w1 =

 −0.5196850394 0.3779527559
−0.0157480315 0.1023622047
0.4881889764 −0.1732283465

 y


1



Iteration 2:

β2 =

 −0.4772769546 0.3148986299
−0.02985305972 0.06412362791
0.4175708352 −0.1866513731

 y


=

 −0.4772769546 0.3148986299
−0.02985305972 0.06412362791
0.4175708352 −0.1866513731

[ 1
2

]
=

 0.1525203052
0.0983941961
0.044268089


α2 =

 −2.990885982 2.078554157
−0.1368032736 0.4994574978
2.717279435 −1.079639159

 y


=

 −2.990885982 2.078554157
−0.1368032736 0.4994574978
2.717279435 −1.079639159

[ 1
2

]
 1.166222332

0.862111722
0.558001117


w2 =

 1.993923988 −1.385702772
0.09120218243 −0.3329716652
−1.811519623 0.7197594391

 y


=

 1.993923988 −1.385702772
0.09120218243 −0.3329716652
−1.811519623 0.7197594391

[ 1
2

]
=

 −0.777481556−0.574741148
−0.3720007448


(c) Coordinate descent: Easy to implement The algorithm is scalable since no need to

Lasso

! lasso problem:

minimize (1/2)‖Ax − b‖2
2 + λ‖x‖1

! ADMM form:

minimize (1/2)‖Ax − b‖2
2 + λ‖z‖1

subject to x − z = 0

! ADMM:

xk+1 := (AT A + ρI)−1(AT b + ρzk − yk)

zk+1 := Sλ/ρ(x
k+1 + yk/ρ)

yk+1 := yk + ρ(xk+1 − zk+1)

Examples 28
Figure 1: Q1 answer
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read the whole dataset into memory Cannot solve two convex functions problem ADMM:
ADMM is often slow to converge to high accuracy ADMM has a penalty value ρ which
requires to be carefully tuned

Q2 (12%)

(a) (4%) Considering the matrixA:

A =

[
1 2 5 8
−4 3 −1 2

]
.

Write down the singular values, and corresponding left and right singular vectors
forA.

(b) (4%) ShowA in orthogonal rank 1 form, that is, showA as a sum of outer products
that are mutually orthogonal.

(c) (4%) Show the 2-norm and the Frobenius norm of the error in replacing A by the
rank 1 approximation in (b).

A (a) σ1 =
√
62 +

√
1193. Left singular vector:

[
0.981444490820115
0.191746476992005

]
Right singular

vector: 
0.021826804688847
0.258321361638367
0.479923777349034
0.838132944498311


σ2 =

√
62−

√
1193

Left singular vector: [
−0.191746476992005
0.981444490820115

]
Right singular vector: 

−0.785750364850703
0.488687171358743
−0.370245449695075
0.08185059356211


(b) Rank-one form to A ≈ σ1u1v

T
1 + σ2u2v

T
2 where σ1 is the first singular value, u1 is the

first left singular vector, and v1 is the first right singular vector of A

A ≈
[

1.003 1.995 4.999 7.994
−3.999 3 −0.996 2.002

]
(c) 2-norm of the error:

‖A− Â‖2
= 5.24

Frobenius norm of the error:
‖A− Â‖F
= 5.24
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Q3 (13%)

(a) (4%) Assume A =

[
3 0
4 5

]
and rank is 2. Computing Singular Value Decompo-

sition for A, that isA = UΣV >.
(b) (4%) Given a matrixA, prove thatAA> andA>A have the same singular values.
(c) (5%) Given a matrix A, prove that σ1 ≥ |λ|max, namely, its largest singular value

dominates all eigenvalues.

A (a) U = 1√
10

[
1 −3
3 1

]
, Σ =

[ √
45 √

5

]
, and V = 1√

2

[
1 −1
1 1

]
.

(b) Assume A = UΣV >. AA> = UΣV >V ΣU> = UΣ2U>, and A>A =
V ΣU>UΣV > = V Σ2V >. By the above two equations, we can have a conclusion
that AA> andA>A have the same singular values.

(c) Recall that multiplying by an orthogonal matrix (Q) does not change length. In
other words, ‖Qx‖ = ‖x‖ since ‖Qx‖2 = x>Q>Qx = x>x = ‖x‖2. With
A = UΣV >, we can write

‖Ax‖ =
∥∥UΣV >x

∥∥ =
∥∥ΣV >x

∥∥ ≤ σ1
∥∥IV >x∥∥ = σ1‖x‖, (1)

where I is an identity matrix. An eigenvector has ‖Ax‖ = |λ|‖x‖. So Eq. (1) says
that |λ|‖x‖ ≤ σ1‖x‖. Then σ1 ≥ |λ|max.

Q4 (12%)

(a) (4%) Given A =

[
1 2
3 4

]
and B =

[
5 6 7
8 9 10

]
. Calculate A⊗B and B ⊗A

(Kronecker product).

(b) (4%) Let us have a rank-1 tensor X =

[
1
√
2
√
2 2√

2 2 2 2
√
2

]
. Calculating

‖X‖F (Frobenius norm)
(c) (4%) Write down the 1-flattening of X (1-flattening means only the first dim to

flatten).

A (a)A⊗B =


5 6 7 10 12 14
8 9 10 16 18 20
15 18 21 20 24 28
24 27 30 32 36 40

 andB ⊗A =


5 10 6 12 7 14
15 20 18 24 21 28
8 16 9 18 10 20
24 32 27 36 30 40

.
(b) ‖X‖F =

√
12 + (

√
2)2 + (

√
2)2 + 22 + (

√
2)2 + 22 + 22 + (2

√
2)2 = 3

√
3.

(c) X(1) =

[
1
√
2
√
2 2√

2 2 2 2
√
2

]
.

Q5 (12%)This exercise provide an example to show the benefit of SVDoverEigen-decomposition.

Suppose A =


0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

. Assume in real-world scenarios, due to some trouble,
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the A[4, 1] entry changes from zero to 1
60000

and mark the new matrix asA′. NowA′ is a
full-rank matrix.

(a) (4%) Calculate the eigenvalue ofA andA′.
(b) (4%) Calculate the singular value ofA andA′.
(c) (4%) What do you observe from the calculation results.

A (a) Eigenvalue ofA is 0, 0, 0, 0.
Eigenvalue ofA′ is 1

10
, i
10
, − 1

10
, − i

10
.

(b) Singular Value of A is 3, 2, 1, 0.
Singlar value ofA′ is 3, 2, 1, 1

60000
.

(c) The change of the singular value is more stable even if the entry inA change.

Q6 (13%) Construct a rank-1 matrixA satisfying all the following conditions.

• Av = 12u;

• v =
1

2


1
1
1
1

;

• u =
1

3

 2
2
1

.
A A matrix with Av = 12u would have u in its column space. Since rank of matrix A is

1, A = uw> for some vector w. Since v is a unit vector and Av = 12uv>v, then

A = 12uv> =

 4 4 4 4
4 4 4 4
2 2 2 2


Q7 (12%) LetA ∈ Rm×n be a matrix, and letA> be the transposed matrix ofA.

(a) (4%) Show that bothA>A andAA> are positive semidefinite.
(b) (4%) Show thatA>A andAA> have exactly the same nonzero eigenvalues.
(c) (4%) Ifwe know thatm = n andA is positive semidefinite, show that the eigenvalues

and singular values ofA are exactly the same.

A Answer

(a) Take any x ∈ Rn, we have x>A>Ax = ‖Ax‖22 ≥ 0. Similarly, take any x ∈ Rm,
we have x>AA>x = ‖A>x‖22 ≥ 0.

(b) Let A>Ax = λx, where λ 6= 0,x 6= 0. Absolutely, Ax 6= 0, otherwise λx = 0,
which is a contradition. Obviously, We have AA>(Ax) = λ(Ax). Therefore, λ
is also an eigenvalue of AA>, and Ax is the corresponding eigenvector. It is very
similar to show that eigenvalues ofAA> are also eigenvalues ofA>A.
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(c) A is PSD, soA>A = A2. LetAx = λx, thenA2x = λAx = λ2x. Therefore λ2
is an eigenvalue of A2. Obviously λ ≥ 0 as A is PSD, therefore the corresponding
singular value σ =

√
λ2 = λ.

Q8 (13%) Assume that A,B ∈ Rn is a matrix, and tr(·) is the trace function, i.e. tr(A) =∑n
i=1 aii is the sum of diagonal entries.

(a) (3%) Show that ‖A‖2F = tr(A>A).
(b) (3%) Assume that M ∈ Rn is positive semidefinite, show that tr(M ) =

∑n
i=1 λi,

where λ1, · · · , λn are eigenvalues ofM .
(c) (7%) (Hard) You are given the following inequality,

tr(AB) ≤
n∑
i=1

σi(A)σi(B),

where σ1(A) ≥ · · · ≥ σn(A) and σ1(B) ≥ · · · ≥ σn(B) are singular values
of A and B, respectively. Find an optimal solution to the following low rank
approximation,

min
X∈Rm×n

rank(X)≤k

‖X − Y ‖2F ,

where matrix Y ∈ Rm×n is fixed and has a full rank. The rank upper bound
k ≤ min{m,n}. (Hint: use the results in the above questions, and consider singular
values of the two matrices.)

A Answer

(a) The i-th diagonal entry of A>A is the squared sum of the i-th column of A, i.e.∑n
k=1 a

2
ki. Then we have

tr(A>A) =
n∑
k=1

n∑
i=1

a2ki = ‖A‖2F .

(b) M is PSD, so we have the eigendecomposition M = QΛQ>, where Λ =
diag(λ1, · · · , λn) is a diagonal matrix with entries being eigenvalues of M , and
Q is orthogonal. Then we have

tr(M ) = tr(QΛQ>) = tr(ΛQ>Q) = tr(Λ) =
n∑
i=1

λi.

(c) (Hard) Assume that the rank of matrix X is r, i.e. rank(X) = r ≤ k. Let
l = min{m,n} be the (full) rank of matrix Y .

‖X − Y ‖2F = tr(X>X + Y >Y )− 2tr(X>Y )

Suppose that singular values of X are σ̃1 ≥ · · · σ̃r > σ̃r+1 = · · · = σ̃l = 0, and
singular values of Y are σ1 ≥ · · ·σl > 0. According to the given inequality, we
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have

‖X − Y ‖2F =
l∑

i=1

σ̃2
i +

l∑
i=1

σ2
i − 2tr(X>Y )

≥
l∑

i=1

σ̃2
i +

l∑
i=1

σ2
i − 2

l∑
i=1

σiσ̃i =
l∑

i=1

(σ̃i − σi)2

=
r∑
i=1

(σ̃i − σi)2 +
l∑

i=r+1

σ2
i ≥

l∑
i=r+1

σ2
i ≥

l∑
i=k+1

σ2
i .

To make the equality hold, we must have r = k, and σ̃i = σi for i = 1, · · · , k.
Assume that the SVDofY isUΣV >whereU andV are orthogonal. Take the firstk
columns ofU asUk, the first k columns ofV asVk, and letΣk = diag(σ1, · · · , σk).
You can check thatX∗ = UkΣkV

>
k is of rank k, and the equality holds. Therefore,

X∗ = UkΣkV
>
k must be an optimal solution.
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