CMSC5743 2021F Homework 2

Due: Nov. 11, 2021

Solutions

All solutions should be submitted to the blackboard in the format of PDF/MS Word.
Q1 (13\%)
(a) (4\%) Consider a formulation as follows.

$$
\min _{\beta_{1}, \beta_{2}, \beta_{3}} \quad \frac{1}{2}\left\|\left[\begin{array}{c}
1 \\
2
\end{array}\right]-\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]\right\|_{2}^{2}+3\left(\left|\beta_{1}\right|+\left|\beta_{2}\right|+\left|\beta_{3}\right|\right) .
$$

Please transfer above formulation as ADMM formulation form, that is

$$
\begin{array}{ll}
\min _{\boldsymbol{x}, \boldsymbol{z}} & f(\boldsymbol{x})+g(\boldsymbol{z}) \\
\text { s.t. } & \boldsymbol{A} \boldsymbol{x}+\boldsymbol{B} \boldsymbol{z}=\boldsymbol{c} .
\end{array}
$$

Show that in your ADMM formulation form, $f(\cdot)$ and $g(\cdot)$ are convex.
(b) (7\%) Please use ADMM to handle the formulation in (a). The stopping criterion is set to 2 iterations. All variables are initialized to be 0 .
(c) (2%) Compare the coordinate descent method and ADMM to handle the formulation in (a) by discussing the advantages and disadvantages.

A (a)

$$
\begin{aligned}
& \min _{\beta_{1}, \beta_{2}, \beta_{3}} \frac{1}{2}\left\|\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]\right\|_{2}^{2}+3\left(\left|\beta_{1}\right|+\left|\beta_{2}\right|+\left|\beta_{3}\right|\right) \\
& =\min _{\beta} \frac{1}{2}\left\|\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right] \beta\right\|_{2}^{2}+3 \sum_{i=1}^{3}\left|\beta_{i}\right| \\
& \min _{\beta, \alpha} \frac{1}{2}\left\|\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right] \beta\right\|_{2}^{2}+3 \sum_{i=1}^{3}\left|\alpha_{i}\right| \quad \text { st. } \beta-\alpha=0
\end{aligned}
$$

(b) The answer is not unique since it relies on your predefined ρ. Let $\rho=1$, and initializes all variables to zero.
Iteration 1:

$$
\begin{aligned}
\beta^{1} & =\left(\left[\begin{array}{cc}
-0.2598425197 & 0.188976378 \\
-0.007874015748 & 0.05118110236 \\
0.2440944882 & -0.08661417323
\end{array}\right] y\right) \\
\alpha^{1} & =\left(\left[\begin{array}{cc}
-0.7795275591 & 0.5669291339 \\
-0.02362204724 & 0.1535433071 \\
0.7322834646 & -0.2598425197
\end{array}\right] y\right) \\
w^{1} & =\left(\left[\begin{array}{cc}
-0.5196850394 & 0.3779527559 \\
-0.0157480315 & 0.1023622047 \\
0.4881889764 & -0.1732283465
\end{array}\right] y\right)
\end{aligned}
$$

Iteration 2:

$$
\left.\left.\begin{array}{l}
\beta^{2}=\left(\left[\begin{array}{cc}
-0.4772769546 & 0.3148986299 \\
-0.02985305972 & 0.06412362791 \\
0.4175708352 & -0.1866513731
\end{array}\right] y\right) \\
=\left(\left[\begin{array}{cc}
-0.4772769546 & 0.3148986299 \\
-0.02985305972 & 0.06412362791 \\
0.4175708352 & -0.1866513731
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) \\
=\left[\begin{array}{l}
0.1525203052 \\
0.0983941961 \\
0.044268089
\end{array}\right] \\
\alpha^{2}=\left(\left[\begin{array}{cc}
-2.990885982 & 2.078554157 \\
-0.1368032736 & 0.4994574978 \\
2.717279435 & -1.079639159
\end{array}\right] y\right) \\
=\left(\left[\begin{array}{cc}
-2.990885982 & 2.078554157 \\
-0.1368032736 & 0.4994574978 \\
2.717279435 & -1.079639159
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right) \\
{\left[\begin{array}{l}
1.166222332 \\
0.862111722
\end{array}\right]} \\
0.558001117
\end{array}\right]\right)
$$

(c) Coordinate descent: Easy to implement The algorithm is scalable since no need to

- lasso problem:

$$
\text { minimize } \quad(1 / 2)\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

- ADMM form:

$$
\begin{array}{ll}
\text { minimize } & (1 / 2)\|A x-b\|_{2}^{2}+\lambda\|z\|_{1} \\
\text { subject to } & x-z=0
\end{array}
$$

- ADMM:

$$
\begin{aligned}
x^{k+1} & :=\left(A^{T} A+\rho I\right)^{-1}\left(A^{T} b+\rho z^{k}-y^{k}\right) \\
z^{k+1} & :=S_{\lambda / \rho}\left(x^{k+1}+y^{k} / \rho\right) \\
y^{k+1} & :=y^{k}+\rho\left(x^{k+1}-z^{k+1}\right)
\end{aligned}
$$

Figure 1: Q1 answer
read the whole dataset into memory Cannot solve two convex functions problem ADMM: ADMM is often slow to converge to high accuracy ADMM has a penalty value ρ which requires to be carefully tuned

Q2 (12\%)
(a) (4%) Considering the matrix \boldsymbol{A} :

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
1 & 2 & 5 & 8 \\
-4 & 3 & -1 & 2
\end{array}\right]
$$

Write down the singular values, and corresponding left and right singular vectors for \boldsymbol{A}.
(b) (4\%) Show \boldsymbol{A} in orthogonal rank 1 form, that is, show \boldsymbol{A} as a sum of outer products that are mutually orthogonal.
(c) (4\%) Show the 2-norm and the Frobenius norm of the error in replacing A by the rank 1 approximation in (b).

A (a) $\sigma_{1}=\sqrt{62+\sqrt{1193}}$. Left singular vector: $\left[\begin{array}{c}0.981444490820115 \\ 0.191746476992005\end{array}\right]$ Right singular vector:

$$
\begin{gathered}
{\left[\begin{array}{l}
0.021826804688847 \\
0.258321361638367 \\
0.479923777349034 \\
0.838132944498311
\end{array}\right]} \\
\sigma_{2}=\sqrt{62-\sqrt{1193}}
\end{gathered}
$$

Left singular vector:

$$
\left[\begin{array}{c}
-0.191746476992005 \\
0.981444490820115
\end{array}\right]
$$

Right singular vector:

$$
\left[\begin{array}{c}
-0.785750364850703 \\
0.488687171358743 \\
-0.370245449695075 \\
0.08185059356211
\end{array}\right]
$$

(b) Rank-one form to $A \approx \sigma_{1} u_{1} v_{1}^{T}+\sigma_{2} u_{2} v_{2}^{T}$ where σ_{1} is the first singular value, u_{1} is the first left singular vector, and v_{1} is the first right singular vector of A

$$
A \approx\left[\begin{array}{cccc}
1.003 & 1.995 & 4.999 & 7.994 \\
-3.999 & 3 & -0.996 & 2.002
\end{array}\right]
$$

(c) 2-norm of the error:

$$
\begin{gathered}
\|A-\widehat{A}\|_{2} \\
=5.24
\end{gathered}
$$

Frobenius norm of the error:

$$
\begin{gathered}
\|A-\widehat{A}\|_{F} \\
=5.24
\end{gathered}
$$

Q3 (13\%)
(a) (4\%) Assume $\boldsymbol{A}=\left[\begin{array}{ll}3 & 0 \\ 4 & 5\end{array}\right]$ and rank is 2. Computing Singular Value Decomposition for \boldsymbol{A}, that is $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$.
(b) (4\%) Given a matrix \boldsymbol{A}, prove that $\boldsymbol{A} \boldsymbol{A}^{\top}$ and $\boldsymbol{A}^{\top} \boldsymbol{A}$ have the same singular values.
(c) (5\%) Given a matrix \boldsymbol{A}, prove that $\sigma_{1} \geq|\lambda|_{\max }$, namely, its largest singular value dominates all eigenvalues.

A (a) $\boldsymbol{U}=\frac{1}{\sqrt{10}}\left[\begin{array}{ll}1 & -3 \\ 3 & 1\end{array}\right], \boldsymbol{\Sigma}=\left[\begin{array}{ll}\sqrt{45} & \\ & \sqrt{5}\end{array}\right]$, and $\boldsymbol{V}=\frac{1}{\sqrt{2}}\left[\begin{array}{ll}1 & -1 \\ 1 & 1\end{array}\right]$.
(b) Assume $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$. $\boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top} \boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\top}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \boldsymbol{U}^{\top}$, and $\boldsymbol{A}^{\top} \boldsymbol{A}=$ $\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\top} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}=\boldsymbol{V} \boldsymbol{\Sigma}^{2} \boldsymbol{V}^{\top}$. By the above two equations, we can have a conclusion that $\boldsymbol{A} \boldsymbol{A}^{\top}$ and $\boldsymbol{A}^{\top} \boldsymbol{A}$ have the same singular values.
(c) Recall that multiplying by an orthogonal matrix (\boldsymbol{Q}) does not change length. In other words, $\|\boldsymbol{Q} \boldsymbol{x}\|=\|\boldsymbol{x}\|$ since $\|\boldsymbol{Q} \boldsymbol{x}\|^{2}=\boldsymbol{x}^{\top} \boldsymbol{Q}^{\top} \boldsymbol{Q} \boldsymbol{x}=\boldsymbol{x}^{\top} \boldsymbol{x}=\|\boldsymbol{x}\|^{2}$. With $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$, we can write

$$
\begin{equation*}
\|\boldsymbol{A} \boldsymbol{x}\|=\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top} \boldsymbol{x}\right\|=\left\|\boldsymbol{\Sigma} \boldsymbol{V}^{\top} \boldsymbol{x}\right\| \leq \sigma_{1}\left\|\boldsymbol{I} \boldsymbol{V}^{\top} \boldsymbol{x}\right\|=\sigma_{1}\|\boldsymbol{x}\|, \tag{1}
\end{equation*}
$$

where \boldsymbol{I} is an identity matrix. An eigenvector has $\|\boldsymbol{A} \boldsymbol{x}\|=|\lambda|\|\boldsymbol{x}\|$. So Eq. (1) says that $|\lambda|\|\boldsymbol{x}\| \leq \sigma_{1}\|\boldsymbol{x}\|$. Then $\sigma_{1} \geq|\lambda|_{\text {max }}$.

Q4 (12\%)
(a) (4%) Given $\boldsymbol{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\boldsymbol{B}=\left[\begin{array}{ccc}5 & 6 & 7 \\ 8 & 9 & 10\end{array}\right]$. Calculate $\boldsymbol{A} \otimes \boldsymbol{B}$ and $\boldsymbol{B} \otimes \boldsymbol{A}$ (Kronecker product).
(b) (4%) Let us have a rank-1 tensor $\mathcal{X}=\left[\begin{array}{cc||cc}1 & \sqrt{2} & \sqrt{2} & 2 \\ \sqrt{2} & 2 & 2 & 2 \sqrt{2}\end{array}\right]$. Calculating $\|\mathcal{X}\|_{F}$ (Frobenius norm)
(c) (4\%) Write down the 1 -flattening of \mathcal{X} (1-flattening means only the first dim to flatten).

A (a) $\boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{cccccc}5 & 6 & 7 & 10 & 12 & 14 \\ 8 & 9 & 10 & 16 & 18 & 20 \\ 15 & 18 & 21 & 20 & 24 & 28 \\ 24 & 27 & 30 & 32 & 36 & 40\end{array}\right]$ and $\boldsymbol{B} \otimes \boldsymbol{A}=\left[\begin{array}{cccccc}5 & 10 & 6 & 12 & 7 & 14 \\ 15 & 20 & 18 & 24 & 21 & 28 \\ 8 & 16 & 9 & 18 & 10 & 20 \\ 24 & 32 & 27 & 36 & 30 & 40\end{array}\right]$.
(b) $\|\mathcal{X}\|_{F}=\sqrt{1^{2}+(\sqrt{2})^{2}+(\sqrt{2})^{2}+2^{2}+(\sqrt{2})^{2}+2^{2}+2^{2}+(2 \sqrt{2})^{2}}=3 \sqrt{3}$.
(c) $\mathcal{X}_{(1)}=\left[\begin{array}{cccc}1 & \sqrt{2} & \sqrt{2} & 2 \\ \sqrt{2} & 2 & 2 & 2 \sqrt{2}\end{array}\right]$.

Q5 (12\%) This exercise provide an example to show the benefit of SVD over Eigen-decomposition.
Suppose $\boldsymbol{A}=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0\end{array}\right]$. Assume in real-world scenarios, due to some trouble,
the $A[4,1]$ entry changes from zero to $\frac{1}{60000}$ and mark the new matrix as \boldsymbol{A}^{\prime}. Now \boldsymbol{A}^{\prime} is a full-rank matrix.
(a) (4%) Calculate the eigenvalue of \boldsymbol{A} and \boldsymbol{A}^{\prime}.
(b) (4\%) Calculate the singular value of \boldsymbol{A} and \boldsymbol{A}^{\prime}.
(c) (4%) What do you observe from the calculation results.

A (a) Eigenvalue of \boldsymbol{A} is $0,0,0,0$.
Eigenvalue of \boldsymbol{A}^{\prime} is $\frac{1}{10}, \frac{i}{10},-\frac{1}{10},-\frac{i}{10}$.
(b) Singular Value of \boldsymbol{A} is $3,2,1,0$.

Singlar value of \boldsymbol{A}^{\prime} is $3,2,1, \frac{1}{60000}$.
(c) The change of the singular value is more stable even if the entry in \boldsymbol{A} change.

Q6 (13\%) Construct a rank-1 matrix \boldsymbol{A} satisfying all the following conditions.

- $\boldsymbol{A} \boldsymbol{v}=12 \boldsymbol{u}$;
- $\boldsymbol{v}=\frac{1}{2}\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$;
- $\boldsymbol{u}=\frac{1}{3}\left[\begin{array}{l}2 \\ 2 \\ 1\end{array}\right]$.

A A matrix with $\boldsymbol{A} \boldsymbol{v}=12 \boldsymbol{u}$ would have \boldsymbol{u} in its column space. Since rank of matrix \boldsymbol{A} is $1, \boldsymbol{A}=\boldsymbol{u} \boldsymbol{w}^{\top}$ for some vector \boldsymbol{w}. Since \boldsymbol{v} is a unit vector and $\boldsymbol{A} \boldsymbol{v}=12 \boldsymbol{u} \boldsymbol{v}^{\top} \boldsymbol{v}$, then $\boldsymbol{A}=12 \boldsymbol{u} \boldsymbol{v}^{\top}=\left[\begin{array}{llll}4 & 4 & 4 & 4 \\ 4 & 4 & 4 & 4 \\ 2 & 2 & 2 & 2\end{array}\right]$

Q7 (12\%) Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ be a matrix, and let \boldsymbol{A}^{\top} be the transposed matrix of \boldsymbol{A}.
(a) (4\%) Show that both $\boldsymbol{A}^{\top} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{\top}$ are positive semidefinite.
(b) (4\%) Show that $\boldsymbol{A}^{\top} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{\top}$ have exactly the same nonzero eigenvalues.
(c) (4\%) If we know that $m=n$ and \boldsymbol{A} is positive semidefinite, show that the eigenvalues and singular values of \boldsymbol{A} are exactly the same.

A Answer
(a) Take any $\boldsymbol{x} \in \mathbb{R}^{n}$, we have $\boldsymbol{x}^{\top} \boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\|\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} \geq 0$. Similarly, take any $\boldsymbol{x} \in \mathbb{R}^{m}$, we have $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{A}^{\top} \boldsymbol{x}=\left\|\boldsymbol{A}^{\top} \boldsymbol{x}\right\|_{2}^{2} \geq 0$.
(b) Let $\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$, where $\lambda \neq 0, \boldsymbol{x} \neq 0$. Absolutely, $\boldsymbol{A} \boldsymbol{x} \neq 0$, otherwise $\lambda \boldsymbol{x}=0$, which is a contradition. Obviously, We have $\boldsymbol{A} \boldsymbol{A}^{\top}(\boldsymbol{A x})=\lambda(\boldsymbol{A x})$. Therefore, λ is also an eigenvalue of $\boldsymbol{A} \boldsymbol{A}^{\top}$, and $\boldsymbol{A} \boldsymbol{x}$ is the corresponding eigenvector. It is very similar to show that eigenvalues of $\boldsymbol{A} \boldsymbol{A}^{\top}$ are also eigenvalues of $\boldsymbol{A}^{\top} \boldsymbol{A}$.
(c) \boldsymbol{A} is PSD, so $\boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{A}^{2}$. Let $\boldsymbol{A} \boldsymbol{x}=\lambda \boldsymbol{x}$, then $\boldsymbol{A}^{2} \boldsymbol{x}=\lambda \boldsymbol{A} \boldsymbol{x}=\lambda^{2} \boldsymbol{x}$. Therefore λ^{2} is an eigenvalue of \boldsymbol{A}^{2}. Obviously $\lambda \geq 0$ as \boldsymbol{A} is PSD, therefore the corresponding singular value $\sigma=\sqrt{\lambda^{2}}=\lambda$.

Q8 (13\%) Assume that $\boldsymbol{A}, \boldsymbol{B} \in \mathbb{R}^{n}$ is a matrix, and $\operatorname{tr}(\cdot)$ is the trace function, i.e. $\operatorname{tr}(\boldsymbol{A})=$ $\sum_{i=1}^{n} a_{i i}$ is the sum of diagonal entries.
(a) (3\%) Show that $\|\boldsymbol{A}\|_{F}^{2}=\operatorname{tr}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$.
(b) (3\%) Assume that $\boldsymbol{M} \in \mathbb{R}^{n}$ is positive semidefinite, show that $\operatorname{tr}(\boldsymbol{M})=\sum_{i=1}^{n} \lambda_{i}$, where $\lambda_{1}, \cdots, \lambda_{n}$ are eigenvalues of \boldsymbol{M}.
(c) (7%) (Hard) You are given the following inequality,

$$
\operatorname{tr}(\boldsymbol{A} \boldsymbol{B}) \leq \sum_{i=1}^{n} \sigma_{i}(\boldsymbol{A}) \sigma_{i}(\boldsymbol{B}),
$$

where $\sigma_{1}(\boldsymbol{A}) \geq \cdots \geq \sigma_{n}(\boldsymbol{A})$ and $\sigma_{1}(\boldsymbol{B}) \geq \cdots \geq \sigma_{n}(\boldsymbol{B})$ are singular values of \boldsymbol{A} and \boldsymbol{B}, respectively. Find an optimal solution to the following low rank approximation,

$$
\min _{\substack{\boldsymbol{X} \in \mathbb{R}^{m \times n} \\ \operatorname{rank}(\boldsymbol{X}) \leq k}}\|\boldsymbol{X}-\boldsymbol{Y}\|_{F}^{2},
$$

where matrix $\boldsymbol{Y} \in \mathbb{R}^{m \times n}$ is fixed and has a full rank. The rank upper bound $k \leq \min \{m, n\}$. (Hint: use the results in the above questions, and consider singular values of the two matrices.)

A Answer
(a) The i-th diagonal entry of $\boldsymbol{A}^{\top} \boldsymbol{A}$ is the squared sum of the i-th column of \boldsymbol{A}, i.e. $\sum_{k=1}^{n} a_{k i}^{2}$. Then we have

$$
\operatorname{tr}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)=\sum_{k=1}^{n} \sum_{i=1}^{n} a_{k i}^{2}=\|\boldsymbol{A}\|_{F}^{2}
$$

(b) \boldsymbol{M} is PSD, so we have the eigendecomposition $\boldsymbol{M}=\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top}$, where $\Lambda=$ $\operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right)$ is a diagonal matrix with entries being eigenvalues of \boldsymbol{M}, and Q is orthogonal. Then we have

$$
\operatorname{tr}(\boldsymbol{M})=\operatorname{tr}\left(\boldsymbol{Q} \boldsymbol{\Lambda} \boldsymbol{Q}^{\top}\right)=\operatorname{tr}\left(\boldsymbol{\Lambda} \boldsymbol{Q}^{\top} \boldsymbol{Q}\right)=\operatorname{tr}(\boldsymbol{\Lambda})=\sum_{i=1}^{n} \lambda_{i}
$$

(c) (Hard) Assume that the rank of matrix \boldsymbol{X} is r, i.e. $\operatorname{rank}(\boldsymbol{X})=r \leq k$. Let $l=\min \{m, n\}$ be the (full) rank of matrix \boldsymbol{Y}.

$$
\|\boldsymbol{X}-\boldsymbol{Y}\|_{F}^{2}=\operatorname{tr}\left(\boldsymbol{X}^{\top} \boldsymbol{X}+\boldsymbol{Y}^{\top} \boldsymbol{Y}\right)-2 \operatorname{tr}\left(\boldsymbol{X}^{\top} \boldsymbol{Y}\right)
$$

Suppose that singular values of \boldsymbol{X} are $\tilde{\sigma}_{1} \geq \cdots \tilde{\sigma}_{r}>\tilde{\sigma}_{r+1}=\cdots=\tilde{\sigma}_{l}=0$, and singular values of \boldsymbol{Y} are $\sigma_{1} \geq \cdots \sigma_{l}>0$. According to the given inequality, we
have

$$
\begin{aligned}
\|\boldsymbol{X}-\boldsymbol{Y}\|_{F}^{2} & =\sum_{i=1}^{l} \tilde{\sigma}_{i}^{2}+\sum_{i=1}^{l} \sigma_{i}^{2}-2 \operatorname{tr}\left(\boldsymbol{X}^{\top} \boldsymbol{Y}\right) \\
& \geq \sum_{i=1}^{l} \tilde{\sigma}_{i}^{2}+\sum_{i=1}^{l} \sigma_{i}^{2}-2 \sum_{i=1}^{l} \sigma_{i} \tilde{\sigma}_{i}=\sum_{i=1}^{l}\left(\tilde{\sigma}_{i}-\sigma_{i}\right)^{2} \\
& =\sum_{i=1}^{r}\left(\tilde{\sigma}_{i}-\sigma_{i}\right)^{2}+\sum_{i=r+1}^{l} \sigma_{i}^{2} \geq \sum_{i=r+1}^{l} \sigma_{i}^{2} \geq \sum_{i=k+1}^{l} \sigma_{i}^{2} .
\end{aligned}
$$

To make the equality hold, we must have $r=k$, and $\tilde{\sigma}_{i}=\sigma_{i}$ for $i=1, \cdots, k$. Assume that the SVD of \boldsymbol{Y} is $\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ where \boldsymbol{U} and \boldsymbol{V} are orthogonal. Take the first k columns of \boldsymbol{U} as \boldsymbol{U}_{k}, the first k columns of \boldsymbol{V} as \boldsymbol{V}_{k}, and let $\boldsymbol{\Sigma}_{k}=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{k}\right)$. You can check that $\boldsymbol{X}^{*}=\boldsymbol{U}_{k} \boldsymbol{\Sigma}_{k} \boldsymbol{V}_{k}^{\top}$ is of rank k, and the equality holds. Therefore, $\boldsymbol{X}^{*}=\boldsymbol{U}_{k} \boldsymbol{\Sigma}_{k} \boldsymbol{V}_{k}^{\top}$ must be an optimal solution.

