
CMSC5743 2021F Homework 1

Due: Oct. 14, 2021

All solutions should be submitted to the blackboard in the format of PDF/MS Word.

Q1 (12%)

(a) (4%)We provide a very simple neural network as shown in Figure 1, please calculate
the result in the blank neuron.

(b) (4%) If we choose to prune one weight, which weight do you choose to achieve the
best result? What’s your evaluation metric?

(c) (4%) If you have a chance to prune any weights, what’s your pruning plan to make
a better tradeoff between accuracy and the number of weights?
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Figure 1: A simple 2-layer neural network

Q2 (13%)

(a) (5%) Some people may argue that why we do not simply train a smaller neural
network instead of pruning a neural network with huge amount of parameters. Have
you thought about this problem? What are the advantages of network pruning over
training a smaller network? Please list two points and provide as much support as
possible.

(b) (4%) If someone want to apply structured pruning of fixed proportion for each layer,
is it necessary?

(c) (4%) If someone want to apply unstructured pruning of unfixed proportion for each
layer, is it necessary?

Q3 (12%) Regularization. In this question, you are going to solve a toy problem. Consider a
function J(x) = (x− 2)2, x ∈ R.

(a) (3%) Find the global minimum of function J(x) + 6x2. Justify your answer.
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(b) (3%) Find the global minimum of function J(x) + 6|x|. Justify your answer.
(c) (3%) Consider the following optimization problem.

min
x∈R

J(α;x) = (x− 2)2 + α|x|.

How should we determine α so that the minimizer is at x = 0?
(d) (3%) How do you get inspired from the above questions about `1, `2 and sparsity?

Please explain briefly.

Q4 (13%) `0-norm. Consider the p-norm (or `p-norm) of a vector x = [x1, · · · , xn]>

‖x‖p =
p
√
|x1|p + |x2|p + · · ·+ |xn|p, (1)

where integer p ≥ 1 and the dimension n is fixed.

(a) (4%) If we have a vector x whose `2-norm ‖x‖2 ≤ 1, will its `1-norm ‖x‖1 be
bounded? Justify your answer.

(b) (4%) Generalize (1) by letting p be any positive number. Show that the following
limit exists, and give the result.

lim
p→0+

|x1|p + |x2|p + · · ·+ |xn|p.

(c) (5%) A vector norm function f(x) must satisfy absolute homogeneity, that is, for
any scalar α and vector x, we must have f(αx) = |α|f(x). Can the result of (b) be
a proper vector norm? Justify your answer.

Q5 (12%)

(a) (3%) A concrete formulation is shown as follows.

min
β1,β2,β3

∥∥∥∥∥∥
[
1
2

]
−
[
3 4 5
6 7 8

]β1β2
β3

∥∥∥∥∥∥
2

2

+ 3(|β1|+ |β2|+ |β3|) + 8(β2
1 + β2

2 + β2
3).

Let β ′
1 = 3β1, β

′
2 = 3β2, β

′
3 = 3β3, please transfer the above formulation as an

equivalent formulation with respect to β ′
1, β

′
2 and β

′
3.

(b) (6%) Considering a more general formulation as follows.

min
β

‖y −Xβ‖2 + λ1‖β‖1 + λ2‖β‖22.

Try to explain or prove how this formulation can be converted into an equivalent
LASSO problem with λ1 and λ2 positive numbers.

(c) (3%) Compare the formulation in (b) and typical LASSO formulation by discussing
the advantages and disadvantages.

Q6 (13%)

2



(a) (3%) Consider the typical LASSO formulation

min
β1,β2,β3

∥∥∥∥∥∥
[
1
2

]
−
[
3 4 5
6 7 8

]β1β2
β3

∥∥∥∥∥∥
2

2

+ 3(|β1|+ |β2|+ |β3|).

Let β ′
1 = 2β1, β

′
2 = 3β2 and β

′
3 = 4β3, please transfer the above formulation as an

equivalent formulation with respect to β ′
1, β

′
2 and β

′
3.

(b) (7%) Consider a formulation as follows.

min
β

(
‖y −Xβ‖22 + λ

p∑
i=1

wi |βi|

)
,

where β = [β1, β2, · · · , βp]> and wi > 0. We expect to apply same algo-
rithms for solving LASSO problems to handle above object function. Considering
that, try to convert the above formulation into the standard LASSO problem (i.e.,
minβ (‖y −Xβ‖2 + λ1‖β‖1)) under a general assumption that wk 6= wj , if k 6= j.

(c) (3%) Compared with the typical LASSO formulation, what are advantages for the
formulation in (b)?

Q7 (10%) Convolution is the most important operation in CNN. As shown in Figure 2, the
input activation tensor is X ∈ RH×W×C . Weight tensor isW ∈ RR×S×C×K . The output
activation tensor is Y ∈ RP×Q×K . Here we set H = W = 5, C = 8, R = S = 3,K = 6
and P = Q = 3. Besides, the stride number is 1 and the padding number is 0.

(a) (2%) Write down direct convolution by C++ language style.
(b) (4%) The loop unrolling is one of loop optimization techniques to make full use

of the hardware on-chip storage resources. Write down the loop unrolling at input
channel level and output channel level, respectively, by C++ language style.

(c) (4%) Sketch the corresponding computing hardware architectures for the two loop
unrolling strategies in (b), respectively.
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Figure 2: Convolution.
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Q8 (15%) Convolution can be equivalently represented as matrix matrix multiplication. Here
we consider a special case: Y = X ·W + V , where Y ∈ RN×K and X ∈ RN×M

are known input and output matrices. V ∈ RN×K is an unknown model error matrix.
W ∈ RM×K is an unknown model coefficient matrix. In particular, indexes of nonzero
elements of each row inW is identical to achieve structure sparsity. Let

Y =


1 2
3 4
5 6
7 8

 ,X =


9 13 17
10 14 18
11 15 19
12 16 20

 ,W =

w11 w12

w21 w22

w31 w32

 .
(a) (7%)Write down the coordinate descentmethod to handle the formulation as follows.

min
W

∥∥∥∥∥∥∥∥

1 2
3 4
5 6
7 8

−

9 13 17
10 14 18
11 15 19
12 16 20

 ·W
∥∥∥∥∥∥∥∥
2

2

+
3∑
i=1

λi ‖wi,·‖2 ,

where wi,· denotes the i-th row inW . λ1 = 1, λ2 = 100 and λ3 = 1. The initial
matrix W (0) = O. The stopping criterion is set to 2 iterations. Please show the
final numerical result.

(b) (8%) Obtaining this structure sparse model coefficient matrix can be formulated as

min
W

∥∥∥∥∥∥∥∥

1 2
3 4
5 6
7 8

−

9 13 17
10 14 18
11 15 19
12 16 20

 ·W
∥∥∥∥∥∥∥∥
2

2

s.t.
3∑
i=1

I [‖wi,·‖ > 0] ≤ 2,

where I[·] denotes the indicator function and ‖·‖ is an any vector norm. In fact,∑3
i=1 I [‖wi,·‖ > 0] denotes the number of nonzero rows in the matrixW . In the

constraint, 2 is given to determine the number of nonzero rows in the matrixW . Or-
thogonal matching pursuit, as a heuristics method, is widely used in one-dimension
sparse vector reconstruction. Please extend the typical orthogonal matching pursuit
to handle the formulation and show the final numerical result.
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