CMSC5743 2021F Homework 1

Due: Oct. 14, 2021
All solutions should be submitted to the blackboard in the format of PDF/MS Word.
Q1 (12\%)
(a) (4\%) We provide a very simple neural network as shown in Figure 1. please calculate the result in the blank neuron.
(b) (4%) If we choose to prune one weight, which weight do you choose to achieve the best result? What's your evaluation metric?
(c) (4%) If you have a chance to prune any weights, what's your pruning plan to make a better tradeoff between accuracy and the number of weights?

Figure 1: A simple 2-layer neural network

Q2 (13\%)
(a) (5%) Some people may argue that why we do not simply train a smaller neural network instead of pruning a neural network with huge amount of parameters. Have you thought about this problem? What are the advantages of network pruning over training a smaller network? Please list two points and provide as much support as possible.
(b) (4\%) If someone want to apply structured pruning of fixed proportion for each layer, is it necessary?
(c) (4%) If someone want to apply unstructured pruning of unfixed proportion for each layer, is it necessary?

Q3 (12\%) Regularization. In this question, you are going to solve a toy problem. Consider a function $J(x)=(x-2)^{2}, x \in \mathbb{R}$.
(a) (3\%) Find the global minimum of function $J(x)+6 x^{2}$. Justify your answer.
(b) (3\%) Find the global minimum of function $J(x)+6|x|$. Justify your answer.
(c) (3%) Consider the following optimization problem.

$$
\min _{x \in \mathbb{R}} J(\alpha ; x)=(x-2)^{2}+\alpha|x| .
$$

How should we determine α so that the minimizer is at $x=0$?
(d) (3\%) How do you get inspired from the above questions about ℓ_{1}, ℓ_{2} and sparsity? Please explain briefly.

Q4 (13\%) ℓ_{0}-norm. Consider the p-norm (or ℓ_{p}-norm) of a vector $\boldsymbol{x}=\left[x_{1}, \cdots, x_{n}\right]^{\top}$

$$
\begin{equation*}
\|\boldsymbol{x}\|_{p}=\sqrt[p]{\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}} \tag{1}
\end{equation*}
$$

where integer $p \geq 1$ and the dimension n is fixed.
(a) (4\%) If we have a vector \boldsymbol{x} whose ℓ_{2}-norm $\|\boldsymbol{x}\|_{2} \leq 1$, will its ℓ_{1}-norm $\|\boldsymbol{x}\|_{1}$ be bounded? Justify your answer.
(b) (4%) Generalize (1) by letting p be any positive number. Show that the following limit exists, and give the result.

$$
\lim _{p \rightarrow 0^{+}}\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\cdots+\left|x_{n}\right|^{p}
$$

(c) (5\%) A vector norm function $f(\boldsymbol{x})$ must satisfy absolute homogeneity, that is, for any scalar α and vector \boldsymbol{x}, we must have $f(\alpha \boldsymbol{x})=|\alpha| f(\boldsymbol{x})$. Can the result of (b) be a proper vector norm? Justify your answer.

Q5 (12\%)
(a) (3%) A concrete formulation is shown as follows.

$$
\min _{\beta_{1}, \beta_{2}, \beta_{3}}\left\|\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]\right\|_{2}^{2}+3\left(\left|\beta_{1}\right|+\left|\beta_{2}\right|+\left|\beta_{3}\right|\right)+8\left(\beta_{1}^{2}+\beta_{2}^{2}+\beta_{3}^{2}\right) .
$$

Let $\beta_{1}^{\prime}=3 \beta_{1}, \beta_{2}^{\prime}=3 \beta_{2}, \beta_{3}^{\prime}=3 \beta_{3}$, please transfer the above formulation as an equivalent formulation with respect to $\beta_{1}^{\prime}, \beta_{2}^{\prime}$ and β_{3}^{\prime}.
(b) (6%) Considering a more general formulation as follows.

$$
\min _{\boldsymbol{\beta}}\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}+\lambda_{2}\|\boldsymbol{\beta}\|_{2}^{2}
$$

Try to explain or prove how this formulation can be converted into an equivalent LASSO problem with λ_{1} and λ_{2} positive numbers.
(c) (3\%) Compare the formulation in (b) and typical LASSO formulation by discussing the advantages and disadvantages.

Q6 (13\%)
(a) (3\%) Consider the typical LASSO formulation

$$
\min _{\beta_{1}, \beta_{2}, \beta_{3}}\left\|\left[\begin{array}{l}
1 \\
2
\end{array}\right]-\left[\begin{array}{lll}
3 & 4 & 5 \\
6 & 7 & 8
\end{array}\right]\left[\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right]\right\|_{2}^{2}+3\left(\left|\beta_{1}\right|+\left|\beta_{2}\right|+\left|\beta_{3}\right|\right) .
$$

Let $\beta_{1}^{\prime}=2 \beta_{1}, \beta_{2}^{\prime}=3 \beta_{2}$ and $\beta_{3}^{\prime}=4 \beta_{3}$, please transfer the above formulation as an equivalent formulation with respect to $\beta_{1}^{\prime}, \beta_{2}^{\prime}$ and β_{3}^{\prime}.
(b) (7%) Consider a formulation as follows.

$$
\min _{\boldsymbol{\beta}}\left(\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{2}^{2}+\lambda \sum_{i=1}^{p} w_{i}\left|\beta_{i}\right|\right)
$$

where $\boldsymbol{\beta}=\left[\beta_{1}, \beta_{2}, \cdots, \beta_{p}\right]^{\top}$ and $w_{i}>0$. We expect to apply same algorithms for solving LASSO problems to handle above object function. Considering that, try to convert the above formulation into the standard LASSO problem (i.e., $\left.\min _{\boldsymbol{\beta}}\left(\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|^{2}+\lambda_{1}\|\boldsymbol{\beta}\|_{1}\right)\right)$ under a general assumption that $w_{k} \neq w_{j}$, if $k \neq j$.
(c) (3%) Compared with the typical LASSO formulation, what are advantages for the formulation in (b)?

Q7 (10\%) Convolution is the most important operation in CNN. As shown in Figure 2, the input activation tensor is $\mathcal{X} \in \mathbb{R}^{H \times W \times C}$. Weight tensor is $\mathcal{W} \in \mathbb{R}^{R \times S \times C \times K}$. The output activation tensor is $\mathcal{Y} \in \mathbb{R}^{P \times Q \times K}$. Here we set $H=W=5, C=8, R=S=3, K=6$ and $P=Q=3$. Besides, the stride number is 1 and the padding number is 0 .
(a) (2\%) Write down direct convolution by C++ language style.
(b) (4\%) The loop unrolling is one of loop optimization techniques to make full use of the hardware on-chip storage resources. Write down the loop unrolling at input channel level and output channel level, respectively, by C++ language style.
(c) (4%) Sketch the corresponding computing hardware architectures for the two loop unrolling strategies in (b), respectively.

Figure 2: Convolution.

Q8 (15\%) Convolution can be equivalently represented as matrix matrix multiplication. Here we consider a special case: $\boldsymbol{Y}=\boldsymbol{X} \cdot \boldsymbol{W}+\boldsymbol{V}$, where $\boldsymbol{Y} \in \mathbb{R}^{N \times K}$ and $\boldsymbol{X} \in \mathbb{R}^{N \times M}$ are known input and output matrices. $\boldsymbol{V} \in \mathbb{R}^{N \times K}$ is an unknown model error matrix. $\boldsymbol{W} \in \mathbb{R}^{M \times K}$ is an unknown model coefficient matrix. In particular, indexes of nonzero elements of each row in \boldsymbol{W} is identical to achieve structure sparsity. Let

$$
\boldsymbol{Y}=\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8
\end{array}\right], \boldsymbol{X}=\left[\begin{array}{ccc}
9 & 13 & 17 \\
10 & 14 & 18 \\
11 & 15 & 19 \\
12 & 16 & 20
\end{array}\right], \boldsymbol{W}=\left[\begin{array}{cc}
w_{11} & w_{12} \\
w_{21} & w_{22} \\
w_{31} & w_{32}
\end{array}\right]
$$

(a) $\mathbf{7 \%}$) Write down the coordinate descent method to handle the formulation as follows.

$$
\min _{\boldsymbol{W}}\left\|\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8
\end{array}\right]-\left[\begin{array}{ccc}
9 & 13 & 17 \\
10 & 14 & 18 \\
11 & 15 & 19 \\
12 & 16 & 20
\end{array}\right] \cdot \boldsymbol{W}\right\|_{2}^{2}+\sum_{i=1}^{3} \lambda_{i}\left\|\boldsymbol{w}_{i, \cdot}\right\|_{2}
$$

 matrix $\boldsymbol{W}^{(0)}=\boldsymbol{O}$. The stopping criterion is set to 2 iterations. Please show the final numerical result.
(b) (8%) Obtaining this structure sparse model coefficient matrix can be formulated as

$$
\begin{array}{ll}
\min _{\boldsymbol{W}} & \left\|\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8
\end{array}\right]-\left[\begin{array}{ccc}
9 & 13 & 17 \\
10 & 14 & 18 \\
11 & 15 & 19 \\
12 & 16 & 20
\end{array}\right] \cdot \boldsymbol{W}\right\|_{2}^{2} \\
\text { s.t. } & \sum_{i=1}^{3} \mathcal{I}\left[\left\|\boldsymbol{w}_{i, \|}\right\|>0\right] \leq 2
\end{array}
$$

where $\mathcal{I}[\cdot]$ denotes the indicator function and $\|\cdot\|$ is an any vector norm. In fact, $\sum_{i=1}^{3} \mathcal{I}\left[\left\|\boldsymbol{w}_{i,},\right\|>0\right]$ denotes the number of nonzero rows in the matrix \boldsymbol{W}. In the constraint, 2 is given to determine the number of nonzero rows in the matrix \boldsymbol{W}. Orthogonal matching pursuit, as a heuristics method, is widely used in one-dimension sparse vector reconstruction. Please extend the typical orthogonal matching pursuit to handle the formulation and show the final numerical result.

