
CMSC5743 2021F Homework 1

Due: Oct. 14, 2021
Solutions
All solutions should be submitted to the blackboard in the format of PDF/MS Word.

Q1 (12%)

(a) (4%)We provide a very simple neural network as shown in Figure 1, please calculate
the result in the blank neuron.

(b) (4%) If we choose to prune one weight, which weight do you choose to achieve the
best result? What’s your evaluation metric?

(c) (4%) If you have a chance to prune any weights, what’s your pruning plan to make
a better tradeoff between accuracy and the number of weights?
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Figure 1: A simple 2-layer neural network

A Answer:

(a) 0.57, 0.25, 0.581

(b) Prune weight 0.3 (between neuron 0.5 and neuron 0.57) Evaluation Metric: The
final output error.

(c) Prune weight 0.7 (between neuron 0.3 and neuron 0.25) and prune weight 0.5
(between neuron 0.3 and neuron 0.25).

Q2 (13%)

(a) (5%) Some people may argue that why we do not simply train a smaller neural
network instead of pruning a neural network with huge amount of parameters. Have
you thought about this problem? What are the advantages of network pruning over
training a smaller network? Please list two points and provide as much support as
possible.
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(b) (4%) If someone want to apply structured pruning of fixed proportion for each layer,
is it necessary?

(c) (4%) If someone want to apply unstructured pruning of unfixed proportion for each
layer, is it necessary?

A Answer:

• Training a smaller network has to specify the network structure in advance, while
pruning can search a suitable network structure under the given parameter amount
condition

• Training a smaller network is always relatively difficult to achieve as good result as
pruning since the latter one can be fine-tuned from a pre-trained big network while
the former one has to be trained from scratch.

• Pruning can push the parameter to low-bit under some conditions which is beneficial
for hardware deployment.

• Unnecessary
• Necessary

Q3 (12%) Regularization. In this question, you are going to solve a toy problem. Consider a
function J(x) = (x− 2)2, x ∈ R.

(a) (3%) Find the global minimum of function J(x) + 6x2. Justify your answer.
(b) (3%) Find the global minimum of function J(x) + 6|x|. Justify your answer.
(c) (3%) Consider the following optimization problem.

min
x∈R

J(α;x) = (x− 2)2 + α|x|.

How should we determine α so that the minimizer is at x = 0?
(d) (3%) How do you get inspired from the above questions about `1, `2 and sparsity?

Please explain briefly.

A Answer.

(a) Let J ′(x) = 14x− 4 = 0, we have x∗ = 2
7
. Then J∗ = 24

7
.

(b) J(x) = x2+2x+4when x ≥ 0, while J(x) = x2−10x+4when x < 0. Therefore,
x∗ = 0 and J∗ = 4.

(c) Similar to (b), the answer is α ≥ 4.
(d) Compared to `2, `1 regularization (or LASSO, or anything similar) leads to sparsity.

Q4 (13%) `0-norm. Consider the p-norm (or `p-norm) of a vector x = [x1, · · · , xn]>

‖x‖p = p
√
|x1|p + |x2|p + · · ·+ |xn|p, (1)

where integer p ≥ 1 and the dimension n is fixed.
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(a) (4%) If we have a vector x whose `2-norm ‖x‖2 ≤ 1, will its `1-norm ‖x‖1 be
bounded? Justify your answer.

(b) (4%) Generalize (1) by letting p be any positive number. Show that the following
limit exists, and give the result.

lim
p→0+

|x1|p + |x2|p + · · ·+ |xn|p.

(c) (5%) A vector norm function f(x) must satisfy absolute homogeneity, that is, for
any scalar α and vector x, we must have f(αx) = |α|f(x). Can the result of (b) be
a proper vector norm? Justify your answer.

A Answer.

(a) Common Cauchy’s inequality,

n(x21 + · · ·+ x2n) ≥ (|x1|+ · · ·+ |xn|)2.

Therefore, ‖x‖1 ≤
√
n.

(b) For some j such that 1 ≤ j ≤ n, if xj 6= 0, then

lim
p→0+

|xj|p = |xj|0 = 1;

otherwise |xj|p = 0. Therefore, the result is the total number of non-zero entries of
x. (In other words, the answer is ‖x‖0).

(c) No. That is because ‖αx‖0 = ‖x‖0 for any α 6= 0.

Q5 (12%)

(a) (3%) A concrete formulation is shown as follows.

min
β1,β2,β3

∥∥∥∥∥∥
[
1
2

]
−
[
3 4 5
6 7 8

]β1β2
β3

∥∥∥∥∥∥
2

2

+ 3(|β1|+ |β2|+ |β3|) + 8(β2
1 + β2

2 + β2
3).

Let β ′
1 = 3β1, β

′
2 = 3β2, β

′
3 = 3β3, please transfer the above formulation as an

equivalent formulation with respect to β ′
1, β

′
2 and β

′
3.

(b) (6%) Considering a more general formulation as follows.

min
β

‖y −Xβ‖2 + λ1‖β‖1 + λ2‖β‖22.

Try to explain or prove how this formulation can be converted into an equivalent
LASSO problem with λ1 and λ2 positive numbers.

(c) (3%) Compare the formulation in (b) and typical LASSO formulation by discussing
the advantages and disadvantages.
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A (a)

min
β′
1,β

′
2,β

′
3

∥∥∥∥∥∥∥∥∥∥


1
2
0
0
0

− 1

3


3 4 5
6 7 8√
8 0 0

0
√
8 0

0 0
√
8


 β′1
β′2
β′3


∥∥∥∥∥∥∥∥∥∥

2

2

+ (β′1|+ |β′2|+ |β′3|)

(b) & (c) This kind of method is so-called elastic net. The objective function of the elastic
net problem

Lenet = minβ
(
‖y −Xβ‖22 + λ2‖β‖22 + λ1‖β‖1

)
= minβ

(∥∥∥∥( y
0

)
−
(

X√
λ2Ip

)
β

∥∥∥∥2
2

+ λ1‖β‖1
)
,

is equivalent to the objective function of the lasso problem with augmented data X ′ =
(1 + λ2)

−1/2 (XT ,
√
λ2Ip

)T and y′ =
(
yT ,0T

)T .
So it can be seen as

Llasso = minβ′

(
‖y′ −X ′β′‖22 + γ ‖β′‖1

)
,

where γ = λ1/
√
1 + λ2 and β′ =

√
1 + λ2β. The minimizer of Llasso (i.e., β̂′) can be

transformed back to the minimizer of Lenet via β̂ = β̂′/
√
1 + λ2. Note that we divide

design matrix by λ1/
√
1 + λ2 to guarantee that each column of X ′ has sum of squares

equalling to 1.
More details can be referred to the following paper: Zou+, “Regularization and Variable
Selection via the Elastic Net”, Journal of the Royal Statistical Society, 2005.
The LASSO is often exploited to perform both variable selection and regularization.
However, due to some limitations, LASSO is not always suitable for variable selection.
For example, if p > N , the LASSO selects at most N variables. Even for N > p
case, if high correlations are observed among columns inX , LASSO tends to select one
variable and ignore the others. Therefore, to overcome the disadvantages of LASSO,
some researchers proposed a new objective function with adding more regularization on
β.

min
β

(
‖y −Xβ‖2 + λ2‖β‖22 + λ1‖β‖1

)
,

where λ1 and λ2 is non-negative. Note that ‖β‖1 =
∑p

j=1 |βj| and ‖β‖22 =
∑p

j=1 βj
2.

Q6 (13%)

(a) (3%) Consider the typical LASSO formulation

min
β1,β2,β3

∥∥∥∥∥∥
[
1
2

]
−
[
3 4 5
6 7 8

]β1β2
β3

∥∥∥∥∥∥
2

2

+ 3(|β1|+ |β2|+ |β3|).

Let β ′
1 = 2β1, β

′
2 = 3β2 and β

′
3 = 4β3, please transfer the above formulation as an

equivalent formulation with respect to β ′
1, β

′
2 and β

′
3.
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(b) (7%) Consider a formulation as follows.

min
β

(
‖y −Xβ‖22 + λ

p∑
i=1

wi |βi|
)
,

where β = [β1, β2, · · · , βp]> and wi > 0. We expect to apply same algo-
rithms for solving LASSO problems to handle above object function. Considering
that, try to convert the above formulation into the standard LASSO problem (i.e.,
minβ (‖y −Xβ‖2 + λ1‖β‖1)) under a general assumption that wk 6= wj , if k 6= j.

(c) (3%) Compared with the typical LASSO formulation, what are advantages for the
formulation in (b)?

A (a)

min
β′
1,β

′
2,β

′
3

∥∥∥∥∥∥
[
1
2

]
−
[
3 4 5
6 7 8

] 2 0 0
0 3 0
0 0 4

−1  β′1
β′2
β′3

∥∥∥∥∥∥
2

2

+3

(
1

2
|β′1|+

1

3
|β′2|+

1

4
|β′3|
)

(b) & (c) Via LASSO, we can obtain the sparse solution. Thus, the prediction error is
reduced. However, this is a double-edged sword. The bias of β increase simultaneously.
Some researchers came up with a solution that add some weights in the regularization
term in LASSO problem. The formulation for LASSO becomes that

minβ

(
‖y −Xβ‖22 + λ

p∑
j=1

wj |βj|
)
, (2)

where wj > 0. Assume a diagonal matrixW =

w1

. . .
wp

, and denote β∗j = wjβj ,

and β∗ =Wβ. Then
y ≈Xβ
≈XW−1Wβ

≈X∗β∗,
(3)

whereX∗ =XW−1. Hence, we can obtain

‖y −Xβ‖22 + λ

p∑
j=1

wj |βj| = ‖y −X∗β∗‖22 + λ ‖β∗‖1 . (4)

When considering the minimizer of the objective function (2), if β̂∗ is the optimal solution
to (4), then β̂ =W−1β̂∗. More details can be referred to the following paper: Zou, “The
adaptive lasso and its oracle properties”, Journal of the American Statistical Association,
2006.

Q7 (10%) Convolution is the most important operation in CNN. As shown in Figure 2, the
input activation tensor is X ∈ RH×W×C . Weight tensor isW ∈ RR×S×C×K . The output
activation tensor is Y ∈ RP×Q×K . Here we set H = W = 5, C = 8, R = S = 3,K = 6
and P = Q = 3. Besides, the stride number is 1 and the padding number is 0.
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(a) (2%) Write down direct convolution by C++ language style.
(b) (4%) The loop unrolling is one of loop optimization techniques to make full use

of the hardware on-chip storage resources. Write down the loop unrolling at input
channel level and output channel level, respectively, by C++ language style.

(c) (4%) Sketch the corresponding computing hardware architectures for the two loop
unrolling strategies in (b), respectively.
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Figure 2: Convolution.

A (a) answer is shown in Figure 3: (b) answer is shown in Figure 4 and Figure 5:

Figure 3: direct convolution

Figure 4: unroll input channel level

(c) answer is shown in Figure 6 and Figure 7:
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Figure 5: unroll output channel level

Figure 6: computing hardware architectures for unroll input channel level

Figure 7: computing hardware architectures for unroll output channel level
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Q8 (15%) Convolution can be equivalently represented as matrix matrix multiplication. Here
we consider a special case: Y = X ·W + V , where Y ∈ RN×K and X ∈ RN×M

are known input and output matrices. V ∈ RN×K is an unknown model error matrix.
W ∈ RM×K is an unknown model coefficient matrix. In particular, indexes of nonzero
elements of each row inW is identical to achieve structure sparsity. Let

Y =


1 2
3 4
5 6
7 8

 ,X =


9 13 17
10 14 18
11 15 19
12 16 20

 ,W =

w11 w12

w21 w22

w31 w32

 .
(a) (7%)Write down the coordinate descentmethod to handle the formulation as follows.

min
W

∥∥∥∥∥∥∥∥

1 2
3 4
5 6
7 8

−

9 13 17
10 14 18
11 15 19
12 16 20

 ·W
∥∥∥∥∥∥∥∥
2

2

+
3∑
i=1

λi ‖wi,·‖2 ,

where wi,· denotes the i-th row inW . λ1 = 1, λ2 = 100 and λ3 = 1. The initial
matrix W (0) = O. The stopping criterion is set to 2 iterations. Please show the
final numerical result.

(b) (8%) Obtaining this structure sparse model coefficient matrix can be formulated as

min
W

∥∥∥∥∥∥∥∥

1 2
3 4
5 6
7 8

−

9 13 17
10 14 18
11 15 19
12 16 20

 ·W
∥∥∥∥∥∥∥∥
2

2

s.t.
3∑
i=1

I [‖wi,·‖ > 0] ≤ 2,

where I[·] denotes the indicator function and ‖·‖ is an any vector norm. In fact,∑3
i=1 I [‖wi,·‖ > 0] denotes the number of nonzero rows in the matrixW . In the

constraint, 2 is given to determine the number of nonzero rows in the matrixW . Or-
thogonal matching pursuit, as a heuristics method, is widely used in one-dimension
sparse vector reconstruction. Please extend the typical orthogonal matching pursuit
to handle the formulation and show the final numerical result.

A 4(a) answer is shown in Figure 8. The answer is not unique since it relies on the variable
ordering and multivalued solution.

In first iteration,W =

 w11 0
0 0
0 0

, we fixW except w11, w11 is the only variable.

L =

∥∥∥∥∥∥∥∥


1 2
3 4
5 6
7 8

−


9 13 17
10 14 18
11 15 19
12 16 20

 ·W 2
2

∥∥∥∥∥∥∥∥+
∑3

i=1 λi‖wi, ·‖2
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Figure 8: Coordinate descent

L =

∥∥∥∥∥∥∥∥


1 2
3 4
5 6
7 8

−


9 13 17
10 14 18
11 15 19
12 16 20

 ·
 w11 0

0 0
0 0


∥∥∥∥∥∥∥∥
2

2

+λ1

√(
|w11|2 + |w12|2

)
+λ2

√(
|w21|2 + |w22|2

)
+λ3

√(
|w31|2 + |w32|2

)

L =

∥∥∥∥∥∥∥∥


1 2
3 4
5 6
7 8

−


9w11 0
10w11 0
11w11 0
12w11 0


∥∥∥∥∥∥∥∥
2

2

+ (1)
√(
|w11|2 + |0|2

)
+ (100)

√
(|0|2 + |0|2) +

(1)
√

(|0|2 + |0|2)

L =

∥∥∥∥∥∥∥∥


1− 9w11 2
3− 10w11 4
5− 11w11 6
7− 12w11 8


∥∥∥∥∥∥∥∥
2

2

+ (1)
√(
|w11|2 + |0|2

)

L =

∥∥∥∥∥∥∥∥


1− 9w11 2
3− 10w11 4
5− 11w11 6
7− 12w11 8


∥∥∥∥∥∥∥∥
2

2

+ w11

L = (1− 9w11)
2 + 22 + (3− 10w11)

2 + 42 + (5− 11w11)
2 + 62 + (7− 12w11)

2 + 82 + w11

L = 204− 355w11 + 446w2
11

We are finding the w11, subject to dL
dw11

= 0. Then w11 = 0.389.
In second iteration,

W =

 w
(1)
11 w12

0 0
0 0

 =

 0.389 w12

0 0
0 0


we fixW , except w12

w12 is the only variable.
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L =

∥∥∥∥∥∥∥∥


1 2
3 4
5 6
7 8

−


9 13 17
10 14 18
11 15 19
12 16 20

 ·W 2
2

∥∥∥∥∥∥∥∥+
∑3

i=1 λi‖wi, ·‖2

L =

∥∥∥∥∥∥∥∥


1 2
3 4
5 6
7 8

−


9 13 17
10 14 18
11 15 19
12 16 20

 ·
 0.389 w12

0 0
0 0


∥∥∥∥∥∥∥∥
2

+ λ1

√(
|0.389|2 + |w12|2

)
+

λ2

√(
|w21|2 + |w22|2

)
+ λ3

√(
|w31|2 + |w32|2

)

L =

∥∥∥∥∥∥∥∥


1 2
3 4
5 6
7 8

−

−0.389 ∗ 9 9w12

−0.389 ∗ 10 10w12

−0.389 ∗ 11 11w12

−0.389 ∗ 12 12w12


∥∥∥∥∥∥∥∥
2

2

+ (1)
√(
| − 0.389|2 + |w12|2

)
+(100)

√
(|0|2 + |0|2) + (1)

√
(|0|2 + |0|2)

L =

∥∥∥∥∥∥∥∥

−2.501 2− 9w12

−0.89 4− 10w12

0.721 6− 11w12

2.332 8− 12w12


∥∥∥∥∥∥∥∥
2

2

+ (1)
√(
|0.389|2 + |w12|2

)
L = (−2.501)2+(2− 9w12)

2+(−0.89)2+(4− 10w12)
2+0.7212+(6− 11w12)

2+2.3322

+ (8− 12w12)
2 +

√
(0.3892 + w2

12)

We are finding x12, subject to dL
dw12

= 0. Then w12 = 0.2942. The final result is

W =

0.389 0.2942
0 0
0 0


4(b) answer is shown in Figure 9. The final result is

Algorithm 1:
Simulatenous orthogonal matching pursuit (SOMP)

Require: Y 2 Rm×K , Φ 2 Rm×n, s � 1
1: Initialization: R(0)  Y and S0  ;
2: t 0
3: while t < s do
4: Determine the atom of Φ to be included in the support:

jt  argmaxj(k(R(t))Tφjk1)
5: Update the support : St+1  St [ {jt}
6: Projection of each measurement vector onto span(ΦSt+1

):

Y (t+1)  ΦSt+1
Φ+

St+1
Y

7: Projection of each measurement vector onto span(ΦSt+1)
⊥ :

R(t+1)  Y � Y (t+1)

8: t t+ 1
9: end while

10: return Ss {Support at last step}

Figure 9: SOMP
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W =

 4.125 4
0 0

−2.125 −2


Tropp+, “Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit”,
JSP’06.
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