
CENG 5030
Energy Efficient Computing

Mo03: Quantization

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: October 30, 2023)

2023 Fall

These slides contain/adapt materials developed by

• Hardware for Machine Learning, Shao Spring 2020 @ UCB

• 8-bit Inference with TensorRT

• Amir Gholami et al. (2021). “A survey of quantization methods for efficient neural
network inference”. In: arXiv preprint

2/42

1 Floating Point Number

2 Integer & Fixed-Point Number

3 Quantization Overview

4 Quantization – First Example

5 Post Training Quantization (PTQ)

6 Quantization Aware Training (QAT)

Overview

3/42

Floating Point Number

Scientific notation: 6.6254× 10−27

• A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)

• Scale factors to determine the position of the decimal point (e.g. 10−27 indicates
position of decimal point and is called the exponent; the base is implied)

• Sign bit

Floating Point Number

5/42

• Floating Point Numbers can have multiple forms, e.g.

0.232× 104 = 2.32× 103

= 23.2× 102

= 2320.× 100

= 232000.× 10−2

• It is desirable for each number to have a unique representation => Normalized Form

• We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

• [1..2) for BINARY
• [1..10) for DECIMAL

Normalized Form

6/42

32-bit, float in C / C++ / Java

Sign of
number :

32 bits

mantissa fraction
23-bit

representation
excess-127
exponent in
8-bit signed

Value represented

0 0 1 0 1 0 . . . 00 0 0 1 0 1 0 0 0

S M

Value represented

(a) Single precision

(b) Example of a single-precision number

E¢

+

+ 1.001010 … 0 2
– 87

x=

1. M 2
E ¢ – 127

x±=

0 signifies
–1 signifies

00101000 à 40

40 – 127 = – 87

IEEE Standard 754 Single Precision

7/42

64-bit, float in C / C++ / Java

52-bit
mantissa fraction

11-bit excess-1023
exponent

64 bits

Sign

S M

(c) Double precision

Value represented 1. M 2
E ¢ – 1023

x±=

E ¢

IEEE Standard 754 Double Precision

8/42

Question:
What is the IEEE single precision number 40C0 000016 in decimal?

9/42

Question:
What is -0.510 in IEEE single precision binary floating point format?

10/42

Exponents of all 0’s and all 1’s have special meaning

• E=0, M=0 represents 0 (sign bit still used so there is ±0)

• E=0, M6=0 is a denormalized number ±0.M ×2−126 (smaller than the smallest
normalized number)

• E=All 1’s, M=0 represents ±Infinity, depending on Sign

• E=All 1’s, M6=0 represents NaN

Special Values

11/42

Format # bits # significant bits macheps # exponent bits exponent range
----------- --------- -------------------------- ---------------- ----------------------- ------------------------------
Single 32 1+23 2-24 (~10-7) 8 2-126 – 2+127 (~10 ±38)
Double 64 1+52 2-53 (~10-16) 11 2-1022 – 2+1023 (~10 ±308)
Double Extended >=80 >=64 <=2-64(~10-19) >=15 2-16382 – 2+16383 (~10 ±4932)
(Double Extended is 80 bits on all Intel machines)
macheps = Machine Epsilon = = 2 – (# significand bits)

l Normalized +/– 1.d…d x 2exp

l Denormalized +/– 0.d…d x 2min_exp à to represent near-zero numbers
e.g. + 0.0000…0000001 x 2-126 for Single Precision

mache

Ref: IEEE Standard 754 Numbers

12/42

Example: Find 1st root of a quadratic equation1

r =
− b +

√
b2 − 4 · a · c)
2 · a

Expected: 0.00023025562642476431

Double: 0.00023025562638524986

Float: 0.00024670246057212353

• Problem is that if c is near zero,
√

b2 − 4 · a · c ≈ b

• Rule of thumb: use the highest precision which does not give up too much speed

1On Sparc processor, Solaris, gcc 3.3 (ANSI C)

Inaccurate Floating Point Operations

13/42

Example: Find 1st root of a quadratic equation1

r =
− b +

√
b2 − 4 · a · c)
2 · a

Expected: 0.00023025562642476431

Double: 0.00023025562638524986

Float: 0.00024670246057212353

• Problem is that if c is near zero,
√

b2 − 4 · a · c ≈ b

• Rule of thumb: use the highest precision which does not give up too much speed

1On Sparc processor, Solaris, gcc 3.3 (ANSI C)

Inaccurate Floating Point Operations

13/42

Integer & Fixed-Point Number

Hex Binary Decimal
0x00000000 0…0000 0

0x00000001 0…0001 1

0x00000002 0…0010 2

0x00000003 0…0011 3

0x00000004 0…0100 4

0x00000005 0…0101 5

0x00000006 0…0110 6

0x00000007 0…0111 7

0x00000008 0…1000 8

0x00000009 0…1001 9

…

0xFFFFFFFC 1…1100

0xFFFFFFFD 1…1101

0xFFFFFFFE 1…1110

0xFFFFFFFF 1…1111 232 - 1
232 - 2

232 - 3
232 - 4

232 - 1

1 1 1 . . . 1 1 1 1 bit

31 30 29 . . . 3 2 1 0 bit position

231 230 229 . . . 23 22 21 20 bit weight

1 0 0 0 . . . 0 0 0 0 - 1

Unsigned Binary Representation

15/42

2’sc binary decimal

1000 -8

1001 -7

1010 -6

1011 -5

1100 -4

1101 -3

1110 -2

1111 -1

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 723 - 1 =

-(23 - 1) =

-23 =

1010

complement all the bits

1011

and add a 1

complement all the bits

0101

and add a 1

0110

Signed Binary Representation

16/42

Shao Spring 2020 © UCBHardware for Machine Learning 14

Fixed-Point Arithmetic
• Integers with a binary point and a bias

• “slope and bias”: y = s*x + z
• Qm.n: m (# of integer bits) n (# of fractional bits)

2^2 2^1 2^0 Val

0 0 0 0
0 0 1 1

0 1 0 2

0 1 1 3
1 0 0 4

1 0 1 5
1 1 0 6

1 1 1 7

2^0 2^-1 2^-2 Val

0 0 0 0
0 0 1 1/4

0 1 0 2/4

0 1 1 3/4
1 0 0 1

1 0 1 5/4
1 1 0 6/4

1 1 1 7/4

2^4 2^3 2^2 Val

0 0 0 0
0 0 1 4

0 1 0 8

0 1 1 12
1 0 0 16

1 0 1 20
1 1 0 24

1 1 1 28

2^2 2^1 2^0 Val

0 0 0 1.5*0 +10
0 0 1 1.5*1 +10

0 1 0 1.5*2 +10

0 1 1 1.5*3 +10
1 0 0 1.5*4 +10

1 0 1 1.5*5 +10
1 1 0 1.5*6 +10

1 1 1 1.5*7 +10

s = 1, z = 0 s = 1/4, z = 0 s = 4, z = 0 s = 1.5, z =10

Shao Spring 2020 © UCBHardware for Machine Learning 14

Fixed-Point Arithmetic
• Integers with a binary point and a bias

• “slope and bias”: y = s*x + z
• Qm.n: m (# of integer bits) n (# of fractional bits)

2^2 2^1 2^0 Val

0 0 0 0
0 0 1 1

0 1 0 2

0 1 1 3
1 0 0 4

1 0 1 5
1 1 0 6

1 1 1 7

2^0 2^-1 2^-2 Val

0 0 0 0
0 0 1 1/4

0 1 0 2/4

0 1 1 3/4
1 0 0 1

1 0 1 5/4
1 1 0 6/4

1 1 1 7/4

2^4 2^3 2^2 Val

0 0 0 0
0 0 1 4

0 1 0 8

0 1 1 12
1 0 0 16

1 0 1 20
1 1 0 24

1 1 1 28

2^2 2^1 2^0 Val

0 0 0 1.5*0 +10
0 0 1 1.5*1 +10

0 1 0 1.5*2 +10

0 1 1 1.5*3 +10
1 0 0 1.5*4 +10

1 0 1 1.5*5 +10
1 1 0 1.5*6 +10

1 1 1 1.5*7 +10

s = 1, z = 0 s = 1/4, z = 0 s = 4, z = 0 s = 1.5, z =10

Fixed-Point Arithmetic

17/42

(a− b) is inaccurate when a >> b or a << b

Decimal Example 1:

• Using 2 significant digits

• Compute mean of 5.1 and 5.2 using the formula (a + b)/2:

• a + b = 10 (with 2 significant digits, 10.3 can only be stored as 10)

• 10/2 = 5.0 (the computed mean is less than both numbers!!!)

Decimal Example 2:

• Using 8 significant digits to compute sum of three numbers:

• (11111113 + (−11111111)) + 7.5111111 = 9.5111111

• 11111113 + ((−11111111) + 7.5111111) = 10.000000

Catastrophic Cancellation

18/42

Catastrophic cancellation occurs when

∣∣∣∣∣
[round(x)× round(y)]− round(x× y)

round(x× y)

∣∣∣∣∣ >> ε

Catastrophic Cancellation

19/42

Multipliers

Shao Spring 2020 © UCBHardware for Machine Learning 16

Hardware Implications

Fixed-Point Multiplier Floating-Point Multiplier

!"#

Floating-point multiplier

Shao Spring 2020 © UCBHardware for Machine Learning 16

Hardware Implications

Fixed-Point Multiplier Floating-Point Multiplier

!"#

Fixed-point multiplier

Hardware Implications

20/42

Fixed-Point Arithmetic

7

Number representation

Granularity

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737–1746.

Case Study: ICML 20152

21/42

Fixed-Point Arithmetic

8

Number representation Multiply-and-ACCumulate

(48-bits)

WL-bit
multiplier

Granularity

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737–1746.

Case Study: ICML 20152

21/42

Fixed-Point Arithmetic: Rounding Modes

9

Round-to-nearest

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737–1746.

Case Study: ICML 20152

21/42

Fixed-Point Arithmetic: Rounding Modes

10

Stochastic rounding Round-to-nearest

� Non-zero probability of rounding to
either or

� Unbiased rounding scheme:
expected rounding error is zero

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737–1746.

Case Study: ICML 20152

21/42

MNIST: Fully-connected DNNs

11

FL 8

FL 10

Float

Lower precision

FL 14

Lower precision

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737–1746.

Case Study: ICML 20152

21/42

MNIST: Fully-connected DNNs

12

� For small fractional lengths (FL < 12), a large majority of weight updates are
rounded to zero when using the round-to-nearest scheme.

� Convergence slows down

� For FL < 12, there is a noticeable degradation in the classification accuracy

FL 8

FL 10

Float

Lower precision

FL 14

Lower precision

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737–1746.

Case Study: ICML 20152

21/42

13

� Stochastic rounding preserves gradient information (statistically)

� No degradation in convergence properties

� Test error nearly equal to that obtained using 32-bit floats

MNIST: Fully-connected DNNs

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737–1746.

Case Study: ICML 20152

21/42

Quantization Overview

Quantization:

Q(r) = Int(r/S)− Z

Dequantization:

r̂ = S(Q(r) + Z)

Granularity:
• Layerwise

• Groupwise

• Channelwise

!

×

!
!"#$%&'

!"#$%&'()

!"#$%&*

!"#$%&)

!"#$%&'(

!"#$%&')

!

!"#$%&'*

!"#$%&'+

!

!

!"#$%&'($

)*"+,'-",'.+

/0"++$1&'($

)*"+,'-",'.+

!"#$"#%&!"

'($"#%&#

Quantization in DNN

23/42

𝑟

𝑄

(a) uniform quantization

𝑟

𝑄

(b) uniform quantization

• Real values in the continuous domain r are mapped into discrete

• Lower precision values in the quantized domain Q.

• Uniform quantization: distances between quantized values are the same

• Non-uniform quantization: distances between quantized values can vary

Uniform vs. Non-Uniform

24/42

0

0

" = −1 & = 1 !

"
−127 127 −128

0

0

" = −0.5 & = 1.5 !

"
127−,

-,

(b) Asymmetric quantization(a) Symmetric quantization

• Symmetric vs. Asymmetric: Z = 0 ?

• Fig. (a) Symmetric w. restricted range maps [-127, 127],

• Fig. (b) Asymmetric w. full range maps to [-128, 127]

• Both for 8-bit quantization case.

Symmetric vs. Asymmetric

25/42

Pre-trained modelPre-trained model
Training data

Quantization

Retraining / Finetuning

Quantized model

Calibration data

Calibration

Quantized model

Quantization

QAT PTQ

• quantization-aware training (QAT): model is quantized using training data to adjust
parameters and recover accuracy degradation.

• post-training quantization (PTQ): a pre-trained model is calibrated using finetuning
data (e.g., a small subset of training data) to compute the clipping ranges and the
scaling factors.

• Key difference: Model parameters fixed/unfixed.

QAT and PTQ

26/42

Multiplication (FP32)

FP32 Weight FP32 Activation

FP32

Accumulation (FP32)

FP32 Activation

Dequantize

Multiplication (FP32)

INT4 Weight INT4 Activation

FP32

FP32

Accumulation (FP32)

Requantize

FP32

INT4 Activation

Multiplication (INT4)

INT4 Weight INT4 Activation

INT4

Accumulation (INT32)

INT4 Activation

Requantize

INT32

Left : Full-precision
Middle : Simulated quantization

Right : Integer-only quantization

Simulated quantization vs Integer-Only quantization

27/42

Hardware Support

• Nvidia GPU: Tensor Core support FP16, Int8 and Int4

• Arm: Neon 128-bit SIMD instruction: 4×32bit or 8×16bit up to 16×8bit

• Intel: SSE intrinsics, same as above

• DSP, AI Chip

Some common architectures:

• For CPU: Tensorflow Lite, QNNPACK, NCNN

• For GPU: TensorRT

• Versatile Compiler such TVM.qnn

Backend Support for Quantization Deployment

28/42

Quantization – First Example

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

Do we really need bias?
Two matrices:

A = scale_A * QA + bias_A
B = scale_B * QB + bias_B

Let’s multiply those 2 matrices:

A * B = scale_A * scale_B * QA * QB +
 scale_A * QA * bias_B +
 scale_B * QB * bias_A +
 bias_A * bias_B

Do we really need bias?
Two matrices:

A = scale_A * QA + bias_A
B = scale_B * QB + bias_B

Let’s multiply those 2 matrices:

A * B = scale_A * scale_B * QA * QB +
 scale_A * QA * bias_B +
 scale_B * QB * bias_A +
 bias_A * bias_B

Do we really need bias? No!
Two matrices:

A = scale_A * QA
B = scale_B * QB

Let’s multiply those 2 matrices:

A * B = scale_A * scale_B * QA * QB

Symmetric linear quantization

 Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

18

MINIMUM QUANTIZED VALUE

• Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]

• If use [-127, 127], 𝑠 = 127
𝛼

• Range is symmetric

• 1/256 of int8 range is not used. 1/16 of int4 range is not used

• If use full range [-128, 127], 𝑠 = 128
𝛼

• Values should be quantized to 128 will be clipped to 127

• Asymmetric range may introduce bias

19

EXAMPLE OF QUANTIZATION BIAS

𝐴 = −2.2 −1.1 1.1 2.2 , 𝐵 =
0.5
0.3
0.3
0.5

, 𝐴𝐵 = 0

8bit scale quantization, use [-128, 127]. sA=128/2.2, sB=128/0.5

−128 −64 64 127 ∗
127
77
77
127

= −127

Dequantize -127 will get -0.00853. A small bias is introduced towards -∞

Bias introduced when int values are in [-128, 127]

20

EXAMPLE OF QUANTIZATION BIAS

𝐴 = −2.2 −1.1 1.1 2.2 , 𝐵 =
0.5
0.3
0.3
0.5

, 𝐴𝐵 = 0

8-bit scale quantization, use [-127, 127]. sA=127/2.2, sB=127/0.5

−127 −64 64 127 ∗
127
76
76
127

= 0

Dequantize 0 will get 0

No bias when int values are in [-127, 127]

21

MATRIX MULTIPLY EXAMPLE
Scale Quantization

−1.54 0.22
−0.26 0.65 ∗ 0.35

−0.51 = −0.651
−0.423

22

MATRIX MULTIPLY EXAMPLE
Scale Quantization

−1.54 0.22
−0.26 0.65 ∗ 0.35

−0.51 = −0.651
−0.423

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

−98 14
−17 41 ∗ 44

−65 = −5222
−3413

23

MATRIX MULTIPLY EXAMPLE
Scale Quantization

−1.54 0.22
−0.26 0.65 ∗ 0.35

−0.51 = −0.651
−0.423

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

−98 14
−17 41 ∗ 44

−65 = −5222
−3413

The result has an overall scale of 63.5*127 . We can dequantize back to float
−5222
−3413 ∗

1
63.5 ∗ 127

= −0.648
−0.423

24

REQUANTIZE
Scale Quantization

−1.54 0.22
−0.26 0.65 ∗ 0.35

−0.51 = −0.651
−0.423

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second

−98 14
−17 41 ∗ 44

−65 = −5222
−3413

Requantize output to a different quantized representation with fp range [-3, 3]:

−5222
−3413 ∗

127/3
63.5 ∗ 127

= −27
−18

Post Training Quantization (PTQ)

• For a fixed-point number, it representation is:

n =

bw−1∑

i=0

Bi · 2−fl · 2i,

where bw is the bit width and fl is the fractional length which is dynamic for different
layers and feature map sets while static in one layer.

• Weight quantization: find the optimal fl for weights:

fl = argmin
fl

∑
|Wfloat −W(bw, fl)|,

where W is a weight and W(bw, fl) represents the fixed-point format of W under the
given bw and fl.

3Jiantao Qiu et al. (2016). “Going deeper with embedded fpga platform for convolutional neural
network”. In: Proc. FPGA, pp. 26–35.

Greedy Layer-wise Quantization3

31/42

• Feature quantization: find the optimal fl
for features:

fl = argmin
fl

∑
|x+

float − x+(bw, fl)|,

where x+ represents the result of a layer
when we denote the computation of a
layer as x+ = A · x.

Table 2: The Memory footprint, Computation Complexities,
and Performance of the VGG16 model and its SVD version.

Network FC6
of total # of Top-5
weights operations accuracy

VGG16 25088×4096 138.36M 30.94G 88.00%
VGG16-SVD 25088×500 + 500×4096 50.18M 30.76G 87.96%

For pooling layers and FC layers, the time complexities are

CTime
Pooling = O(nin · r · c), (5)

CTime
FC = O(nin · nout). (6)

For pooling layers, nout equals to nin since each input feature
map is pooled to a corresponding output feature map, and thus the
complexity is linear to either input or output feature map number.

Space complexity refers to the memory footprint. For a CONV
layer, there are nin ×nout convolution kernels, and each kernel has
k2 weights. Consequently, the space complexity for a CONV layer
is

CSpace
CONV = O(nin · nout · k2). (7)

FC layer actually applies a multiplication to the input feature vec-
tor, and thus the complexity for FC layer is measure by the size for
the parameter matrix, which is shown in Equation 8:

CSpace
FC = O(nin · nout) (8)

No space is needed for pooling layers since it has no weight.
The distribution of demanded operations and weight numbers in

the inference process of state-of-the-art CNN models are shown in
Figure 2. The measured operations consist of multiplications, adds,
and non-linear functions.

As shown in Figure 2 (a), the operations of CONV layers com-
pose most of the total operations of CNN models, and thus the
time complexity of CONV layers is much higher than that of FC
layers. Consequently, for CONV layers, more attention should be
paid to accelerate convolution operations.

For space complexity, the situation is quite different. As shown
in Figure 2 (b), FC layers contribute to most of the weights. S-
ince each weight in FC layers is used only once in one inference
process, leaves no chance for reuse, the limited bandwidth can
significantly degrade the performance since loading those weights
may take quite long time.

Since FC layers contribute to most of memory footprint, it is
necessary to reduce weights of FC layers while maintaining com-
parable accuracy. In this paper, SVD is adopted for accelerating
FC layers. Considering an FC layer fout = Wf in + b, the weight
matrix W can be decomposed as W ≈ UdSdVd = W1W2, in
which Sd is a diagonal matrix. By choosing the first d singular
values in SVD, i.e. the rank of matrix Ud, Sd, and Vd, both time
and space complexity can be reduced to O(d · nin + d · nout) from
O(nin · nout). Since accuracy loss may be minute even when d
is much smaller than nin and nout, considerable reduction of time
consumption and memory footprint can be achieved.

The effectiveness of SVD is proved by the results in Table 2.
By applying SVD to the parameter matrix of the FC6 layer and
choosing first 500 singular values, the number of weights in FC6
layers is reduced to 14.6 million from 103 million, which achieves
a compression rate at 7.04×. However, the number of operations
does not decrease much since the FC layer contributes little to total
operations. The SVD only introduces 0.04% accuracy loss.

5. DATA QUANTIZATION
Using short fixed-point numbers instead of long floating-point

numbers is efficient for implementations on the FPGA and can sig-
nificantly reduce memory footprint and bandwidth requirements. A
shorter bit width is always wanted, but it may lead to a severe ac-
curacy loss. Though fixed-point numbers have been widely used in
CNN accelerator designs, there is no comprehensive investigation

Input images

Data quantization phase

Fixed-point CNN model

CNN model

Floating-point CNN model

Weight and data quantization configuration

Layer 1

Feature maps

Layer N

Layer 1

Feature maps

Layer N

Feature maps Feature maps

CNN model

yer 1

e maps

Data quantization

Fixed-point CNN

Laye

Featuree maure

Layer Layer

aturee ma

uantiz

… …Dynamic range analysis and finding
optimal quantization strategy

Weight quantization phase

Weight dynamic range analysis

Weight quantization configuration

namic range analysis

zation

Figure 3: The dynamic-precision data quantization flow.

on different quantization strategies and the trade-off between the bit
length of fixed-point numbers and the accuracy. In this section, we
propose a dynamic-precision data quantization flow and compare it
with widely used static-precision quantization strategies.

5.1 Quantization Flow
For a fixed-point number, its value can be expressed as

n =

bw−1∑

i=0

Bi · 2−fl · 2i, (9)

where bw is the bit width and fl is the fractional length which
can be negative. To convert floating-point numbers into fixed-point
ones while achieving the highest accuracy, we propose a dynamic-
precision data quantization strategy and an automatic workflow, as
shown in Figure 3. Unlike previous static-precision quantization s-
trategies, in the proposed data quantization flow, fl is dynamic for
different layers and feature map sets while static in one layer
to minimize the truncation error of each layer. The proposed
quantization flow mainly consists of two phases: the weight quan-
tization phase and the data quantization phase.

The weight quantization phase aims to find the optimal fl for
weights in one layer, as shown in Equation 10:

fl = argmin
fl

∑
|Wfloat − W (bw, fl)|, (10)

where W is a weight and W (bw, fl) represents the fixed-point for-
mat of W under the given bw and fl. In this phase, the dynamic
ranges of weights in each layer is analyzed first. After that, the fl

is initialized to avoid data overflow. Furthermore, we search for the
optimal fl in the adjacent domains of the initial fl.

The data quantization phase aims to find the optimal fl for a
set of feature maps between two layers. In this phase, the inter-
mediate data of the fixed-point CNN model and the floating-point
CNN model are compared layer by layer using a greedy algorithm
to reduce the accuracy loss. For each layer, the optimization target
is shown in Equation 11:

fl = argmin
fl

∑
|x+

float − x+(bw, fl)|. (11)

In Equation 11, x+ represents the result of a layer when we denote
the computation of a layer as x+ = A · x. It should be noted, for
either CONV layer or FC layer, the direct result x+ has longer bit
width than the given standard. Consequently, truncation is needed
when optimizing fl selection. Finally, the entire data quantization
configuration is generated.

29

Greedy Layer-wise Quantization

32/42

� '\QDPLF�3UHFLVLRQ�'DWD�4XDQWL]DWLRQ�5HVXOWV �6LPXODWLRQ�UHVXOWV�

ϭϴ

'DWD�4XDQWL]DWLRQ

1HWZRUN &DIIH1HW 9**���69'
'DWD %LWV 6LQJOH�IORDW �� � 6LQJOH�IORDW �� �

:HLJKW�%LWV 6LQJOH�IORDW �� � 6LQJOH�IORDW �� ��RU��

'DWD�3UHFLVLRQ 1�$ '\QDPLF '\QDPLF 1�$ '\QDPLF '\QDPLF

:HLJKW�3UHFLVLRQ 1�$ '\QDPLF '\QDPLF 1�$ '\QDPLF '\QDPLF

7RS���$FFXUDF\ ����� ����� ����� ����� ����� �����

7RS�� $FFXUDF\ ����� ����� ����� ����� ����� �����

1HWZRUN 9**��
'DWD %LWV 6LQJOH�IORDW �� �� � � � �

:HLJKW�%LWV 6LQJOH�IORDW �� � � � � ��RU��

'DWD�3UHFLVLRQ 1�$ ��� ��� ,PSRVVLEOH ������� '\QDPLF '\QDPLF

:HLJKW�3UHFLVLRQ 1�$ ���� ��� ,PSRVVLEOH ��� '\QDPLF '\QDPLF

7RS���$FFXUDF\ ����� ����� ����� ,PSRVVLEOH ����� ����� �����

7RS�� $FFXUDF\ ����� ����� ����� ,PSRVVLEOH ����� ����� �����

Dynamic-Precision Data Quantization Results

33/42

No Saturation Quantization – INT8 Inference

Quantization

● No saturation: map |max| to 127 ● Saturate above |threshold| to 127

0.0 +|max|-|max|

0-127 127

● Significant accuracy loss, in general

0.0 +|T|-|T|

0-127 127

● Weights: no accuracy improvement
● Activations: improved accuracy
● Which |threshold| is optimal?

• Map the maximum value to 127, with unifrom step length.

• Suffer from outliers.

Industrial Implementations – Nvidia TensorRT

34/42

Saturation Quantization – INT8 Inference
Quantization

● No saturation: map |max| to 127 ● Saturate above |threshold| to 127

0.0 +|max|-|max|

0-127 127

● Significant accuracy loss, in general

0.0 +|T|-|T|

0-127 127

● Weights: no accuracy improvement
● Activations: improved accuracy
● Which |threshold| is optimal?

• Set a threshold as the maxiumum value.

• Divide the value domain into 2048 groups.

• Traverse all the possible thresholds to find the best one with minimum KL
divergence.

Industrial Implementations – Nvidia TensorRT

35/42

Relative Entropy of two encodings

• INT8 model encodes the same information as the original FP32 model.

• Minimize the loss of information.

• Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative
entropy or information divergence).

• P, Q - two discrete probability distributions:

DKL(P‖Q) =

N∑

i=1

P(xi) log
P(xi)

Q(xi)

• Intuition: KL divergence measures the amount of information lost when
approximating a given encoding.

Industrial Implementations – Nvidia TensorRT

36/42

Quantization Aware Training
(QAT)

Straight Through Estimator (STE)4

• Forward integer, Backward floating point

• Rounding to nearest

4Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). “Estimating or propagating
gradients through stochastic neurons for conditional computation”. In: arXiv preprint
arXiv:1308.3432.

QAT: Weight

38/42

Is Straight-Through Estimator (STE) the best?

• Gradient mismatch: the gradients of the weights are not generated using the value of
weights, but rather its quantized value.

• Poor gradient: STE fails at investigating better gradients for quantization training.

Better Gradients

39/42

PArameterized Clipping acTivation (PACT)5

• Relu6→ clipping

• threshold→ clipping range in quantization

• range upper/lower bound trainable

5Jungwook Choi, Zhuo Wang, et al. (2018). “Pact: Parameterized clipping activation for
quantized neural networks”. In: arXiv preprint arXiv:1805.06085.

QAT: Activation

40/42

• A new activation quantization scheme in which the activation function has a
parameterized clipping level α.

• The clipping level is dynamically adjusted vias stochastic gradient descent
(SGD)-based training with the goal of minimizing the quantization error.

• In PACT, the convolutional ReLU activation function in CNN is replaced with:

f (x) = 0.5 (|x| − |x− α|+ α) =

0, x ∈ (∞, 0)
x, x ∈ [0, α)
α, x ∈ [α,+∞)

where α limits the dynamic range of activation to [0, α].

6Jungwook Choi, Swagath Venkataramani, et al. (2019). “Accurate and efficient 2-bit quantized
neural networks”. In: Proceedings of Machine Learning and Systems 1.

PArameterized Clipping acTivation Function (PACT)6

41/42

• The truncated activation output is the linearly quantized to k-bits for the dot-product
computations:

yq = round (y · 2k − 1
α

) · α

2k − 1

• With this new activation function, α is a variable in the loss function, whose value
can be optimized during training.

• For back-propagation, gradient ∂yq

∂α can be computed using STE to estimate ∂yq

∂y as 1.

Accurate and Efficient 2-bit Quantized Neural Networks

back-propagation, gradient @yq

@↵ can be computed using the
Straight-Through Estimator (STE) (Bengio et al., 2013) to
estimate @yq

@y as 1. Thus,

@yq

@↵
=

@yq

@y

@y

@↵
=

(
0, x 2 (�1,↵)

1, x 2 [↵, +1)
(3)

The larger the ↵, the more the parameterized clipping func-
tion resembles ReLU. To avoid large quantization errors due
to a wide dynamic range, we include a L2-regularizer for ↵
in the loss function. Figure 2(b) illustrates how the value
of ↵ changes during full-precision training of CIFAR10
ResNet20 starting with an initial value of 10 and using the
L2-regularizer. It can be observed that ↵ converges to the
values much smaller than the initial value after epochs of
training, thereby limiting the dynamic range of activations
and reducing the quantization error. We empirically found
that ↵ per layer was easier to train than ↵ per-channel.

!

!

" = 0.5((− (− ! + !)

(

1

!

-"
-!

(

(a) (b)

Va
lu

e
of

 .

epoch

Figure 2. (a) PACT activation function and its gradient. The dy-
namic range of activation after PACT is bounded by ↵, thus it is
more robust to quantization. (b) Evolution of the trainable clipping
parameter ↵ during training of CIFAR10 ResNet20.

3.3 Analysis

3.3.1 PACT is as Expressive as ReLU

When used as an activation function of the neural network,
PACT is as expressive as ReLU. This is because the clipping
parameter introduced in PACT, ↵, allows flexibility in ad-
justing the dynamic range of activation for each layer, thus
it can cover large dynamic range as needed. We demonstrate
in the simple example below that PACT can reach the same
solution as ReLU via SGD.
Lemma 3.1. Consider a single-neuron network with PACT;
x = w · a, y = PACT(x), where a is input and w is weight.
This network can be trained with SGD to find the output the
network with ReLU would achieve.

Proof. Consider a sample of training data (a, y⇤). For the
purpose of illustration, consider mean-square-error (MSE)
as the cost function: L = 0.5 · (y⇤ � y)2.

If x ↵, then clearly the network with PACT behaves the
same as the network with ReLU.

If x > ↵, then y = ↵ and @y
@↵ = 1 from (1). Thus,

@L

@↵
=

@L

@y
· @y

@↵
=

@L

@y
(4)

Therefore, when ↵ is updated by SGD,

↵new = ↵� ⌘
@L

@↵
= ↵� ⌘

@L

@y
(5)

where ⌘ is a learning rate. Note that during this update, the
weight is not updated as @L

@w = @L
@y · @y

@x (= 0) · a = 0.

From the MSE cost function, @L
@y = (y � y⇤). Therefore, if

y⇤ > x, ↵ is increased for each update of (5) until ↵ � x,
then the PACT network behaves the same as the ReLU
network.

Interestingly, if y⇤ y or y < y⇤ < x, ↵ is decreased or
increased to converge to y⇤. Note that in this case, ReLU
would pass erroneous output x to increase cost function,
which needs to be fixed by updating w with @L

@w . PACT, on
the other hand, ignores this erroneous output by directly
adapting the dynamic range to match the target output y⇤.
In this way, the PACT network can be trained to produce
output which converges to the same target that the ReLU
network would achieve via SGD.

In general, @L
@↵ =

P
i

@L
@yi

, and PACT considers all the out-
put neurons together to change the dynamic range. There
are two options: (1) if output xi is not clipped, then the
network is trained via back-propagation of gradient to up-
date weight, (2) if output xi is clipped, then ↵ is increased
or decreased based on how close the overall output is to
the target. Hence, there exist configurations under which
SGD leads to a solution that the network with ReLU would
achieve. Figure 3 demonstrates that CIFAR10 ResNet20
with PACT converges almost identical to the network with
ReLU.

(a) (b)

Tr
ai

n
er

ro
r

Tr
ai

n
er

ro
r

Tr
ai

n
er

ro
r

Tr
ai

n
er

ro
r

Va
lid

at
io

n
er

ro
r

Tr
ai

n
er

ro
r

epoch epoch

Figure 3. (a) Training error and (b) validation error of PACT for
CIFAR10 ResNet20. Note that the convergence curve of PACT
closely follow ReLU.

Accurate and Efficient 2-bit Quantized Neural Networks

back-propagation, gradient @yq

@↵ can be computed using the
Straight-Through Estimator (STE) (Bengio et al., 2013) to
estimate @yq

@y as 1. Thus,

@yq

@↵
=

@yq

@y

@y

@↵
=

(
0, x 2 (�1,↵)

1, x 2 [↵, +1)
(3)

The larger the ↵, the more the parameterized clipping func-
tion resembles ReLU. To avoid large quantization errors due
to a wide dynamic range, we include a L2-regularizer for ↵
in the loss function. Figure 2(b) illustrates how the value
of ↵ changes during full-precision training of CIFAR10
ResNet20 starting with an initial value of 10 and using the
L2-regularizer. It can be observed that ↵ converges to the
values much smaller than the initial value after epochs of
training, thereby limiting the dynamic range of activations
and reducing the quantization error. We empirically found
that ↵ per layer was easier to train than ↵ per-channel.

!

!

" = 0.5((− (− ! + !)

(

1

!

-"
-!

(

(a) (b)

Va
lu

e
of

 .

epoch

Figure 2. (a) PACT activation function and its gradient. The dy-
namic range of activation after PACT is bounded by ↵, thus it is
more robust to quantization. (b) Evolution of the trainable clipping
parameter ↵ during training of CIFAR10 ResNet20.

3.3 Analysis

3.3.1 PACT is as Expressive as ReLU

When used as an activation function of the neural network,
PACT is as expressive as ReLU. This is because the clipping
parameter introduced in PACT, ↵, allows flexibility in ad-
justing the dynamic range of activation for each layer, thus
it can cover large dynamic range as needed. We demonstrate
in the simple example below that PACT can reach the same
solution as ReLU via SGD.
Lemma 3.1. Consider a single-neuron network with PACT;
x = w · a, y = PACT(x), where a is input and w is weight.
This network can be trained with SGD to find the output the
network with ReLU would achieve.

Proof. Consider a sample of training data (a, y⇤). For the
purpose of illustration, consider mean-square-error (MSE)
as the cost function: L = 0.5 · (y⇤ � y)2.

If x ↵, then clearly the network with PACT behaves the
same as the network with ReLU.

If x > ↵, then y = ↵ and @y
@↵ = 1 from (1). Thus,

@L

@↵
=

@L

@y
· @y

@↵
=

@L

@y
(4)

Therefore, when ↵ is updated by SGD,

↵new = ↵� ⌘
@L

@↵
= ↵� ⌘

@L

@y
(5)

where ⌘ is a learning rate. Note that during this update, the
weight is not updated as @L

@w = @L
@y · @y

@x (= 0) · a = 0.

From the MSE cost function, @L
@y = (y � y⇤). Therefore, if

y⇤ > x, ↵ is increased for each update of (5) until ↵ � x,
then the PACT network behaves the same as the ReLU
network.

Interestingly, if y⇤ y or y < y⇤ < x, ↵ is decreased or
increased to converge to y⇤. Note that in this case, ReLU
would pass erroneous output x to increase cost function,
which needs to be fixed by updating w with @L

@w . PACT, on
the other hand, ignores this erroneous output by directly
adapting the dynamic range to match the target output y⇤.
In this way, the PACT network can be trained to produce
output which converges to the same target that the ReLU
network would achieve via SGD.

In general, @L
@↵ =

P
i

@L
@yi

, and PACT considers all the out-
put neurons together to change the dynamic range. There
are two options: (1) if output xi is not clipped, then the
network is trained via back-propagation of gradient to up-
date weight, (2) if output xi is clipped, then ↵ is increased
or decreased based on how close the overall output is to
the target. Hence, there exist configurations under which
SGD leads to a solution that the network with ReLU would
achieve. Figure 3 demonstrates that CIFAR10 ResNet20
with PACT converges almost identical to the network with
ReLU.

(a) (b)

Tr
ai

n
er

ro
r

Tr
ai

n
er

ro
r

Tr
ai

n
er

ro
r

Tr
ai

n
er

ro
r

Va
lid

at
io

n
er

ro
r

Tr
ai

n
er

ro
r

epoch epoch

Figure 3. (a) Training error and (b) validation error of PACT for
CIFAR10 ResNet20. Note that the convergence curve of PACT
closely follow ReLU.

PACT activation function and its gradient.

PArameterized Clipping acTivation Function (PACT)

42/42

	Main Talk
	Floating Point Number
	Integer & Fixed-Point Number
	Quantization Overview
	Quantization – First Example
	Post Training Quantization (PTQ)
	Quantization Aware Training (QAT)

