CENG 5030

Energy Efficient Computing

Mo03: Quantization

Bei Yu

CSE Department, CUHK
byu@cse.cuhk.edu.hk
(Latest update: October 30, 2023)

2023 Fall

These slides contain/adapt materials developed by

- Hardware for Machine Learning, Shao Spring 2020 @ UCB
- 8-bit Inference with TensorRT
- Amir Gholami et al. (2021). "A survey of quantization methods for efficient neural network inference". In: arXiv preprint
(1) Floating Point Number
(2) Integer \& Fixed-Point Number
(3) Quantization Overview

4) Quantization - First Example
(5) Post Training Quantization (PTQ)
(6) Quantization Aware Training (QAT)

Floating Point Number

Scientific notation: 6.6254×10^{-27}

- A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)
- Scale factors to determine the position of the decimal point (e.g. 10^{-27} indicates position of decimal point and is called the exponent; the base is implied)
- Sign bit

Normalized Form

- Floating Point Numbers can have multiple forms, e.g.

$$
\begin{aligned}
0.232 \times 10^{4} & =2.32 \times 10^{3} \\
& =23.2 \times 10^{2} \\
& =2320 . \times 10^{0} \\
& =232000 . \times 10^{-2}
\end{aligned}
$$

- It is desirable for each number to have a unique representation => Normalized Form
- We normalize Mantissa's in the Range [1..R), where R is the Base, e.g.:
- [1..2) for BINARY
- [1..10) for DECIMAL

IEEE Standard 754 Single Precision

32-bit, float in C / C++ / Java

(a) Single precision

IEEE Standard 754 Double Precision

64-bit, float in C / C++ / Java

Value represented
$= \pm 1 . M \times 2^{E^{\prime}-1023}$
(c) Double precision

Question:

What is the IEEE single precision number $40 \mathrm{C} 0000_{16}$ in decimal?

Question:

What is -0.5_{10} in IEEE single precision binary floating point format?

Special Values

Exponents of all 0's and all 1's have special meaning

- $E=0, M=0$ represents 0 (sign bit still used so there is ± 0)
- $\mathrm{E}=0, \mathrm{M} \neq 0$ is a denormalized number $\pm 0 . \mathrm{M} \times 2^{-126}$ (smaller than the smallest normalized number)
- $\mathrm{E}=$ All 1's, $\mathrm{M}=0$ represents \pm Infinity, depending on Sign
- $\mathrm{E}=$ All 1 's, $\mathrm{M} \neq 0$ represents NaN

Ref: IEEE Standard 754 Numbers

- Normalized +/-1.d...d x $2^{\exp }$
- Denormalized +/-0.d...d $\times 2^{\text {min }}$ exp \rightarrow to represent near-zero numbers
e.g. $+0.0000 \ldots 0000001 \times 2^{-126}$ for Single Precision

Inaccurate Floating Point Operations

Example: Find 1st root of a quadratic equation ${ }^{1}$

$$
r=\frac{-b+\sqrt{\left.b^{2}-4 \cdot a \cdot c\right)}}{2 \cdot a}
$$

Expected: 0.00023025562642476431
Double: 0.00023025562638524986
Float: 0.00024670246057212353

[^0]
Inaccurate Floating Point Operations

Example: Find 1st root of a quadratic equation ${ }^{1}$

$$
r=\frac{-b+\sqrt{\left.b^{2}-4 \cdot a \cdot c\right)}}{2 \cdot a}
$$

Expected: 0.00023025562642476431
Double: 0.00023025562638524986
Float: 0.00024670246057212353

- Problem is that if c is near zero, $\sqrt{b^{2}-4 \cdot a \cdot c} \approx b$
- Rule of thumb: use the highest precision which does not give up too much speed

[^1]
Integer \& Fixed-Point Number

Unsigned Binary Representation

Hex	Binary	Decimal
0×00000000	$0 \ldots 0000$	0
$0 x 00000001$	$0 \ldots 0001$	1
0×00000002	$0 \ldots 0010$	2
0×00000003	$0 \ldots 0011$	3
0×00000004	$0 \ldots 0100$	4
0×00000005	$0 \ldots 0101$	5
0×00000006	$0 \ldots 0110$	6
0×00000007	$0 \ldots 0111$	7
0×00000008	$0 \ldots 1000$	8
0×00000009	$0 \ldots 1001$	9
	\ldots	
$0 x F F F F F F F C$	$1 \ldots 1100$	$2^{32}-4$
$0 x F F F F F F F D$	$1 \ldots 1101$	$2^{32}-3$
0xFFFFFFFE	$1 \ldots 1110$	$2^{32}-2$
0xFFFFFFFF	$1 \ldots 1111$	$2^{32}-1$

Signed Binary Representation

$-2^{3}=$$-\left(2^{3}-1\right)=$	2'sc binary	decimal
	1000	-8
	1001	-7
	-1010	-6
	$\rightarrow 1011$	-5
complement all the bits 0101 1011	1100	-4
	1101	-3
	1110	-2
and add a 1	1111	-1
	0000	0
01101010	0001	1
	0010	2
complement all the bits	0011	3
	0100	4
	0101	5
	$\rightarrow 0110$	6
$2^{3}-1=$	0111	7

- Integers with a binary point and a bias
- "slope and bias": $y=s^{*} x+z$
- Qm.n: m (\# of integer bits) n (\# of fractional bits)

$s=1, z=0$				$s=1 / 4, z=0$				$s=4, z=0$				$s=1.5, z=10$			
2^2	2^1	2^0	Val	2^0	2^-1	2^-2	Val	2^4	2^3	$2 \wedge 2$	Val	2^2	2^1	2^0	Val
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1.5*0 +10
0	0	1	1	0	0	1	1/4	0	0	1	4	0	0	1	1.5*1 +10
0	1	0	2	0	1	0	2/4	0	1	0	8	0	1	0	1.5*2 +10
0	1	1	3	0	1	1	3/4	0	1	1	12	0	1	1	1.5*3 +10
1	0	0	4	1	0	0	1	1	0	0	16	1	0	0	1.5*4 +10
1	0	1	5	1	0	1	5/4	1	0	1	20	1	0	1	1.5*5 +10
1	1	0	6	1	1	0	6/4	1	1	0	24	1	1	0	1.5*6 +10
1	1	1	7	1	1	1	7/4	1	1	1	28	1	1	1	$1.5 * 7+10$

Catastrophic Cancellation

$(a-b)$ is inaccurate when $a \gg b$ or $a \ll b$

Decimal Example 1:

- Using 2 significant digits
- Compute mean of 5.1 and 5.2 using the formula $(a+b) / 2$:
- $a+b=10$ (with 2 significant digits, 10.3 can only be stored as 10)
- $10 / 2=5.0$ (the computed mean is less than both numbers!!!)

Decimal Example 2:

- Using 8 significant digits to compute sum of three numbers:
- $(11111113+(-11111111))+7.5111111=9.5111111$
- $11111113+((-11111111)+7.5111111)=10.000000$

Catastrophic Cancellation

Catastrophic cancellation occurs when

$$
\left|\frac{[\operatorname{round}(x) \times \operatorname{round}(y)]-\operatorname{round}(x \times y)}{\operatorname{round}(x \times y)}\right| \gg \epsilon
$$

Hardware Implications

Multipliers

Multiplier Example: C = A x B

Floating-point multiplier

Fixed-point multiplier

Case Study: ICML 2015²

Fixed-Point Arithmetic

Number representation〈IL, FL〉

Case Study: ICML 2015^{2}

Fixed-Point Arithmetic

Number representation $\langle\mathrm{IL}, \mathrm{FL}$ 〉
Integer $\quad\left[-2^{\mathrm{IL}-1}, 2^{\mathrm{IL}-1}-2^{-\mathrm{FL}}\right]$
Word Length $\mathrm{WL}=\mathrm{IL}+\mathrm{FL}$
Granularity
Range \quad 2raction
$\operatorname{Convert}(x,\langle\mathrm{IL}, \mathrm{FL}\rangle)=$
$\begin{cases}-2^{\mathrm{IL}-1} & \text { if } x \leq-2^{\mathrm{IL}-1} \\ 2^{\mathrm{IL}-1}-2^{-\mathrm{FL}} & \text { if } x \geq 2^{\mathrm{IL}-1}-2^{-\mathrm{FL}} \\ \operatorname{Round}(x,\langle\mathrm{IL}, \mathrm{FL}\rangle) & \text { otherwise }\end{cases}$

Multiply-and-ACCumulate

[^2]
Case Study: ICML 2015²

Fixed-Point Arithmetic: Rounding Modes

[^3]
Case Study: ICML 2015²

Fixed-Point Arithmetic: Rounding Modes

Stochastic rounding

$\operatorname{Round}(x,\langle\mathrm{IL}, \mathrm{FL}\rangle)=$

$$
\begin{cases}\lfloor x\rfloor & \text { w.p. } 1-\frac{x-\lfloor x\rfloor}{\epsilon} \\ \lfloor x\rfloor+\epsilon & \text { w.p. } \frac{x-\lfloor x\rfloor}{\epsilon}\end{cases}
$$

- Non-zero probability of rounding to either $\lfloor x\rfloor$ or $\lfloor x\rfloor+\epsilon$
- Unbiased rounding scheme: expected rounding error is zero

[^4]
Case Study: ICML 2015²

MNIST: Fully-connected DNNs

[^5]
Case Study: ICML 2015²

MNIST: Fully-connected DNNs

- For small fractional lengths (FL < 12), a large majority of weight updates are rounded to zero when using the round-to-nearest scheme.
- Convergence slows down
- For $\mathrm{FL}<12$, there is a noticeable degradation in the classification accuracy

[^6]
Case Study：ICML 2015^{2}

MNIST：Fully－connected DNNs

Stochastic rounding，WL $=16$

－Stochastic rounding preserves gradient information（statistically）
－No degradation in convergence properties
－Test error nearly equal to that obtained using 32－bit floats

[^7]
Quantization Overview

Quantization in DNN

Quantization:

$$
Q(r)=\operatorname{Int}(r / S)-Z
$$

Dequantization:

- Layerwise
- Groupwise
- Channelwise

$$
\hat{r}=S(Q(r)+Z)
$$

Granularity:

Uniform vs. Non-Uniform

- Real values in the continuous domain r are mapped into discrete
- Lower precision values in the quantized domain Q.
- Uniform quantization: distances between quantized values are the same
- Non-uniform quantization: distances between quantized values can vary

Symmetric vs. Asymmetric

(a) Symmetric quantization

(b) Asymmetric quantization

- Symmetric vs. Asymmetric: $Z=0$?
- Fig. (a) Symmetric w. restricted range maps [-127, 127],
- Fig. (b) Asymmetric w. full range maps to [-128, 127]
- Both for 8-bit quantization case.

QAT and PTQ

QAT

PTQ

- quantization-aware training (QAT): model is quantized using training data to adjust parameters and recover accuracy degradation.
- post-training quantization (PTQ): a pre-trained model is calibrated using finetuning data (e.g., a small subset of training data) to compute the clipping ranges and the scaling factors.
- Key difference: Model parameters fixed/unfixed.

Simulated quantization vs Integer-Only quantization

Left : Full-precision

Middle : Simulated quantization
 Right : Integer-only quantization

Backend Support for Quantization Deployment

Hardware Support

- Nvidia GPU: Tensor Core support FP16, Int8 and Int4
- Arm: Neon 128 -bit SIMD instruction: 4×32 bit or 8×16 bit up to 16×8 bit
- Intel: SSE intrinsics, same as above
- DSP, AI Chip

Some common architectures:

- For CPU: Tensorflow Lite, QNNPACK, NCNN
- For GPU: TensorRT
- Versatile Compiler such TVM.qnn

Quantization - First Example

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

Do we really need bias?

Two matrices:

```
A = scale_A * QA + bias_A
B = scale_B * QB + bias_B
```

Let's multiply those 2 matrices:

```
A * B = scale_A * scale_B * QA * QB +
    scale_A * QA * bias_B +
    scale_B * QB * bias_A +
    bias_A * bias_B
```


Do we really need bias?

Two matrices:

```
A = scale_A * QA + bias_A
B = scale_B * QB + bias_B
```

Let's multiply those 2 matrices:

Do we really need bias? No!

Two matrices:

```
A = scale_A * QA
B = scale_B * QB
```

Let's multiply those 2 matrices:
A * B = scale_A * scale_B * QA * QB

Symmetric linear quantization

Representation:
Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

MINIMUM QUANTIZED VALUE

- Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]
- If use $[-127,127], s=\frac{127}{\alpha}$
- Range is symmetric
- $1 / 256$ of int 8 range is not used. $1 / 16$ of int 4 range is not used
- If use full range $[-128,127], s=\frac{128}{\alpha}$
- Values should be quantized to 128 will be clipped to 127
- Asymmetric range may introduce bias

EXAMPLE OF QUANTIZATION BIAS

Bias introduced when int values are in [-128, 127]

$$
A=\left[\begin{array}{llll}
-2.2 & -1.1 & 1.1 & 2.2
\end{array}\right], B=\left[\begin{array}{l}
0.5 \\
0.3 \\
0.3 \\
0.5
\end{array}\right], A B=0
$$

8bit scale quantization, use $[-128,127] . s_{A}=128 / 2.2, s_{B}=128 / 0.5$

$$
\left[\begin{array}{llll}
-128 & -64 & 64 & 127
\end{array}\right] *\left[\begin{array}{c}
127 \\
77 \\
77 \\
127
\end{array}\right]=-127
$$

Dequantize -127 will get -0.00853 . A small bias is introduced towards $-\infty$

EXAMPLE OF QUANTIZATION BIAS

No bias when int values are in [-127, 127]

$$
A=\left[\begin{array}{llll}
-2.2 & -1.1 & 1.1 & 2.2
\end{array}\right], B=\left[\begin{array}{l}
0.5 \\
0.3 \\
0.3 \\
0.5
\end{array}\right], A B=0
$$

8 -bit scale quantization, use $[-127,127] . s_{A}=127 / 2.2, s_{B}=127 / 0.5$

$$
\left[\begin{array}{llll}
-127 & -64 & 64 & 127
\end{array}\right] *\left[\begin{array}{c}
127 \\
76 \\
76 \\
127
\end{array}\right]=0
$$

Dequantize 0 will get 0

MATRIX MULTIPLY EXAMPLE

 Scale Quantization$$
\left(\begin{array}{ll}
-1.54 & 0.22 \\
-0.26 & 0.65
\end{array}\right) *\binom{0.35}{-0.51}=\binom{-0.651}{-0.423}
$$

MATRIX MULTIPLY EXAMPLE

Scale Quantization

$$
\left(\begin{array}{ll}
-1.54 & 0.22 \\
-0.26 & 0.65
\end{array}\right) *\binom{0.35}{-0.51}=\binom{-0.651}{-0.423}
$$

8bit quantization choose $[-2,2]$ fp range (scale $127 / 2=63.5$) for first matrix and [-1, 1] fp range (scale $=$ 127/1=127) for the second

$$
\left(\begin{array}{cc}
-98 & 14 \\
-17 & 41
\end{array}\right) *\binom{44}{-65}=\binom{-5222}{-3413}
$$

MATRIX MULTIPLY EXAMPLE

Scale Quantization

$$
\left(\begin{array}{ll}
-1.54 & 0.22 \\
-0.26 & 0.65
\end{array}\right) *\binom{0.35}{-0.51}=\binom{-0.651}{-0.423}
$$

8bit quantization choose [-2, 2] fp range (scale $127 / 2=63.5$) for first matrix and [-1, 1] fp range (scale $=$ $127 / 1=127$) for the second

$$
\left(\begin{array}{ll}
-98 & 14 \\
-17 & 41
\end{array}\right) *\binom{44}{-65}=\binom{-5222}{-3413}
$$

The result has an overall scale of $63.5^{*} 127$. We can dequantize back to float

$$
\binom{-5222}{-3413} * \frac{1}{63.5 * 127}=\binom{-0.648}{-0.423}
$$

REQUANTIZE

Scale Quantization

$$
\left(\begin{array}{ll}
-1.54 & 0.22 \\
-0.26 & 0.65
\end{array}\right) *\binom{0.35}{-0.51}=\binom{-0.651}{-0.423}
$$

8bit quantization choose $[-2,2]$ fp range for first matrix and $[-1,1]$ fp range for the second

$$
\left(\begin{array}{ll}
-98 & 14 \\
-17 & 41
\end{array}\right) *\binom{44}{-65}=\binom{-5222}{-3413}
$$

Requantize output to a different quantized representation with fp range [-3, 3]:

$$
\binom{-5222}{-3413} * \frac{127 / 3}{63.5 * 127}=\binom{-27}{-18}
$$

Post Training Quantization (PTQ)

Greedy Layer-wise Quantization ${ }^{3}$

- For a fixed-point number, it representation is:

$$
n=\sum_{i=0}^{b w-1} B_{i} \cdot 2^{-f_{l}} \cdot 2^{i}
$$

where $b w$ is the bit width and f_{l} is the fractional length which is dynamic for different layers and feature map sets while static in one layer.

- Weight quantization: find the optimal f_{l} for weights:

$$
f_{l}=\arg \min _{f_{l}} \sum\left|W_{\text {float }}-W\left(b w, f_{l}\right)\right|
$$

where W is a weight and $W\left(b w, f_{l}\right)$ represents the fixed-point format of W under the given $b w$ and f_{l}.

[^8]
Greedy Layer-wise Quantization

- Feature quantization: find the optimal f_{l} for features:

$$
f_{l}=\arg \min _{f_{l}} \sum\left|x_{\text {float }}^{+}-x^{+}\left(b w, f_{l}\right)\right|
$$

where x^{+}represents the result of a layer when we denote the computation of a layer as $x^{+}=A \cdot x$.

Dynamic-Precision Data Quantization Results

Network	VGG16						
Data Bits	Single-float	16	16	8	8	8	8
Weight Bits	Single-float	16	8	8	8	8	8 or 4
Data Precision	N/A	2^{-2}	$2^{-2} \quad$ Imp	Impossible	$2^{-5} / 2^{-1}$	Dynamic	Dynamic
Weight Precision	N/A	2^{-15}	$2^{-7} \quad$ Impa	Impossible	2^{-7}	Dynamic	Dynamic
Top-1 Accuracy	68.1\%	68.0\%	53.0\% Im	Impossible	28.2\%	66.6\%	67.0\%
Top-5 Accuracy	88.0\%	87.9\%	76.6\% Im	Impossible	49.7\%	87.4\%	87.6\%
Network		CaffeNe				C16-SVD	
Data Bits	Single-float	16	8	Single		16	8
Weight Bits	Single-float	16	8	Single-	loat	16	8 or 4
Data Precision	N/A	Dynamic	Dynamic	ic N/A		Dynamic	Dynamic
Weight Precision	N/A	Dynamic	Dynamic	ic N/A		Dynamic	Dynamic
Top-1 Accuracy	53.9\%	53.9\%	53.0\%	68.0		64.6\%	64.1\%
Top-5 Accuracy	77.7\%	77.1\%	76.6\%	88.0		86.7\%	86.3\%

Industrial Implementations - Nvidia TensorRT

No Saturation Quantization - INT8 Inference

- Map the maximum value to 127 , with unifrom step length.
- Suffer from outliers.

Industrial Implementations - Nvidia TensorRT

Saturation Quantization - INT8 Inference

- Set a threshold as the maxiumum value.
- Divide the value domain into 2048 groups.
- Traverse all the possible thresholds to find the best one with minimum KL divergence.

Industrial Implementations - Nvidia TensorRT

Relative Entropy of two encodings

- INT8 model encodes the same information as the original FP32 model.
- Minimize the loss of information.
- Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative entropy or information divergence).
- P, Q - two discrete probability distributions:

$$
D_{K L}(P \| Q)=\sum_{i=1}^{N} P\left(x_{i}\right) \log \frac{P\left(x_{i}\right)}{Q\left(x_{i}\right)}
$$

- Intuition: KL divergence measures the amount of information lost when approximating a given encoding.

Quantization Aware Training (QAT)

QAT: Weight

Straight Through Estimator (STE) ${ }^{4}$

- Forward integer, Backward floating point
- Rounding to nearest

[^9]
Better Gradients

Is Straight-Through Estimator (STE) the best?

- Gradient mismatch: the gradients of the weights are not generated using the value of weights, but rather its quantized value.
- Poor gradient: STE fails at investigating better gradients for quantization training.

QAT: Activation

PArameterized Clipping acTivation (PACT) ${ }^{5}$

- Relu6 \rightarrow clipping
- threshold \rightarrow clipping range in quantization
- range upper/lower bound trainable

$$
y=P A C T(x)=0.5(|x|-|x-\alpha|+\alpha)= \begin{cases}0, & x \in(-\infty, 0) \\ x, & x \in[0, \alpha) \\ \alpha, & x \in[\alpha,+\infty)\end{cases}
$$

${ }^{5}$ Jungwook Choi, Zhuo Wang, et al. (2018). "Pact: Parameterized clipping activation for quantized neural networks". In: arXiv preprint arXiv:1805.06085.

PArameterized Clipping acTivation Function (PACT) ${ }^{6}$

- A new activation quantization scheme in which the activation function has a parameterized clipping level α.
- The clipping level is dynamically adjusted vias stochastic gradient descent (SGD)-based training with the goal of minimizing the quantization error.
- In PACT, the convolutional ReLU activation function in CNN is replaced with:

$$
f(x)=0.5(|x|-|x-\alpha|+\alpha)= \begin{cases}0, & x \in(\infty, 0) \\ x, & x \in[0, \alpha) \\ \alpha, & x \in[\alpha,+\infty)\end{cases}
$$

where α limits the dynamic range of activation to $[0, \alpha]$.

[^10]
PArameterized Clipping acTivation Function (PACT)

- The truncated activation output is the linearly quantized to k-bits for the dot-product computations:

$$
y_{q}=\operatorname{round}\left(y \cdot \frac{2^{k}-1}{\alpha}\right) \cdot \frac{\alpha}{2^{k}-1}
$$

- With this new activation function, α is a variable in the loss function, whose value can be optimized during training.
- For back-propagation, gradient $\frac{\partial y_{q}}{\partial \alpha}$ can be computed using STE to estimate $\frac{\partial y_{q}}{\partial y}$ as 1 .

PACT activation function and its gradient.

[^0]: ${ }^{1}$ On Sparc processor, Solaris, gcc 3.3 (ANSI C)

[^1]: ${ }^{1}$ On Sparc processor, Solaris, gcc 3.3 (ANSI C)

[^2]: ${ }^{2}$ Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737-1746.

[^3]: ${ }^{2}$ Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML,

[^4]: ${ }^{2}$ Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML,

[^5]: ${ }^{2}$ Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737-1746.

[^6]: ${ }^{2}$ Suyog Gupta et al. (2015). "Deep learning with limited numerical precision". In: Proc. ICML, pp. 1737-1746.

[^7]: ${ }^{2}$ Suyog Gupta et al．（2015）．＂Deep learning with limited numerical precision＂．In：Proc．ICML， pp．1737－1746．

[^8]: ${ }^{3}$ Jiantao Qiu et al. (2016). "Going deeper with embedded fpga platform for convolutional neural network". In: Proc. FPGA, pp. 26-35.

[^9]: ${ }^{4}$ Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). "Estimating or propagating gradients through stochastic neurons for conditional computation". In: arXiv preprint

[^10]: ${ }^{6}$ Jungwook Choi, Swagath Venkataramani, et al. (2019). "Accurate and efficient 2-bit quantized neural networks". In: Proceedings of Machine Learning and Systems 1.

