CENG 5030
Energy Efficient Computing

Mo03: Quantization

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: October 30, 2023)

2023 Fall

These slides contain/adapt materials developed by

¢ Hardware for Machine Learning, Shao Spring 2020 @ UCB
¢ 8-bit Inference with TensorRT

® Amir Gholami et al. (2021). “A survey of quantization methods for efficient neural
network inference”. In: arXiv preprint

2/42

Overview

@ Floating Point Number

@ Integer & Fixed-Point Number
® Quantization Overview

@ Quantization — First Example

@ Post Training Quantization (PTQ)

@® Quantization Aware Training (QAT)

3/42

Floating Point Number

=
P

Floating Point Number

Scientific notation: 6.6254 x 10~%7

A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)

Scale factors to determine the position of the decimal point (e.g. 10~% indicates
position of decimal point and is called the exponent; the base is implied)

Sign bit

5/42

Normalized Form

¢ Floating Point Numbers can have multiple forms, e.g.

0.232 x 10* =2.32 x 10°
=23.2 x 10%
= 2320. x 10°
= 232000. x 102

e Itis desirable for each number to have a unique representation => Normalized Form

* We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

* [1..2) for BINARY
* [1..10) for DECIMAL

6/42

IEEE Standard 754 Single Precision

32-bit, float in C / C++ / Java

32 bits
- L
|s | F | M
Sign of M v
8-bit signed 23-bit
number :
L. exponentin mantissa fraction
0 signifies +
- excess-127
1 signifies —
representation
E'-127
Value represented = *1LM x2
(a) Single precision
0joo0o1o01ro00o0jooro1o - . - 0
—
-87
Value represented = +1.001010 =--- 0 x 2

00101000 > 40

(b) Example of a single-precision number

40-127 =-87

7/42

IEEE Standard 754 Double Precision

64-bit, float in C / C++ / Java

64 bits
N E' M
Sign J ' \
11-bit excess-1023 52-bit
exponent mantissa fraction
E'-1023
Value represented =+1L.M x2

(c) Double precision

8/42

Question:
What is the IEEE single precision number 40C0 00004 in decimal?

9/42

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

10/42

Special Values

Exponents of all 0’s and all 1’s have special meaning

E=0, M=0 represents 0 (sign bit still used so there is +0)

E=0, M#£0 is a denormalized number +0.M x2 '“° (smaller than the smallest
normalized number)

E=All 1’s, M=0 represents £Infinity, depending on Sign
E=All 1’s, M#0 represents Nall

11/42

Ref: IEEE Standard 754 Numbers

® Normalized +/—1.d...d x 2¢xp

® Denormalized +/-0.d...d x 2min_exp - to represent near-zero numbers
e.g. + 0.0000...0000001 x 2-'26 for Single Precision

Format #bits # significant bits macheps # exponent bits exponent range
Single 32 1+23 224 (~1077) 8 2-126 _ 2+127 (~1(£38)
Double 64 1+52 2-53 (~10-16) 1 2-1022 _ 2+1023 (~q() £308)
Double Extended >=80 >=64 <=2-64(~10"19) >=15 2-16382 _ 2+16383 (~q () £4932)
(Double Extended is 80 bits on all Intel machines)

macheps =Machine Epsilon = = 2~ (#significand bits)

&

mach

12/42

Inaccurate Floating Point Operations

Example: Find 1st root of a quadratic equation'

—b+/b*—4-a-0)
2-a

Expected: 0.00023025562642476431
Double: 0.00023025562638524986
Float: 0.00024670246057212353

On Sparc processor, Solaris, gee 3.3 (ANSI C) 13/42

Inaccurate Floating Point Operations

Example: Find 1st root of a quadratic equation’

—b+/b*—4-a-0)
2-a

Expected: 0.00023025562642476431
Double: 0.00023025562638524986
Float: 0.00024670246057212353

® Problem is that if c is near zero, Vb2 —4-a-c~b

¢ Rule of thumb: use the highest precision which does not give up too much speed

On Sparc processor, Solaris, gee 3.3 (ANSI C) 13/42

Integer & Fixed-Point Number

Unsigned Binary Representation

Hex Binary | Decimal
0x00000000 | 0...0000 0
0x00000001 | 0...0001 1
0x00000002 | 0...0010 2
0x00000003 | 0...0011 3
0x00000004 | 0...0100 4
0x00000005 | 0...0101 5
0x00000006 | 0...0110 6
0x00000007 | 0...0111 7
0x00000008 | 0...1000 8
0x00000009 | 0...1001 9

OxFFFFFFFC | 1...1100 232._4
OxFFFFFFFD | 1...1101 2%2-3
OXFFFFFFFE | 1...1110 | 232_2
OXFFFFFFFF | 1...1111 232 -1

231280 229 28 22 21 20 bit weight

31 30 29 3 2 1 0 bitposition

111 ... 1111 bit
1

17000 0000 -1

15/42

Signed Binary Representation

complement all the bits/

0101 1011

and add a 1
and add a 1
0110 1010

complement all the bits

2’sc binary | decimal
2% = 1000 -8
«(2°-1)= 1001 -7
(w10 0] 6
o | s
1100 -4
1101 -3
1110 -2
1111 -1
0000 0
0001 1
0010 2
0011 3
0100 4
[0101 5
—~C o110) 6
0111 7

16/42

Fixed-Point Arithmetic

* Integers with a binary point and a bias
“slope and bias™y =s"x + z
* Qm.n: m (# of integer bits) n (# of fractional bits)

s=1,z=0 s=1/4,2=0 s=4,2=0 s=1.5,z=10
EIEIEINN EIEDENEN EICIEIN EE I
0 1.5%0 +10
0 0 1 1 0 0 1 1/4 0 0 1 4 0 0 1 1.5*1+10
0 1 0 2 0 1 0 2/4 0 1 0 8 0 1 0 1.5%2+10
0 1 1 3 0 1 1 3/a 0 1 1 12 0 1 1 1.5*3+10
1 0 0 4 1 0 0 1 1 0 0 16 1 0 0 1.5%4+10
1 0 1 5 1 0 1 5/4 1 0 1 20 1 0 1 15*5+10
1 1 0 6 1 1 0 6/a 1 1 0o 24 1 1 0 15%+10
1 1 1 7 1 1 1 7/ 1 1 1 28 1 1 1 1.5*7+10

17/42

Catastrophic Cancellation

(a — b) is inaccurate whena >> bora << b
Decimal Example 1:
¢ Using 2 significant digits
¢ Compute mean of 5.1 and 5.2 using the formula (a + b) /2:

® a+ b =10 (with 2 significant digits, 10.3 can only be stored as 10)

® 10/2 = 5.0 (the computed mean is less than both numbers!!!)

Decimal Example 2:

¢ Using 8 significant digits to compute sum of three numbers:
e (11111113 + (—11111111)) 4+ 7.5111111 = 9.5111111
° 11111113 + ((—11111111) + 7.5111111) = 10.000000

18/42

Catastrophic Cancellation

Catastrophic cancellation occurs when

[round(x) x round(y)] — round(x x y)

round(x X y) o

19/42

Hardware Implications

Multipliers

Sa Sg

Multiplier Example: C=Ax B

€a €g my mg

me

Floating-point multiplier

Fixed-point multiplier

20/42

Case Study: ICML 20152

Fixed-Point Arithmetic

Number representation{IL,FL)

Integer Fraction
L L

g
IL FL

Word Length WL = IL +FL
Granularity 2 FL

Range I:_2IL—17 oIL—1 _ 2—FL}

Convert (z, (IL,FL)) =
-2t if o < -2
{211_—1 _9-FL iz > oll-l _o-FL

Round(z, (IL,FL)) otherwise

Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746.

21/42

Case Study: ICML 20152

Fixed-Point Arithmetic

Number representation{IL,FL)

Integer
L

g
IL FL

Fraction
|

Word Length WL = IL +FL
Granularity 2 FL

Range I:_2IL—17 21L—1 _ 2—FL}

Convert (z, (IL,FL)) =
7211.71 ife < 7211.71
oIL—1 _ 9—FL ifg > ol _g-FL

Round(z, (IL,FL)) otherwise

8

Multiply-and-ACCumulate

a; b;
(ILy,FLy) (IL,FLo)
d
z =73 aib;
l WL-bit
-DI
Convert(z, (IL, IF)) multplier
Wide accumulator (48-bits)
(DSP MACC)
z
Convert() |(DSP ROUND)
[T eTTTTTTT]
IL FL

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,

pp. 1737-1746.

21/42

Case Study: ICML 20152

Fixed-Point Arithmetic: Rounding Modes

Round-to-nearest

1
I
I I
|z] —€ |z] lz] +€e |z]+2€
I xT]
]
I]
1]
lz] —e |z] lz] +e |z]+2e

9

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746. 21/42

Case Study: ICML 20152

Fixed-Point Arithmetic: Rounding Modes

Round-to-nearest Stochastic rounding

Non-zero probability of rounding to
either [z or [z] + €

1 1 : I o
:41 | ! €1
1 1 : 1
lz] — € |z lz) +e |z]+2€ E [z] —¢ [z] 2] +e |2]+2€
i Round (x, (IL,FL)) =
I x 1 1
| ! : lz] wp. 1 — 2=zl
1] | €
! |z +€ wp. @
lz] —€] lz]+€e |z|+2€ !

Unbiased rounding scheme:
expected rounding error is zero

10

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746. 21/42

Case Study: ICML 20

MNIST: Fully-connected DNNs

Round to nearest, WL = 16

Round to nearest, WL = 16

T T T T
,_‘Lower precision

Training error
Test error(%)

1
5 10 15 20 25 30

Training epoch

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746.

Case Study: ICML 20

MNIST: Fully-connected DNNs

Round to nearest, WL = 16 Round to nearest, WL = 16
T T T . T 5
10 4Lower precision 45
5 < 4
5§ 0 S e € 35
o | "Sefese, T E S 3
£ o001 4 2
@ 2 25 1
= ool i
0.001 E
15
0.0001 1 L L L L L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Training epoch Training epoch

= For small fractional lengths (FL < 12), a large majority of weight updates are
rounded to zero when using the round-to-nearest scheme.

= Convergence slows down

= For FL <12, there is a noticeable degradation in the classification accuracy
12

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746.

21/42

Case Study: ICML 20

MNIST: Fully-connected DNNs

Stochastic rounding, WL = 16 Stochastic rounding, WL = 16
T T T T 4 I T T T T
FL 8 —o— FL8 —o—
T FL10 —o— 7 35 FL10 —o— A
4 FL14 —o— FL14 —o—
0.1 & Float 3 Hl Float B

Training error
Test error(%)

1
5 10 15 20 25 30 0 5 10 15 20 25 30
Training epoch Training epoch

= Stochastic rounding preserves gradient information (statistically)
= No degradation in convergence properties

= Test error nearly equal to that obtained using 32-bit floats

13

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,

pp. 1737-1746.

21/42

Quantization Overview

53]
&

Quantization in DNN

Quantization:

Output: §

Filter 1

Q(r) = Int(r/S) — Z

=

VAN
AN

EEE |

Dequantization:

P =S(Q(r) +2)

Filter 2

)

Filter 3

JA\

Granularity: | Lo :
* Layerwise et x @ ! o |
Filter C Layerwise Channelwise
L4 Groupwise Quantization Quantization

* Channelwise

23/42

Uniform vs. Non-Uniform

Q Q
d
| r I_I r
(a) uniform quantization (b) uniform quantization

Real values in the continuous domain r are mapped into discrete

® Lower precision values in the quantized domain Q.

Uniform quantization: distances between quantized values are the same

¢ Non-uniform quantization: distances between quantized values can vary

24/42

Symmetric VS. Asymmetric

0 sz B=15
—127 0 —128 0 127
(@) Symmetric quantization (b) Asymmetric quantization

¢ Symmetric vs. Asymmetric: Z =07?

Fig. (a) Symmetric w. restricted range maps [-127, 127],

Fig. (b) Asymmetric w. full range maps to [-128, 127]

Both for 8-bit quantization case.

25/42

QAT and PTQ

Pre-trained model [Pre-trained model] [Calibration data]
Training data ! v

Quantization [Calibration]
v] v

[Retraining / Finetuning] [Quantization]
v]

[Quantized model] [Quantized model]

QAT PTQ

® quantization-aware training (QAT): model is quantized using training data to adjust
parameters and recover accuracy degradation.

¢ post-training quantization (PTQ): a pre-trained model is calibrated using finetuning
data (e.g., a small subset of training data) to compute the clipping ranges and the
scaling factors.

¢ Key difference: Model parameters fixed /unfixed.

26/42

Simulated quantization vs Integer-Only quantization

FP32 Weight FP32 Activation INT4 Weight INT4 Activation INT4 Weight INT4 Activation
I} i
[Dequantize]
|| E==a |
[Multiplication (FP32)] [Multiplication (FP32)] [Multiplication (INT4)]
| Fra2 | FPa2 1 NT4
[Accumulation (FP32)] [Accumulation (FP32)] [Accumulation (INT32)]
| FPa2 e
J [Requantize] [Requantize]
v
FP32 Activation INT4 Activation INT4 Activation

Left : Full-precision
Middle : Simulated quantization
Right : Integer-only quantization

27/42

Backend Support for Quantization Deployment

Hardware Support

* Nvidia GPU: Tensor Core support FP16, Int8 and Int4
° Arm: Neon 128-bit SIMD instruction: 4x32bit or 8 x16bit up to 16x8bit
¢ Intel: SSE intrinsics, same as above

* DSP, Al Chip

Some common architectures:

¢ For CPU: Tensorflow Lite, QNNPACK, NCNN
¢ For GPU: TensorRT
¢ Versatile Compiler such TVM.qnn

28/42

Quantization — First Example

b

=

- @z

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

...
Do we really need bias?

Two matrices:

A = scale A * QA + bias A
B = scale B * OB + bias B

Let’s multiply those 2 matrices:
A * B = scale A * scale B * QA * QOB +
scale A * QA * bias B +

scale B * OB * bias A +
bias A * bias B

- @z

Do we really need bias?

Two matrices:

A = scale A * QA + biasA
B = scale B * OB + bias B

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB +

scale A * OA * hias B +
sga;e_g * OB * bjas_A +

...
Do we really need bias? No!

Two matrices:

A = scale A * QA
B = scale B * QOB

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB

- @z

Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

MINIMUM QUANTIZED VALUE

Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]

If use [-127, 127], s =%

Range is symmetric

1/256 of int8 range is not used. 1/16 of int4 range is not used

If use full range [-128, 127], s = 128

a

Values should be quantized to 128 will be clipped to 127

Asymmetric range may introduce bias

18 <AnviDIA

EXAMPLE OF QUANTIZATION BIAS

05
A=[-22 -11 11 22],B= 8-3 LAB =0
0.5

8bit scale quantization, use [-128, 127]. s

=128/2.2, 55=128/0.5

127
[- —-64 64 127] = —127
127

Dequantize -127 will get -0.00853. A small bias is introduced towards -«

EXAMPLE OF QUANTIZATION BIAS

A=[-22 -11 11 22],B= Igg‘ JAB =0

8-bit scale quantization, use [-127, 127]. s,=127/2.2, sg=127/0.5

127
[-127 —64 64 127]+
127

Dequantize 0 will get 0

MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

MATRIX MULTIPLY EXAMPLE

(—1.54 0.22) . (0.35)

—0.65
—0.26 0.65 —0.51 (04 1)

—0.423
8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

The result has an overall scale of 63.5* . We can dequantize back to float
(—5222) . _ (—0.648)
—3413 63.5 * —0.423

REQUANTIZE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second
(—98 14) " A4) _ (—5222)
—-17 41 —65 —3413
Requantize output to a different quantized representation with fp range [-3, 3]:

_ 127/3 _
(_giﬁ) * 635%127 (—2573)

Post Training Quantization (PTQ)

Greedy Layer-wise Quantization®

¢ For a fixed-point number, it representation is:
bw—1

n=Y Bi-27.2,
i=0

where bw is the bit width and f; is the fractional length which is dynamic for different
layers and feature map sets while static in one layer.

¢ Weight quantization: find the optimal f; for weights:
fi = arg n}inz |Whoat — W(bw, f1)],
1

where W is a weight and W(bw, f;) represents the fixed-point format of W under the
given bw and f;.

*Jiantao Qiu et al. (2016). “Going deeper with embedded fpga platform for convolutional neural
network”. In: Proc. FPGA, pp. 26-35. 31/42

Greedy Layer-wise Quantization

(mputimages) (onvmoder)
T T

¥

Weight quantization phase

Weight dynamic range analysis

* Feature quantization: find the optimal f;
for features:

I Weight quantization configuration |

fi=arg H}}“Z |Xﬁzut —x* (bw,fi)], =

Data quantization phase

Fixed-point CNN model Floating-point CNN model
where x* represents the result of a layer L | Lo |
when we denote the computation of a | Lo depor— e] L]

° optimal quantization strateg 3
layerasx™ = A - x. [b [o]
¥ 3
| Layer N | | Layer N |
1
[Weight and data quantization configuration]

32/42

Dynamic-Precision Data Quantization Results

Network

Data Bits 16 16 8 8 8

Weight Bits Single-float 16 8 8 8 8
Data Precision N/A 2= 22 Impossible 2521 Dynamic Dynamic
Weight Precision N/A 215 27 Impossible 27 Dynamic Dynamic

Top-1 Accuracy 68.1% 68.0% 53.0% Impossible 28.2% 66.6% 67.0%

Top-5Accuracy | 88.0% | 87.9% 766% Impossible 49.7% 87.4%
| Network | CaffeNet VGG16-SVD

Data Bits Single-float 16 8 Single-float 16 8
Weight Bits Single-float 16 8 Single-float 16 8or4
Data Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Weight Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Top-1 Accuracy 53.9% 53.9% 53.0% 68.0% 64.6% 64.1%
Top-5 Accuracy 77.7% 771% 76.6% 88.0% 86.7% 86.3%

33/42

Industrial Implementations — Nvidia TensorRT

No Saturation Quantization — INT8 Inference
° : map |max| to 127

-|max| 0.0 - +|max|
969030 — 96— 969696 969¢— 6 9¢

26 98298 3¢ 3¢ J00C 30¢
-127 0: 127

¢ Map the maximum value to 127, with unifrom step length.

® Suffer from outliers.

34/42

Industrial Implementations — Nvidia TensorRT

Saturation Quantization — INT8 Inference

above |threshold| to 127

T| 0.0 - +T]
R IR IR R e 22

5398 36 9 300¢ 3¢
-127 0: 127

Set a threshold as the maxiumum value.
Divide the value domain into 2048 groups.

Traverse all the possible thresholds to find the best one with minimum KL

divergence.
35/42

Industrial Implementations — Nvidia TensorRT

Relative Entropy of two encodings

¢ INT8 model encodes the same information as the original FP32 model.
® Minimize the loss of information.

® Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative
entropy or information divergence).

® P, Q - two discrete probability distributions:

N

Di(P|Q) = ZP(xi) log

i=1

P(x;)
Q(x;)

¢ Intuition: KL divergence measures the amount of information lost when
approximating a given encoding.

36/42

Quantization Aware Training

(QAT)

@

]
Ra

QAT: Weight

Straight Through Estimator (STE)*

¢ Forward integer, Backward floating point

¢ Rounding to nearest
Weigh r Quantized Weight Q
FP) Quantizer (INT)
il || 22 1 2
" Forward Pass
17| 36 H—/ vz 2| 2
STE
01 | -01 (ol | =)l
2 1 PR Backward Pass
-0.2 | 0.2 -0.2 | 0.2

Gradient dL/dr Gradient dL/dQ
(FP) (FP)

“Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). “Estimating or propagating
gradients through stochastic neurons for conditional computation”. In: arXiv preprint
arXiv:1308.3432.

38/42

Better Gradients

Is Straight-Through Estimator (STE) the best?

¢ Gradient mismatch: the gradients of the weights are not generated using the value of
weights, but rather its quantized value.

¢ Poor gradient: STE fails at investigating better gradients for quantization training.

39/42

QAT: Activation

PArameterized Clipping acTivation (PACT)°

¢ Relu6 — clipping
¢ threshold — clipping range in quantization

® range upper/lower bound trainable

0, z € (—00,0) y=x y=6
y=PACT(2) =05(|z| — |z —a|+a) =z, z€[0,a)
a, € [o,+o0)

5]ungwook Choi, Zhuo Wang;, et al. (2018). “Pact: Parameterized clipping activation for
quantized neural networks”. In: arXiv preprint arXiv:1805.06085.

40/42

PArameterized Clipping acTivation Function (PACT)®

® A new activation quantization scheme in which the activation function has a
parameterized clipping level a.

¢ The clipping level is dynamically adjusted vias stochastic gradient descent
(SGD)-based training with the goal of minimizing the quantization error.

¢ In PACT, the convolutional ReLU activation function in CNN is replaced with:

0, x € (00,0)
fx)=05(x|—|x—a|+a)=< x, x€[0,a)
a, X € [a,+00)

where « limits the dynamic range of activation to [0, «.

6]ungwook Choi, Swagath Venkataramani, et al. (2019). “Accurate and efficient 2-bit quantized
neural networks”. In: Proceedings of Machine Learning and Systems 1. 41/42

PArameterized Clipping acTivation Function (PACT)

¢ The truncated activation output is the linearly quantized to k-bits for the dot-product
computations:
2k 1 e
=round (y- ——) - =——
Yq (y a) 2k _1
* With this new activation function, « is a variable in the loss function, whose value
can be optimized during training.

¢ For back-propagation, gradient % can be computed using STE to estimate %—y; as 1.

y=0.5(x| - |x —a|l + a)
a 9y
Jda

a X a X
PACT activation function and its gradient.

42/42

	Main Talk
	Floating Point Number
	Integer & Fixed-Point Number
	Quantization Overview
	Quantization – First Example
	Post Training Quantization (PTQ)
	Quantization Aware Training (QAT)

