CENG 5030

Energy Efficient Computing

Lecture 01: Introduction

Bei Yu

CSE Department, CUHK
byu@cse.cuhk.edu.hk
(Latest update: September 2, 2023)

2023 Fall

What We Focus on?

What you expect to Learn?

How About the Workload?

Grading System?

(1) CNN Architecture Overview
(2) CNN Energy Efficiency
(3) CNN on Embedded Platform
(1) CNN Architecture Overview
(2) CNN Energy Efficiency
(3) CNN on Embedded Platform

What happened to Object Detection

Object Detection: PASCAL VOC mean Average Precision (mAP)

Actually, it happened a while ago ...

LeNet 5

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86(11): 2278-2324, 1998.

The Perceptron

Input

Rosenblatt, Frank (1958), The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain, Cornell Aeronautical Laboratory, Psychological Review, v65, No. 6, pp. 386-408.

Two-layer neural network

- Can learn nonlinear functions provided each perceptron has a differentiable nonlinearity

What is the value range of sigmoid activation?

- [-1, 1]
- $[-\infty,+\infty]$
- $[0,1]$
- $[0,+\infty]$
hidden layer 1 hidden layer 2 hidden layer 3
input layer

Training of multi-layer networks

- Find network weights to minimize the training error between true and estimated labels of training examples, e.g.:

$$
E(\mathbf{w})=\sum_{i=1}^{N}\left(y_{i}-f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Update weights by gradient descent: $\quad \mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial E}{\partial \mathbf{w}}$

Training of multi-layer networks

- Find network weights to minimize the training error between true and estimated labels of training examples, e.g.:

$$
E(\mathbf{w})=\sum_{i=1}^{N}\left(y_{i}-f_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

- Update weights by gradient descent: $\mathbf{w} \leftarrow \mathbf{w}-\alpha \frac{\partial E}{\partial \mathbf{w}}$
- Back-propagation: gradients are computed in the direction from output to input layers and combined using chain rule
- Stochastic gradient descent: compute the weight update w.r.t. one training example (or a small batch of examples) at a time, cycle through training examples in random order in multiple epochs

From fully connected to convolutional networks

feature map

For a convolution kernel with kernel size 3, stride 1, what is the zero padding number to keep the output feature map size unchanged?

- 0
- 1
- 2
- 3

Convolution as feature extraction

Input
Feature Map

Key operations

Source: R. Fergus, Y. LeCun

Key operations

Rectified Linear Unit (ReLU)

Key operations

Source: R. Fergus, Y. LeCun

- ~14 million labeled images, 20k classes
- Images gathered from Internet
- Human labels via Amazon MTurk
- ImageNet Large-Scale Visual Recognition Challenge (ILSVRC): 1.2 million training images, 1000 classes

- Similar framework to LeNet but:
- Max pooling, ReLU nonlinearity
- More data and bigger model (7 hidden layers, 650K units, 60M params)
- GPU implementation (50x speedup over CPU)
- Trained on two GPUs for a week
- Dropout regularization
A. Krizhevsky, I. Sutskever, and G. Hinton, ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012
(1) CNN Architecture Overview
(2) CNN Energy Efficiency

(3) CNN on Embedded Platform

Computer Vision

- Humans use their eyes and their brains to visually sense the world.
- Computers user their cameras and computation to visually sense the world

Classification

Detection

Segmentation
Region
\longrightarrow
Pixel

Sequence

Image

A Bit of History

Jian Sun, "Introduction to Computer Vision and Deep Learning".

Winter of Neural Networks (mid 90' - 2006)

- The rises of SVM, Random forest
- No theory to play
- Lack of training data
- Benchmark is insensitive
- Difficulties in optimization
- Hard to reproduce results

Curse

"Deep neural networks are no good and could never be trained."

Renaissance of Deep Learning (2006 -)

- A fast learning algorithm for deep belief nets. [Hinton et.al 1996]
- Data + Computing + Industry Competition
- NVidia's GPU, Google Brain (16,000 CPUs)
- Speech: Microsoft [2010], Google [2011], IBM
- Image: AlexNet, 8 layers [Krizhevsky et.al 2012] (26.2\% -> 15.3\%)

Revolution of Depth

Revolution of Depth

GoogleNet, 22
layers
(ILSVRC 2014)

Revolution of Depth

AlexNet, 8 layers	郞	VGG, 19 layers	10	ResNet, 152 layers
(ILSVRC 2012)		(ILSVRC	暑	(ILSVRC 2015)
		2014)		

- AlexNet (Krizhevsky, Sutskever, and E. Hinton 2012) 233MB
- Network in Network (Lin, Chen, and Yan 2013) 29MB
- VGG (Simonyan and Zisserman 2015) 549MB
- GoogleNet (Szegedy, Liu, et al. 2015) 51MB
- ResNet (He et al. 2016) 215MB
- Inception-ResNet (Szegedy, Vanhoucke, et al. 2016)
- DenseNet (Huang et al. 2017)
- Xception (Chollet 2017)
- MobileNetV2 (Sandler et al. 2018)
- ShuffleNet (Zhang et al. 2018)
- AlexNet (Krizhevsky, Sutskever, and E. Hinton 2012) 233MB
- Network in Network (Lin, Chen, and Yan 2013) 29MB
- VGG (Simonyan and Zisserman 2015) 549MB
- GoogleNet (Szegedy, Liu, et al. 2015) 51MB
- ResNet (He et al. 2016) 215MB
- Inception-ResNet (Szegedy, Vanhoucke, et al. 2016) 23MB
- DenseNet (Huang et al. 2017) 80MB
- Xception (Chollet 2017) 22MB
- MobileNetV2 (Sandler et al. 2018) 14MB
- ShuffleNet (Zhang et al. 2018) 22MB

[^0]

Why AlexNet is large in size, but small in operations?

- Special FC layers
- Special Conv layers
- More channels
- Some redundant operators

Convolutional Neural Network (CNN)

feature maps feature maps feature maps feature maps

Convolutional layers account for over 90\% computation
[1] A. Krizhevsky, etc. Imagenet classification with deep convolutional neural networks. NIPS 2012.
[2] J. Cong and B. Xiao. Minimizing computation in convolutional neural networks. ICANN 2014

(1) CNN Architecture Overview
(2) CNN Energy Efficiency
(3) CNN on Embedded Platform

When Machine Learning Meets Hardware

Convolution layer is one of the most expensive layers

- Computation pattern
- Emerging challenges

More and more end-point devices with limited memory

- Cameras
- Smartphone
- Autonomous driving

Application Category

Both	Datacenter	Edge
Intel,	AMD, Microsoft,	
Nvidia,	Apple, Tencent	Qualcomm, Samsung, STMicroelectronics, NXP,
IBM, Xilinx,	Cloud,Aliyun,	Maidu Cloud,
HiSilicon,	MediaTek, Rockchip, Amazon_AWS, ARM, Synopsys,	
Google,	HUAWEI Cloud,	Imagination, CEVA, Cadence, VeriSilicon, Videantis,
Baidu,	Fujitsu, Nokia,	Rorizon Robotics, Chipintelli, Unisound, AISpeech,
Alibaba	Facebook, HPE,	Rokid, KnuEdge, Tenstorrent, ThinCI, Koniku, Knowm,
Group,	Thinkforce,	Mythic, Kalray, BrainChip, Almotive, DeepScale,
Cambricon,	Cerebras,	Leepmind, KrtkI, NovuMind, REM, TERADEEP, DEEP
DeePhi,	Graphcore,	VISION, KAIST DNPU, Kneron, Esperanto
Bitmain,	Groq,	Technologies, Gyrfalcon Technology, GreenWaves
Wave	SambaNova	Technology, Lightelligence, Lightmatter, ThinkSilicon,
Computing	Systems,	Innogrit, Kortiq, Hailo,Tachyum
	Adapteva, PEZY	

Source: https://basicmi.github.io/Deep-Learning-Processor-List/

Flexibility

Power/Performance Efficiency

Comparisons: FPGA, ASIC, GPU ${ }^{2}$

	Xilinx	Xilinx	Huawei	nVIDIA	Cambricon
	ZCU102	ZCU104	Atlas 200	Jetson TX2	MLU 270
price	3K RMB	2K RMB	4 K RMB	2.8 K RMB	12K RMB
MobileNet-V1	1.14 ms	1.37 ms	1.8 ms	12.44 ms	1.85 ms
ResNet50	5.23 ms	6.81 ms	3.6 ms	24.70 ms	2.54 ms
Inception_v2	2.68 ms	3.35 ms	6.0 ms	10.81 ms	5.12 ms
Inception_v3	6.44 ms	8.53 ms	5.7 ms	32.53 ms	4.71 ms
Inception_v4	11.87 ms	17.06 ms	9.3 ms	44.37 ms	11.33 ms

[^1]
[^0]: ${ }^{1}$ Alfredo Canziani, Adam Paszke, and Eugenio Culurciello (2017). "An analysis of deep neural network models for practical applications". In: arXiv preprint.

[^1]: ${ }^{2}$ price is NOT accurate - reference purpose.

