CENG 5030
Energy Efficient Computing

Implementation 05: CUDA

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: December 4, 2023)

2023 Fall

Overview

@ Introduction

@ Programming Model

@ Programming Practice
3.1 Optimizing Parallel Reduction in CUDA
3.2 Optimizing GEMM in CUDA

2/91

Introduction

P

Extreme Computational Power of GPU’s

11000
GTX TITAN X (Pascal) i
10000 1 Nvidia GPU SP
e NVIDIA GPU Single Precision

99001 emm— NVIDIA GPU Double Precision

8000 1 — Intel CPU Double Precision
) . ..
% Intel CPU Single Precision
=1 7000 4
w
o GTX TITAN X (Maxwell)
< 6000 -
®
o GeForce GTX 780 TI
= 5000
o GeForce GTX TITAN
= Tesla P100 (PCI-E) -
S 4000 1 Nvidia GPU DP
9]
< GeForce GTX 680
= 3000 4

2000 A GeForce GTX 580 Tesla K40

GeForce GTX 480 Tesla K20X Intel CPU SP
1000 GeForce GTX 280
GeForce 8800 GTX Tesia C2075 Intel CPU DP

GeForce 7800
6800 Ultra

Prescott

T T T
2000 2002 2004 2006 2008 2010 2012 2014 2016

Release date
GPU vs. CPU:

¢ Provide much higher instruction throughput and memory bandwidth than CPU

within a similar price and power envelop. 4/91

Difference between CPU’s and GPU’s

Core Core

L1 Cache L1 Cache

Core Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache

DRAM

CPU GPU

L2 Cache

CPU - Minimize latency GPU - Maximize throughput

® Majority of transistors are dedicated

tor ® Majority of transistors are dedicated

to:
¢ Advanced Control Logic « Data brocessin
¢ Large Cache P & 5/91

Key Advantages of GPU Architecture

¢ High Throughput and Parallelism: GPUs excel in executing the same program on
many data elements simultaneously.

¢ Energy Efficient and Flexibility: GPUs can be energy efficient like FPGAs but offer
much more programming flexibility.

° Maximized Performance: In applications, utilization of GPUs with CPUs can exploit
the high degree of parallelism, achieving superior performance.

6/91

CUDA: Compute Unified Device Architecture

CUDA is a parallel computing platform by NVIDIA that leverages the power of
GPUs.

Key Features

¢ Enables more efficient problem-solving than on a CPU (By libraries).
¢ Supports C++ as a high-level programming language.

¢ Accommodates other languages and APIs, such as Python, DirectCompute, and
OpenACC.

7/91

CUDA: Compute Unified Device Architecture

GPU Computing Applications

Libraries and Middleware

CcuDNN MATLAB
TensorRT Mathematica

Directives
(e.g. OpenACC)

NVIDIA Ampere Architecture Tesla A Series
(compute capabilties 8.x)
NVIDIA Turing Architecture GeForce 2000 Series Quadro RTX Series Tesla T Series
(compute capabilities 7.x)
NVIDIA Volta Architecture | DRIVE/JETSON Quadro GV Series Tesla V Series
(compute capabilities 7.x) AGX Xavier
NVIDIA Pascal Architecture GeForce 1000 Series Quadro P Series Tesla P Series.
(compute capabilities 6.x)

r Z

¥ i .

/.

Embedded Sur Pofessional
Workstation

8/91

Host, Device, and CUDA Execution Process

Host Device
Concepts CUDA Execution Process
* Host: CPU @ Transfer data from host to device.
e Device: GPU @ Perform computations using CUDA kernel
on device.

* Het : .
leterogencous @ Transfer results from device to host.

¢ Combination: Host + Device
¢ Leverages both for optimum
performance
9/91

Kernels

How to utilize the massive number of CUDA cores?

¢ Kernels: Functions that run on the GPU.

¢ Kernels are executed N times in parallel by N different threads.

¢ Execution: CUDA threads execute in a SIMT (Single Instruction Multiple
Threads) fashion.
© Enable thread-level parallel code for independent, scalar threads.
¢ Divergence: Within a wrap, branch divergence occurs.
¢ Diverge via a data-dependent conditional branch.

10/91

Thread Hierarchy

Threads

¢ Kernels are executed by Threads
Thread

Blocks ¢ > O

¢ Threads on the same SM are
grouped into Blocks Thread Block

§ {———> EHIIIITIIITIT1T]

® SM: streaming multiprocessor

GI‘ld Grid 0

Block Block (

¢ Blocks are grouped into Grids g%gg%g §§§
o
:

AV,
“WVWWo
AV

) | |Block (:

AW
AW

¢ Each Kernel launch creates a single Rlock Q. fiRiack(1.1) flock 2.1

i

Grid

DRAM

Thread € Block € Grid

11/91

Programming Model

=
P

Program Flow: Overview

® Host Code

® Serial work
¢ Launch Kernels

® Device Code

¢ Parallel work

int main(void){ // Host Code
— // Do sequential stuff

// Launch Kernel

// Do more sequential stuff

// Launch Kernel

return 0;

}

kernel_0 <<< grid_sz0, blk_sz0 >>>(..

kernel_1 <<< grid_sz1, blk_sz0 >>>(..

);

X

Ho.st ;
Ho.st ;

Block (0,1)

i

Block (1,1)

s

Block (2,1)

i

13/91

Program Flow: Kernel Launch Syntax

// Block and Grid dimensions
// Default values are (1,1,1)
dim3 grid_size(x, y, z);

dim3 block_size(x, y, 2);

// Launch Kernel
kernelName <<< grid_size, block_size >>>(...);

14/91

Program Flow: An example

int main(void){

// Declare variables
int*h_c, *d_c;

// Allocate memory on the device
cudaMalloc((void*)&d_c, sizeof(int));

// Copy data from Host to Device
cudaMemcpy(d_c, h_c, sizeof(int), cudaMemcpyHostToDevice);

// Configuration Parameters
grid_size(1); block_size(1);

// Launch Kernel
kernel_0 <<< grid_size, block_size >>>(...);

// Copy data from Device to Host
cudaMemcpy(h_c, d_c, sizeof(int), cudaMemcpyDeviceToHost);

// De-allocate memory
cudaFree(d c); free(h c);

return 0;

15/91

Parallelizing a For-Loop

Kernel Definition

__global__ void kernel(int *d_out, int *d_in)
{

// Perform this operation for every thread
d_out[0] = d_in[0];

Thread Index
¢ Accessible within a Kernel through the built in threadldx variable.

¢ Thread Blocks can have as many as 3-dimensions, therefore there is a corresponding

index for each dimension:
threadldx.x

threadldx.y
threadldx.z
// Configuration Parameters Grid
dim3 grid_size(1);
dim3 block_size(N); Block
threadldx.x=0 | threadldx.x=1 threadldx.x=N-1
Grid Dimension: 1*1*1 —> 1 Block % % %
Block Dimension: N*1*1 —> N Threads

16/91

Parallelizing a For-Loop: Comparison

CUDA Program

CPU Program

// Kernel Definition
__global__ void increment_gpu(int *a, int *N)

{

int i = threadldx.x;
if (i< N)
afi] = afi] + 1;
}
int main(void)
inth_a[N]= // ...

// Allocate arrays in Device memory
int* d_a; cudaMalloc((void*)&d_a, N * sizeof(int));

// Copy memory from Host to Device
cudaMemcpy(d_a, h_a, N * sizeof(int), cudaMemcpyHostToDevice);

// Configuration Parameters
grid_size(1); block_size(N);

// Launch Kernel
increment_gpu <<< grid_size, block_size >>>(d_a, N);

/...
return 0;

// Function Definition
void increment_cpu(int *a, int *N)
{
for (int 1=0; i<N; l++)
afi] = afi] + 1;

int main(void)

inta[N]= // ...

// Call Function
increment_cpu(a, N);

/...
return 0;

17/91

Vector Addition - A Very Parallel Problem

Consider two vectors, a and b, each of size N:

ao bo
a b
a= , b= .
an—1 bn_1

The vector addition operation ¢ = a + b can be executed in parallel:

ao + by Co b|:|

a1 + by 1 o e o [[
. 2 [0 o] @ e [
an-1 +bn-1 CN-1 c |10] |:|

Each addition operation can be executed simultaneously, demonstrating the
advantage of parallel computing.
18/91

Indexing Threads within Grids and Blocks

Built-In Variables

Dimension of a Grid
dim3 gridDim;
int gridDim.x;
int gridDim.y;
int gridDim.z;

Dimension of a Grid
dim3 blockDim;
int blockDim.x;
int blockDim.y;
int blockDim.z;

Index of a Block
dim3 blockldx;
int blockldx.x;
int blockldx.y;
int blockldx.z;

Index of a Thread
dim3 threadldx;
int threadldx.x;
int threadldx.y;
int threadldx.z;

19/91

Indexing Threads within Grids and Blocks

Indexing Within Grid

¢ threadldx is only unique within its own Thread Block

* To determine the unique Grid index of a Thread:

i = threadIdx.x + blockIdx.x * blockDim.x;

blockldx.x = 0 blockldx.x = 1
threadldx.x=0 | threadldx.x=1 | threadldx.x=2 | threadldx.x=3 ||| threadldx.x=0 | threadldx.x=1 | threadldx.x=2 | threadldx.x=3

HENENENENENENE

20/91

Indexing Threads within Grids and Blocks

Example

// Launch Kernel
kernel <<< 3, 4 >>>(a);

__global__ void kernel(int *a)

{
int i = threadldx.x + blockldx.x * blockDim.x;
a[i] = blockDim.x;

a:444444444444

__global__ void kernel(int *a)

{
int i = threadldx.x + blockldx.x * blockDim.x;
a[i] = threadldx.x;

a:012301230123

__global__ void kernel(int *a)

{

int i = threadldx.x + blockldx.x * blockDim.x;
a[i] = blockldx.x;
1

a:000011112222

__global__ void kernel(int *a)

{

int i = threadldx.x + blockldx.x * blockDim.x;
afi] = i;

a:012345678910M

21/91

Memory Model

Thread-Memory Correspondence

Threads = Local Memory (and Registers)

¢ Scope: Private to its corresponding Thread
¢ Lifetime: Thread
Blocks = Shared Memory
¢ Scope: Every Thread in the Block has assess
¢ Lifetime: Block
Grids = Global Memory
¢ Scope: Every Thread in all Grids have access

¢ Lifetime: Entire program in Host code -
main ()

Per-thread
local memory

—

—
—_— Per-block
<«—— shared memory

Global Memory

22/91

Memory Model

Memory Speed

(Device) Grid

* Relative speed of memory spaces: Block(0.0) Block(1,0)

"Bandwida’/"Latency B
I N ..

Thread (1, 0)

Registers < Shared << Local & Global << Host (PCle)

Thread (0, 0)

Thread (1, 0)

Thread (0, 0)

~8TB/s ~1.5TB/s ~200GB/s ~5GB/s

~1clock ~32clock ~800clock

Host

23/91

Memory Model

Registers:

¢ Variables declared in a Kernel are stored in Registers

¢ On-Chip
¢ Fastest form of memory

Global Memory:

® Accessed with: cudaMalloc (), cudaMemset (), cudaMemCopy (), cudaFree ()

Local Memory:

¢ Arrays too large to fit into Registers spill over into Local memory

¢ Off-Chip
¢ Compiler controlled
¢ Local to each Thread

24/91

Memory Model

Shared Memory:

* Allows Threads within a Block to communicate with each other

¢ Use synchronization

¢ Very fast

¢ Only Registers are faster

¢ Can use as "Scratch-pad"” memory

__global__ void kernel(int *in)

{

int i = threadldx.x + blockDim.x * blockldx.x;

// Allocate a shared array
extern __shared__ int shared_array [;

// each thread writes to one element of shared_array
shared_arrayl[i] = in[i];

// Do more stu!

//
25/91

Programming Practice

Ra

Optimizing Parallel Reduction in
CUDA

Parallel Reduction

¢ Vector reduction: common and important data parallel primitive.

Computing vector dot-product.
Computing the norm of a vector.
Computing the average value of the elements in a vector.

¢ Easy to implement in CUDA (but hard to make it efficient).
® Serves as a great optimization example.

° We'll walk step by step through 7 different versions.
¢ Demonstrates several important optimization strategies.

28/91

Parallel Reduction

¢ Tree-based approach used within each thread block:

¢ Need to be able to use multiple thread blocks.

¢ To process very large arrays.
¢ To keep all multiprocessors on the GPU busy.
¢ Each thread block reduces a portion of the array.

¢ But how do we communicate partial results between thread blocks?
29/91

Problem: Global Synchronization

¢ If we could synchronize across all thread blocks, could easily reduce very large
arrays.

¢ Global sync after each block produces its result;
¢ Once all blocks reach sync, continue recursively.

¢ However, CUDA has no global synchronization. Reason:

® Expensive to build in hardware for GPUs with high processor count.

® Would force programmer to run fewer blocks (no more than # multiprocessors *
resident blocks / multiprocessor) to avoid deadlock, which may reduce
overall efficiency.

¢ Solution: decompose into multiple kernels.

¢ Kernel launch serves as a global synchronization point.
¢ Kernel launch has negligible HW overhead, low SW overhead.

30/91

Solution: Kernel Decomposition

¢ Avoid global sync by decomposing computation into multiple kernel invocations.

® In the case of reductions, code for all levels is the same: recursive kernel invocation.

8 blocks

R Level 1:
1 block

31/91

Optimization Goal

We should strive to reach GPU peak performance.

Choose the right metric:

¢ GFLOP/s: for compute-bound kernels.
° Bandwidth: for memory-bound kernels.

¢ For reductions: very low arithmetic intensity (1 FLOP per element loaded,
bandwidth-optimal)

Therefore, we should strive for peak bandwidth

Example device: Nvidia G80 GPU

® 384-bit memory interface, 900 MHz DDR.
° Bandwidth 384 * 1800 / 8 = 86.4 GB/s

32/91

Impl # 1: Interleaved Addressing

Kernel function code:

__global__ void reduce0(int *g_idata, int *g_odata) {
extern __shared___ int sdata[];

Il each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];

__syncthreads();

Il do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

__syncthreads();

}

Il write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];

} 33/91

Impl # 1: Interleaved Addressing

An illustration of the workflow of threads:

Values(sharedmemory)|10|1|8|-1|0|-2|3 -2|-

Step 1 Thread

swi, T @l @) @ @ @ @
Values [11 |1 |7 |4 |2][2[8|5]|5|3|9 |7 [1n|n][2]2]

Step 2 Thread

Set T @
Values [18 | 1 [7 |1 |6 |28 |54 3|07 [13[1]2]2]

Step 3 Thread >

Stride 4 IDs @‘_/
Values [24| 1 |7 |1 |6 |28 |5[17| 3|9 |7 [13[11]2]2]

Step 4 Thread
Stride 8 IDs

Values [41| 1 |7 |1 |6 |28 |5[17| 3|97 [13[1]2]2]

©

34/91

Impl # 1: Interleaved Addressing

Problem of implementation # 1:

__global__ void reduce1(int *g_idata, int *g_odata) {
extern __shared__ int sdata[];

Il each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idata[i];

__syncthreads();

/I do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s)==0){ <——

sdataltid] += sdataftid + s]; Problem: highly divergent

warps are very inefficient, and
__syncthreads(); % operator is very slow

}

Il write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];
} 35/91

Performance Evaluation for Reduction with 4M Elements

Time (222ints) Bandwidth
Kernel 1: 8.054 ms 2.083 GB/s

interleaved addressing
with divergent branching

Note: Block Size = 128 threads for all tests

36/91

Impl # 2: Interleaved Addressing with Non-divergent Branch

Replace divergent branch in inner loop:

for (unsigned int s=1; s < blockDim.x; s *=2) {
if (tid % (2*s) == 0) {
sdata[tid] += sdata[tid + s];

__syncthreads();

}

With strided index and non-divergent branch:

for (unsigned int s=1; s < blockDim.x; s *=2) {
intindex=2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

__syncthreads();

}

37/91

Impl # 2: Interleaved Addressing with Non-divergent Branch Ef_‘

Values(sharedmemory)|10 1|8 1‘0|2‘3‘5|-2|-3|2|7|0|11‘

0
v
Step 1 Thread
Stride 1 IDs
Step 2 Thread
Stride 2 IDs

Values [18| 1 |7 [1]6 2|8 |5]|a[3]0]7[13][1]2]2]
Step 3 Thread@/ é‘_/
Stride 4 IDs

Values (24| 1 |7 [1]6 |28 |5 [17]-3] 9|7 [13[1]2]2]

Step 4 Thread
Stride 8 IDs

Values [41 [1|7 |16 | 2|8 |5 [17| 3| |7 [13][1]|2]2]

New Problem: Shared Memory Bank Conflicts

38/91

Performance Evaluation for Reduction with 4M Elements

Step Cumulative
Time (222 ints) Bandwidth Speedup Speedup

K 11:
intg'll;?veed addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:
e rossing 3456 ms 4.854 GB/s 2.33x 2.33x

with bank conflicts

39/91

Impl # 3: Sequential Addressing

Replace strided indexing in inner loop:

for (unsigned int s=1; s < blockDim.x; s *=2) {
intindex=2* s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

__syncthreads();

}

With reverse loop and threadID-based indexing;:

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid <s) {
sdata[tid] += sdata[tid + s];

__syncthreads();

}

40/91

Impl # 3: Sequential Addressing

Values (shared memory) (10| 1 [8 [-1] o [-2[3[s|2[a]2]7]o]n]o]2]

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs f

ofolololololole

Values [8 |-2[10] 6 [0 [o[3[7][2]3]2]7]0|[1n|o]2]

Thread T
IDs (0 @4 @/3

Values | 8 | 7 [13[13] 0|90 [3[7]2]3]2]7 0 |1n|o]2]

Thread

Values [21]20[13[13[0|90 |3 |7 |2|3|2|7 |0 |10 2]
Thread
IDs

Values 4120 [13[13] 0|9 |3 |7 [2[-3[2|7 |0 |1]0]2]

S

41/91

Performance Evaluation for Reduction with 4M Elements

Time (222ints)

Kernel 1:
interleaved addressing 8.054 ms

with divergent branching

Kernel 2:
interleaved addressing 3.456 ms
with bank conflicts

Kernel 3: 1.722 ms

sequential addressing

] Step Cumulative
Bandwidth Speedup Speedup

2.083 GB/s
4.854 GB/s 2.33x 2.33x
9.741 GB/s 2.01x 4.68x

42/91

Impl # 3: Sequential Addressing

Problem: Idle Threads

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {
sdataltid] += sdata[tid + s];
}

__syncthreads();

}

Half of the threads are idle on first loop iteration!

43/91

Impl # 4: First Add During Load

Halve the number of blocks, and replace single load:

Il each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = g_idatal[i];

__syncthreads();

With two loads and first add of the reduction:

Il perform first level of reduction,

Il reading from global memory, writing to shared memory
unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();

44/91

Performance Evaluation for Reduction with 4M Elements

Kernel 1:
interleaved addressing
with divergent branching

Kernel 2:
interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Cumulative

Time (222ints) Speedup Speedup

Bandwidth

8.054ms 2.083 GB/s

3.456 ms 4.854 GB/s

1.722 ms 9.741 GB/s

0.965ms 17.377 GB/s

Bottleneck: Instruction Overhead

* At 17 GB/s, we're far from bandwidth bound.
® And we know reduction has low arithmetic intensity.
® Therefore, a likely bottleneck is instruction overhead.

¢ Ancillary instructions that are not loads, stores, or arithmetic for the core
computation.
¢ In other words: address arithmetic and loop overhead.

¢ Strategy: Loop Unrool

46/91

Strategy: Unroll the Last Warp

As reduction proceeds, the number of “active” threads decreases.
® When stride s < 32, we have only one warp left.

¢ Instructions are SIMD synchronous within a warp.

That means when stride s < 32:

® Wedon'tneed to___syncthreads ().
® Wedon'tneed “1f (tid < s)” because it doesn’t save any work.

Solution: unroll the last 6 iterations of the inner loop.

47/91

Impl # 5: Last Warp Unrolling

sdata[tid] += sdata[tid + 32]; 4
sdata[tid] += sdata[tid + 16];

3

__device__ void warpReduce(volatile int* sdata, int tid) {

sdataltid] += sdata[tid + 8];
sdata[tid] += sdata[tid + 4];
sdata[tid] += sdata[tid + 2];

sdata[tid] += sdata[tid + 1];

IMPORTANT:
For this to be correct,
we must use the
“volatile” keyword!

}

Il later...

if (tid < s)
sdata[tid] += sdata[tid + s];
__syncthreads();

}

for (unsigned int s=blockDim.x/2; s>32; s>>=1) {

if (tid < 32) warpReduce(sdata, tid);

Note: This saves useless work in all warps, not just the last one! Without
unrolling, all warps execute every iteration of the for loop and if statement.

48/91

Performance Evaluation for Reduction with 4M Elements

Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:

interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Kernel 5:

unroll last warp

Time (222ints)

8.054 ms

3.456 ms

1.722 ms
0.965 ms

0.536 ms

Bandwidth

2.083 GB/s

4.854 GB/s

9.741 GB/s

17.377 GB/s

31.289 GB/s

Step

2.33x

2.01x

1.78x

1.8x

Cumulative
Speedup Speedup

2.33x

4.68x

8.34x

15.01x

)
Wl
athnadng

49/91

Impl # 6: Fully Unrolling

¢ If we know the number of iterations at compile time, we could completely unroll the
reduction.

¢ The block size (number of threads in a block) is limited by the GPU. (512 for G80
GPU)
¢ We assume that the block sizes are power-of-2.

¢ We can easily unroll for a fixed block size, but we need to be generic — how can we
unroll for block sizes that we don’t know at compile time?

¢ Solution: Templates.

¢ CUDA supports C++ template parameters on device and host functions.8

50/91

Impl # 6: Fully Unrolling

Unrolling with Templates:

¢ Specify block size as a function template parameter.

template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata)

51/91

Impl # 6: Fully Unrolling

Template <unsigned int blockSize>
__device__ void warpReduce(volatile int* sdata, int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

if (blockSize >= 512) {

if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads(); }
if (blockSize >= 256) {

if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads(); }
if (blockSize >= 128) {

if (tid < 64) { sdata[tid] += sdata[tid + 64]; } _ syncthreads(); }

if (tid < 32) warpReduce<blockSize>(sdata, tid);

Note: all code in RED will be evaluated at compile time! Results in a very
efficient inner loop. 52/91

Impl # 6: Fully Unrolling

Q: Do we still need block size at compile time?
A: Nope, just a switch statement for 10 possible block sizes:

switch (threads)

case 512:

reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 256:

reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 128:

reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 64:

reduceb< 64><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 32:

reduce5< 32><<< dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 16:

reduce5< 16><<<dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 8:

reduceb< 8><<<dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 4:

reduceb< 4><<<dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 2:

reduceb< 2><<<dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;
case 1:

reduce5< 1><<<dimGrid, dimBlock, smemSize >>>(d_idata, d_odata); break;

}

53/91

Performance Evaluation for Reduction with 4M Elements

Kernel 1:

interleaved addressing
with divergent branching

Kernel 2:
interleaved addressing
with bank conflicts

Kernel 3:

sequential addressing

Kernel 4:
first add during global load

Kernel 5:

unroll last warp

Kernel 6:

completely unrolled

Time (222ints)

8.054 ms

3.456 ms

1.722 ms

0.965 ms

0.536 ms

0.381 ms

Bandwidth

2.083 GB/s

4.854 GB/s

9.741 GB/s

17.377 GBIs

31.289 GB/s

43.996 GB/s

Step

2.33x

2.01x

1.78x

1.8x

1.41x

Cumulative
Speedup Speedup

2.33x

4.68x

8.34x

15.01x

21.16x

54/91

Impl # 7: Multiple Adds per Thread

Replace load and add of two elements:

unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idatali] + g_idata[i+blockDim.x];
__syncthreads();

With a while loop to add as many as necessary:

unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*(blockSize*2) + threadldx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) {
sdata[tid] += g_idata[i] + g_idata[i+blockSize];
i += gridSize;

__syncthreads();

55/91

Impl # 7: Multiple Adds per Thread

Replace load and add of two elements:

unsigned int tid = threadldx.x;

unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();

With a while loop to add as many as necessary:

unsigned int tid = t
unsigned int i = bl
unsigned int gridSi
sdata[tid] = 0;

Note: gridSize loop stride
to maintain coalescing!

while (i < n) {
sdata[tid] +=g_i g_idata[i+blockSize];
i += gridSize;

__syncthreads();

56/91

Performance Evaluation for Reduction with 4M Elements

Step Cumulative
Time (222 ints) Bandwidth Speedup Speedup

Kernel 1:

interleaved addressing 8.054 ms 2.083 GB/s

with divergent branching

Kernel 2:

intglr;g\zd addressing 3.456 ms 4.854 GBI/s 2.33x 2.33x
with bank conflicts

Kermel 3: o 1.722ms 9.741GB/s 2.01x 4.68x
Kernel 4:

el 4 owations 0.965ms 17.377 GB/s 1.78x 8.34x
Kernel 5 0.536ms 31.289GB/s 1.8x 15.01x
Kernel 6: 0.381ms 43.996GB/s 1.41x 21.16x
Kernel 7: 0.268 ms 62.671 GB/s 1.42x 30.04x

multiple elements per thread
57/91

Final Optimized Kernel Function

template <unsigned int blockSize>

__device__ void warpReduce(volatile int *sdata, unsigned int tid) {
if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
if (blockSize >= 8) sdata[tid] += sdata[tid + 4]; . T .
if (blockSize >= 4) sdata[tid] += sdata[tid + 2]; Final Optimized Kernel
if (blockSize >= 2) sdata[tid] += sdata[tid + 1];

}

template <unsigned int blockSize>
__global__ void reduceé(int *g_idata, int *g_odata, unsigned int n) {
extern __shared__ int sdata[];
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockSize*2) + tid;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
__syncthreads();

if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __ syncthreads(); }
if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } _ syncthreads(); }
if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } _ syncthreads(); }

if (tid < 32) warpReduce(sdata, tid);
if (tid == 0) g_odata[blockldx.x] = sdata[0];
} 58/91

Performance Comparison of Impl # 1 to # 7

== 1: Interleaved Addressing:
Divergent Branches

== 2: Interleaved Addressing:
Bank Conflicts
/ 3: Sequential Addressing
1 K
4: First add during global
n load
% == 5: Unroll last warp
E
= =8 6: Completely unroll
0.1 ¥
===T7: Multiple elements per
thread (max 64 blocks)
0.01 T T T T T T T

o © 12
N A >
(5 ,\Q;f\,\ ‘)QP‘

o X & 10 s o>
O N NS » AN b
N> ’13’ 6’7’ »\Qb‘ X N Q;b ";’

rLQ
Elements
59/91

Optimizing GEMM in CUDA

Matmul

Naive implementation, each thread compute one entity in C.

blsdizisese threadIdsx.x
blockDim row of A
= — s
- X “
X > 3
3 L R R 3
313
) & P
\
GRID BLOCK THREAD

We put as many blocks nto Each block is responsible for Each thread ino(epemlently computes

t»l\lc grid as necessary to span caleulating & 32x32 chunk of ¢ one entry of C

all of ¢

This kernel takes about 0.5s to process three 4092 x 4092 fp32 matrices on A6000

GPU.
61/91

Matmul - lowerbound

* Total FLOPS: 2 x 40923 + 40922 = 137 GFLOPS
¢ Total data to read (minimum!): 3 * 40922 % 4B = 201 MB
¢ Total data to store: 40922 %« 4B = 67 MB

GPU : 30TFLOPs/s of compute throughput and 768GB/s of global memory
bandwidth.

Ideally, 4.5ms for calculation and 0.34ms for memory.

compute-bound

62/91

Matmul - lowerbound

We achieves ~300GFLOPs when multiplying two 4092 x 4092 fp32 matrices.
Upperbound ~30TFLOPs.

So how can we start to make this faster?

One way is to optimize the memory access pattern of our kernel such that global
memory accesses can be coalesced (=combined) into fewer accesses.

63/91

Global Memory Coalescing

The threads of a block are grouped into so-called warps, consisting of 32 threads.
A warp is then assigned to a warp scheduler, which is the physical core that
executes the instructions. There are four warp schedulers per multiprocessor. The
grouping into warps happens based on a consecutive threadld.

, 3! blockpim.x=t

o]

2 3lle 1 2 3'le 1 2 3'he
® 1 1 1 1 2 2 2 2 3 3 3 3|blockdim.y=16

threadIdx.x:

threadIdx.y: [0 0 [¢]

threadIdx.z: 'o 0] 0 [¢] 0 0 0 0 1 1 1 1 1 1 1 1 blockDim.z=64

threadtd: [0 |1 [2 [3]u]s]e] 7] 8fofao]u[a2]1s]au]1s]
W)

WARP-0 WARP-1

threadId = threadIdx.x + blockDim.x*threadIdx.y + blockDim.x* blockDim.y *threadIdx.z

64/91

Global Memory Coalescing

Threads of the same warp (those with consecutive threadldx.x) were loading the
rows of A non-consecutively from memory. The naive kernel’s pattern of
accessing the memory of A looked more like so:

threadIdx.x+ threadIdx.y+

Memory 1 T VT T T 1 T ¥ T T [T T 1]
N=4 | 17 DL
77777, A7 7 U7

4*32B LOADs per warp

65/91

Global Memory Coalescing

The concept of a warp is relevant for this second kernel, as sequential memory
accesses by threads that are part of the same warp can be grouped and executed as
one. This is referred to as global memory coalescing. It’s the most important
thing to keep in mind when optimizing a kernel’s GMEM memory accesses
toward achieving the peak bandwidth.

threadIdx.x+ threadIdx.y+

- = -7 =< - - - ~
~

PRI CHE W St e
o|l1]2]3[us]sle]n ﬂ?f1ef11[12£3ﬂ14T1?]
|

4 |
WARP-0 (

olrJv{Vv¢Jr47Jri7lv WirLJr

1T 1T v 1 T 1 T T T [T [1 1
N=y CZZZZZZZZZZ 22 UL 7 7 777777 €]
2%x32B LOADs per warp

WARP-1

q tive wemory SSES are
9{'0(4(:30(and executed as one LOAD

66/91

Global Memory Coalescing

To enable coalescing, we can change how we assign positions of the result matrix
C to threads. This change in the global memory access pattern is illustrated below:

Noive kernel:

. L | B
threads access non-consecutive all threads access same

values = connot coalesce values = within-warp broadeast No benefit to
putting these threads

n same warp

Coalescirg kernel:

all threads access same threads access consecutive
values = within-warp broadeast values = can coalesce

Maoke sure these
threads end up in same warp
to exploit coalescing 67 / 91

Global Memory Coalescing

To implement coalescing kernel:

template <const uint BLOCKSIZE>
__global__ void sgemm_global_mem_coalesce(int M, int N, int K, float alpha,
const float *A, const float *B,
float beta, float *C) {
const int cRow = blockIdx.x * BLOCKSIZE + (threadIdx.x / BLOCKSIZE);
const int cCol = blockIdx.y * BLOCKSIZE + (threadIdx.x 7 BLOCKSIZE);

// if statement is necessary to make things work under tile quantization
if (cRow < M && cCol < N) {
float tmp = 0.0;
for (int i = 0; i < K; ++i) {
tmp += A[cRow * K + i] * B[i * N + cCol];
}
ClcRow * N + cCol] = alpha * tmp + beta * C[cRow * N + cColl;

Global memory coalescing increases memory throughput from 15GB/s to
110GB/s. Performance reaches 2000 GFLOPS, a big improvement compared to the

300 GFLOPS of the first, naive kernel.
68/91

Shared Memory Cache-Blocking

Next to the large global memory, a GPU has a much smaller region of memory
that is physically located on the chip, called shared memory (SMEM).

Physically, there’s one shared memory per SM. Logically, this shared memory is
partitioned among the blocks. This means that a thread can communicate with the

other threads in its block via the shared memory chunk.

As the shared memory is located on-chip, it has a much lower latency and higher
bandwidth than global memory.

69/91

Shared Memory Cache-Blocking

So for this kernel, we’ll load a chunk of A and a chunk of B from global memory
into shared memory. Then we'll perform as much work as possible on the two
chunks, with each thread still being assigned one entry of C. We’ll move the
chunks along the columns of A and the rows of B performing partial sums on C
until the result is computed.

columns Outer loop:

—p K
Advance LALB by size of
rows cacheblock (=32432) wntil ¢ is
Bully caleulated

, 8A &C [|

M e y — F > .
< ‘% i)*

A B % II!f !

32 A 32 e

cCol=1 70 / 91

cRow=2

L

Shared Memory Cache-Blocking

// advance pointers to the starting positions

A += cRow * BLOCKSIZE * K; // row=cRow, col=0
B += cCol * BLOCKSIZE; // row=0, col=cCol
C += cRow * BLOCKSIZE * N + cCol * BLOCKSIZE; // row=cRow, col=cCol

float tmp = 0.0;
for (int bkIdx = 0; bkIdx < K; bkIdx += BLOCKSIZE) {
// Have each thread load one of the elements in A & B
// Make the threadCol (=threadIdz.z) the consecutive index
// to allow global memory access coalescing
As[threadRow * BLOCKSIZE + threadCol] = A[threadRow * K + threadCol];
Bs[threadRow * BLOCKSIZE + threadCol] = B[threadRow * N + threadCol];
// block threads in this block until cache is fully populated
__syncthreads() ;
A += BLOCKSIZE;
B += BLOCKSIZE * N;
// ezecute the dotproduct on the currently cached block
for (int dotIdx = 0; dotIdx < BLOCKSIZE; ++dotIdx) {
tmp += As[threadRow * BLOCKSIZE + dotIdx] *
Bs[dotIdx * BLOCKSIZE + threadCol];
}
// need to sync again at the end, to avoid faster threads
// fetching the next block into the cache before slower threads are done
__syncthreads();
}
Cl[threadRow * N + threadCol] =
alpha * tmp + beta * C[threadRow * N + threadCol];

This kernel achieves ~2200 GFLOPS, a 50% improvement over the previous
version. We're still far away from hitting the ~30 TFLOPs that the GPU can
provide. 71/91

Shared Memory Cache-Blocking

If we look at the mix of executed instructions, most of them are memory loads:

Executed Instruction Mix
0.0 2,000,000,000.0 4,000,000,000.0

IADD3 -

That’s not good, given that a memory load is bound to have a higher latency than
a simple FMA, and given that we know our kernel should be compute bound.

72/91

Shared Memory Cache-Blocking

We see this effect when looking at the profiler’s sampling of warp states. This
quantifies how many cycles were spent in each state per executed instruction:

Warp State (All Cycles)
0.0 20.0 40.0

stall Long Scoreboard | NN
Stall Not Selected -
Stall Barrier -
stal wait [
Selected .

Stall LG Throttle I

73/91

Shared Memory Cache-Blocking

Stall MIO Throttle

Warp was stalled waiting for the MIO (memory input/output) instruction queue to be not
full. This stall reason is high in cases of extreme utilization of MIO pipelines (shared
memory instructions).

So how can we make our kernel issue less SMEM instructions? One way is to have
each thread compute more than one output element, which allows us to perform
more of work in registers and relying less on SMEM.

74/91

1D Blocktiling

This kernel works like last kernel, but adds a new inner loop, for calculating
multiple C entries per thread.

Each uorp (=32 Drreads)
coleulates o 2D section of C

75/91

1D Blocktiling

The major part of the implementation of this kernel:

// allocate thread-local cache for results in registerfile
float threadResults[TM] = {0.0};

// outer loop over block tiles

for (uint bkIdx = 0; bkIdx < K; bkIdx += BK) {
// populate the SMEM caches
As[innerRowA * BK + innmerColA] = AlinnerRowA * K + innerColAl;
Bs[innerRowB * BN + innerColB] = BlinnerRowB * N + innerColB];
__syncthreads();

// advance blocktile
A += BK;
B += BK * N;

// calculate per-thread results
for (uint dotldx = 0; dotldx < BK; ++dotIdx) {
// we make the dotproduct loop the outside loop, which facilitates
// reuse of the Bs entry, which we can cache in a tmp var.
float tmpB = Bs[dotIdx * BN + threadColl;
for (uint resIdx = 0; resIdx < TM; ++resIdx) {
threadResults[resIdx] +=
As[(threadRow * TM + resIdx) * BK + dotIdx] * tmpB;
}
¥

syncthreads() ;

// urite out the results
for (uint resIdx = 0; resIdx < TM; ++resIdx) {
C[(threadRow * TM + resIdx) * N + threadCol] =
alpha * threadResults[resIdx] +
beta * C[(threadRow * TM + resIdx) * N + threadColl;

This kernel achieves ~8600 GFLOPs, 2.2 x faster than our previous kernel. 2601

1D Blocktiling

Let’s calculate how many memory accesses each thread performed in our
previous kernel, where each thread calculated one result:

* GMEM: K/32 iterations of outer loop * 2 loads
° SMEM: K/32 iterations of outer loop * BLOCKSIZE (=32) * 2 loads
¢ Memory accesses per result: K/16 GMEM, K*2 SMEM
And for our new kernel, where each thread calculates eight results:
°* GMEM: K/8 iterations of outer loop * 2 loads
° SMEM: K/8 iterations of outer loop * BK(=8) * (1 + TM(=8))
¢ Memory accesses per result: K/32 GMEM, K*9/8 SMEM

77/91

1D Blocktiling

As expected, we now spend much fewer cycles per instruction stalling due to
memory pressure:

Warp State (All Cycles)

0. 2.0 4.0 6.0 8.0

o

Stall MIO Throttle

Stall Long Scoreboard

Stall Barrier

Stall Not Selected

Stall Wait

Selected

Stall Short Scoreboard

78/91

1D Blocktiling

Our current kernel still suffers from the same stalling-for-memory problem as
later kernel, just to a lesser extent. So we’ll just apply the same optimization again:
computing even more results per thread. The main reason this makes our kernel
run faster is that it increases arithmetic intensity.

79/91

1D Blocktiling

Caleulating 1 result per thread reauices:
- 7 loads from 4
- 7 loads from B B
- 1load & 1 store to ¢
= 15 loads & 1 store per result
2 c
Caleulating 4 results per thread requires:
- 14 loads from 4 B
- 14 loads from B
- 4 loads & 4 stores to ¢
= % loads & 1 store per result
A e

In conclusion, all our kernels perform the same number of FLOPs, but we can
reduce the number of GMEM accesses by calculating more results per thread. 80/91

2D Blocktiling

The basic idea for this kernel will be to compute a grid of 8*8 elements of C per
thread. The first stage of the kernel is for all threads to work together to populate
the SMEM cache. We’ll have each thread load multiple elements. This code looks
like so:

// populate the SMEM caches
for (uint loadOffset = 0; loadOffset < BM; loadOffset += strideA) {
As[(innerRowA + loadOffset) * BK + innerColA] =
A[(innerRowA + loadOffset) * K + innerColA];
}
for (uint loadOffset = 0; loadOffset < BK; loadOffset += strideB) {
Bs[(innerRowB + loadOffset) * BN + innerColB] =
B[(innerRowB + loadOffset) * N + innerColB];
}

__syncthreads();

Now that the SMEM cache is populated, we have each thread multiply its relevant
SMEM entries and accumulate the result into local registers.

81/91

2D Blocktiling

Below I illustrated the (unchanged) outer loop along the input matrices, and the
three inner loops for the dot product and the TN and TM dimension:

82/91

2D Blocktiling

In the inner loop, we can reduce the number of SMEM accesses by making dotldx
the outer loop, and explicitly loading the values we need for the two inner loops
into registers. Below is a drawing of the dotldx loop across time, to visualize
which SMEM entries get loaded into thread-local registers at each step:

Unrolled dotIdx loop;

regV

dotIdx=0 dotIdx=1 dotIdx=2 dotTdx=3

at each timestep, load the 4 relevant As&Bs entries into regM and regh re?sters, and accumulate outer product
into threadResults.

Benefit: We only issue 16 SMEM loads in total 83/91

2D Blocktiling

Resulting performance: 16TFLOPs, another 2x improvement. Let’s repeat the
memory access calculation. We're now calculating TMxTN = 8x8 = 64 results per
thread.

°* GMEM: K/8 (outer loop iters) x 2 (A+B) x 1024/256 (sizeSMEM /numThreads) loads
* SMEM: K/8 (outer loop iters) x 8 (dotldx) x 2 (A+B) x 8 loads
¢ Memory accesses per result: K/64 GMEM, K/4 SMEM

Slowly performance is reaching acceptable levels, however, warp stalls due to
memory pipeline congestion are still too frequent. For the next kernel we’ll take
two measures to try to improve that: Transposing As to enable auto-vectorization
of SMEM loads, and promising the compiler alignment on the GMEM accesses.

84/91

Vectorize SMEM and GMEM Accesses

The first optimization that mentioned earlier is to transpose As. This will allow us
to load from As using vectorized SMEM loads (LDS.128 in SASS):

Uncolled dotTde loop:

" ™ P

w\:ﬂ/x P = 7

dotTdx=0 | dotIdx=1 dotTdx=2 l dotIdx=3

Only change o previous kemeli Now populating regM from As can also be done using a vectorized SMEM load,
et e 7 already had been For regh. 85/91

Vectorize SMEM and GMEM Accesses

Looking at the assembly we see that loading As into the registers, which used to
be a 32b LDS load, is now also a 128b LIDS.128 load, just like it had already been
for Bs. This gives us a 500GFLOPs speedup, or ~3%.

Next, we'll vectorize all loads and stores from/to GMEM using vectordatatypes,
namely float4.
floatd4 tmp =

reinterpret_cast<float4 *>(&A[innerRowA * K + innerColA * 4])[0];
As[(innerColA * 4 + 0) * BM + innerRowA] = tmp.x;

As[(innerColA * 4 + 1) * BM + innerRowA] = tmp.y;
As[(innerColA * 4 + 2) * BM + innerRowA] = tmp.z;
As[(innerColA * 4 + 3) * BM + innerRowA] = tmp.w;

reinterpret_cast<float4 *>(&Bs[innerRowB * BN + innerColB x 4])[0] =
reinterpret_cast<float4 *>(&B[innerRowB * N + innerColB * 4])[0];
__syncthreads();

This kernel achieves 19TFLOPs. The profiler still shows a bunch of problem areas

and optimization opportunities: We're running into shared-memory bank conflicts
(which cuBLAS avoids), our occupancy is higher than necessary, and we haven'’t
implemented any double buffering. 86/91

Autotuning

We've accumulated a total of five template parameters:
* BM, BN and BK, which specify how much data we cache from GMEM into SMEM.
¢ TM and TN, which specify how much data we cache from SMEM into the registers.

¢ The kernel implementation was correct for the ~400 different hyperparameter
settings that remained.

It turns out that the optimal parameters vary quite a bit depending on the GPU
model.

* On A6000, BM=BN=128, BK=16, TM=TN=S8 increased performance by 5%, from 19 to
20 TFLOPs.

® On A100 SMX4 40GB, that same configuration reached 12 TFLOPs, 6% worse than
the optimal setting found by the autotuner (BM=BN=64, BK=16, TM=TN=4), which
reached 12.6 TFLOPs.

87/91

Warptiling

We'll now add another hierarchy of tiling, in between our blocktiling and
threadtiling loops: warptiling. Warptiling is somewhat confusing initially since
unlike blocks and threads, warps don’t show up anywhere in the CUDA code
explicitly. They are a hardware feature that has no direct analog in the scalar
CUDA-software world.

We can calculate a given thread’s warpld as warpld=threadldx.x % warpSize,
where warpSize is a built-in variable that is equal to 32.

88/91

Warptiling

Warps are relevant for performance since (among other reasons):

¢ Warps are the unit of scheduling that is mapped to the warp-schedulers that are part
of the SM.

¢ Shared-memory bank conflicts (I'll cover those in a future post) happen only between
threads that are in the same warp.

¢ There’s a register cache on recent GPUs, and tighter threadtiling gives us more
register cache locality.

Warptiling is elegant since we now make explicit all levels of parallelism:
® Blocktiling: Different blocks can execute in parallel on different SMs.

¢ Warptiling: Different warps can execute in parallel on different warp schedulers, and
concurrently on the same warp scheduler.

¢ Threadtiling: (a very limited amount of) instructions can execute in parallel on the
same CUDA cores (= instruction-level parallelism aka ILP)

89/91

Warptiling

After autotuning the parameters, performance improves from 19.7 TFLOPs to 21.7
TFLOPs on an A100. Here’s a plot that compares our warptiling kernel against

cuBLAS across increasing matrix sizes:

17500

15000

12500

10000

GFLOPs/s

7500

5000

2500

—— CUBLAS

—— Kernel 10: Warptiling

%

2
R

%
‘.
7

®
S

Matrix size (square, one side)

90/91

Warptiling

At dimensions 2048 and 4096, our measured FLOPs are only a few percentage
points slower than cuBLAS. However, for smaller matrices, we're doing poorly in
comparison to Nvidia’s library!

This happens because cuBLAS contains not one single implementation of
SGEMM, but hundreds of them. At runtime, based on the dimensions, cuBLAS
will pick which kernel to run.

Matrix size Name Duration

128 ampere_sgemm_32x32_sliced1x4_nn 15.295 us
256 ampere_sgemm_64x32_sliced1x4_nn followed by splitKreduce_kernel 12.416 us +6.912 us
512 ampere_sgemm_32x32_sliced1x4_nn 41.728 us
1024 ampere_sgemm_128x64_nn 165.953 us
2048 ampere_sgemm_128x64_nn 1.247 ms
4096 ampere_sgemm_128x64_nn 9.290 ms

At dimension 256 it calls two kernels: a matmul kernel followed by a reduction

kernel. So if we were trying to write a high- performance library that works for all
shapes and sizes we would have specializations for different shapes, and at

runtime dispatch to the one that’s the best fit. 91/91

	Main Talk
	Introduction
	Programming Model
	Programming Practice
	Optimizing Parallel Reduction in CUDA
	Optimizing GEMM in CUDA

