
CENG 5030
Energy Efficient Computing

Implementation 05: CUDA

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: December 4, 2023)

2023 Fall

1 Introduction

2 Programming Model

3 Programming Practice
3.1 Optimizing Parallel Reduction in CUDA
3.2 Optimizing GEMM in CUDA

Overview

2/91

Introduction

2000 2002 2004 2006 2008 2010 2012 2014 2016
Release date

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

Th
eo

re
tic

al
 p

ea
k

(G
FL

OP
S)

Tesla C1060
Tesla C2075

Tesla K20X
Tesla K40

Tesla P100 (PCI-E)
Nvidia GPU DP

Willamette Prescott Woodcrest
Kentsfield Yorktown

Bloomfield WestmereSandy Bridge Ivy Bridge
Haswell Broadwell

Intel CPU DP

Intel CPU SP

GeForce FX 5800GeForce 6800 Ultra
GeForce 7800 GTX

GeForce 8800 GTX
GeForce GTX 280

GeForce GTX 480
GeForce GTX 580

GeForce GTX 680

GeForce GTX TITAN

GeForce GTX 780 TI

GTX TITAN X (Maxwell)

GTX TITAN X (Pascal)
Nvidia GPU SP

NVIDIA GPU Single Precision

NVIDIA GPU Double Precision

Intel CPU Double Precision

Intel CPU Single Precision

GPU vs. CPU:
• Provide much higher instruction throughput and memory bandwidth than CPU

within a similar price and power envelop.

Extreme Computational Power of GPU’s

4/91

CPU - Minimize latency
• Majority of transistors are dedicated

to:

• Advanced Control Logic
• Large Cache

GPU - Maximize throughput
• Majority of transistors are dedicated

to:

• Data processing

Difference between CPU’s and GPU’s

5/91

• High Throughput and Parallelism: GPUs excel in executing the same program on
many data elements simultaneously.

• Energy Efficient and Flexibility: GPUs can be energy efficient like FPGAs but offer
much more programming flexibility.

• Maximized Performance: In applications, utilization of GPUs with CPUs can exploit
the high degree of parallelism, achieving superior performance.

Key Advantages of GPU Architecture

6/91

CUDA is a parallel computing platform by NVIDIA that leverages the power of
GPUs.

Key Features

• Enables more efficient problem-solving than on a CPU (By libraries).

• Supports C++ as a high-level programming language.

• Accommodates other languages and APIs, such as Python, DirectCompute, and
OpenACC.

CUDA: Compute Unified Device Architecture

7/91

CUDA: Compute Unified Device Architecture

8/91

Host Device

PCI-Bus

Concepts
• Host: CPU

• Device: GPU

• Heterogeneous:

• Combination: Host + Device
• Leverages both for optimum

performance

CUDA Execution Process

1 Transfer data from host to device.
2 Perform computations using CUDA kernel

on device.
3 Transfer results from device to host.

Host, Device, and CUDA Execution Process

9/91

How to utilize the massive number of CUDA cores?

• Kernels: Functions that run on the GPU.

• Kernels are executed N times in parallel by N different threads.
• Execution: CUDA threads execute in a SIMT (Single Instruction Multiple

Threads) fashion.
• Enable thread-level parallel code for independent, scalar threads.

• Divergence: Within a wrap, branch divergence occurs.
• Diverge via a data-dependent conditional branch.

Kernels

10/91

Threads
• Kernels are executed by Threads

Blocks
• Threads on the same SM are

grouped into Blocks

• SM: streaming multiprocessor

Grid
• Blocks are grouped into Grids

• Each Kernel launch creates a single
Grid

Thread ∈ Block ∈ Grid

Thread

Thread Block

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Grid 0

DRAM

Thread Hierarchy

11/91

Programming Model

• Host Code

• Serial work
• Launch Kernels

• Device Code

• Parallel work

int main(void){ // Host Code
 // Do sequential stuff

 // Launch Kernel
 kernel_0 <<< grid_sz0, blk_sz0 >>>(…);

 // Do more sequential stuff

 // Launch Kernel
 kernel_1 <<< grid_sz1, blk_sz0 >>>(…);

 return 0;
}

Host

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Grid 0
Device

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Grid 0
Device

Host

Program Flow: Overview

13/91

// Block and Grid dimensions
// Default values are (1,1,1)
dim3 grid_size(x, y, z);
dim3 block_size(x, y, z);

// Launch Kernel
kernelName <<< grid_size, block_size >>>(…);

Program Flow: Kernel Launch Syntax

14/91

int main(void){

 // Declare variables
 int *h_c, *d_c;

 // Allocate memory on the device
 cudaMalloc((void**)&d_c, sizeof(int));

 // Copy data from Host to Device
 cudaMemcpy(d_c, h_c, sizeof(int), cudaMemcpyHostToDevice);

 // Configuration Parameters
 dim3 grid_size(1); dim3 block_size(1);

 // Launch Kernel
 kernel_0 <<< grid_size, block_size >>>(…);

 // Copy data from Device to Host
 cudaMemcpy(h_c, d_c, sizeof(int), cudaMemcpyDeviceToHost);

 // De-allocate memory
 cudaFree(d_c); free(h_c);

 return 0;
}

Program Flow: An example

15/91

Kernel Definition
__global__ void kernel(int *d_out, int *d_in)
{
 // Perform this operation for every thread
 d_out[0] = d_in[0];
}

Thread Index
• Accessible within a Kernel through the built in threadIdx variable.

• Thread Blocks can have as many as 3-dimensions, therefore there is a corresponding
index for each dimension:

threadIdx.x
threadIdx.y
threadIdx.z

threadIdx.x=0 threadIdx.x=1
…

threadIdx.x=N-1
Block

Grid// Configuration Parameters
dim3 grid_size(1);
dim3 block_size(N);

Grid Dimension: 1*1*1 —> 1 Block

Block Dimension: N*1*1 —> N Threads

Parallelizing a For-Loop

16/91

// Kernel Definition
__global__ void increment_gpu(int *a, int *N)
{
 int i = threadIdx.x;
 if (i < N)
 a[i] = a[i] + 1;
}

int main(void)
{
 int h_a[N] = // …

 // Allocate arrays in Device memory
 int* d_a; cudaMalloc((void**)&d_a, N * sizeof(int));

 // Copy memory from Host to Device
 cudaMemcpy(d_a, h_a, N * sizeof(int), cudaMemcpyHostToDevice);

 // Configuration Parameters
 dim3 grid_size(1); dim3 block_size(N);

 // Launch Kernel
 increment_gpu <<< grid_size, block_size >>>(d_a, N);

 // …
 return 0;
}

CUDA Program
// Function Definition
void increment_cpu(int *a, int *N)
{
 for (int I=0; i<N; I++)
 a[i] = a[i] + 1;
}

int main(void)
{
 int a[N] = // …

 // Call Function
 increment_cpu(a, N);

 // …
 return 0;
}

CPU Program

Parallelizing a For-Loop: Comparison

17/91

Consider two vectors, a and b, each of size N:

a =


a0
a1
...

aN−1

 , b =


b0
b1
...

bN−1


The vector addition operation c = a + b can be executed in parallel:

c =


a0 + b0
a1 + b1

...
aN−1 + bN−1

 =


c0
c1
...

cN−1


b

a

c

[0] [1] [2] [3]

[0] [1] [2] [3]

[0] [1] [2] [3]

…

…

Each addition operation can be executed simultaneously, demonstrating the
advantage of parallel computing.

Vector Addition - A Very Parallel Problem

18/91

Built-In Variables

Dimension of a Grid
dim3 gridDim;
int gridDim.x;
int gridDim.y;
int gridDim.z;

Index of a Block
dim3 blockIdx;
int blockIdx.x;
int blockIdx.y;
int blockIdx.z;

Dimension of a Grid
dim3 blockDim;
int blockDim.x;
int blockDim.y;
int blockDim.z;

Index of a Thread
dim3 threadIdx;
int threadIdx.x;
int threadIdx.y;
int threadIdx.z;

Indexing Threads within Grids and Blocks

19/91

Indexing Within Grid

• threadIdx is only unique within its own Thread Block

• To determine the unique Grid index of a Thread:

i = threadIdx.x + blockIdx.x * blockDim.x;

threadIdx.x=0
blockIdx.x = 0

threadIdx.x=1 threadIdx.x=2 threadIdx.x=3 threadIdx.x=0
blockIdx.x = 1

threadIdx.x=1 threadIdx.x=2 threadIdx.x=3

Indexing Threads within Grids and Blocks

20/91

Example
// Launch Kernel
kernel <<< 3, 4 >>>(a);

__global__ void kernel(int *a)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 a[i] = blockDim.x;
}

a : 4 4 4 4 4 4 4 4 4 4 4 4

__global__ void kernel(int *a)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 a[i] = threadIdx.x;
}
__global__ void kernel(int *a)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 a[i] = blockIdx.x;
}
__global__ void kernel(int *a)
{
 int i = threadIdx.x + blockIdx.x * blockDim.x;
 a[i] = i;
}

a : 0 1 2 3 0 1 2 3 0 1 2 3

a : 0 0 0 0 1 1 1 1 2 2 2 2

a : 0 1 2 3 4 5 6 7 8 9 10 11

Indexing Threads within Grids and Blocks

21/91

Thread-Memory Correspondence

Threads ⇋ Local Memory (and Registers)

• Scope: Private to its corresponding Thread

• Lifetime: Thread

Blocks ⇋ Shared Memory
• Scope: Every Thread in the Block has assess

• Lifetime: Block

Grids ⇋ Global Memory
• Scope: Every Thread in all Grids have access

• Lifetime: Entire program in Host code -
main()

Thread

Thread Block

Block (0,0) Block (1,0) Block (2,0)

Block (0,1) Block (1,1) Block (2,1)

Grid 0

Block (0,0) Block (1,0)

Block (0,1) Block (1,1)

Grid 0
Global Memory

Per-block
shared memory

Per-thread
local memory

Memory Model

22/91

Memory Speed

• Relative speed of memory spaces:
"Bandwidth"/"Latency"

Registers < Shared << Local Global << Host (PCIe)≈≈
~8TB/s
~1clock

~1.5TB/s
~32clock

~200GB/s
~800clock

~5GB/s

Memory Model

23/91

Registers:
• Variables declared in a Kernel are stored in Registers

• On-Chip
• Fastest form of memory

Global Memory:
• Accessed with: cudaMalloc(), cudaMemset(), cudaMemCopy(), cudaFree()

Local Memory:
• Arrays too large to fit into Registers spill over into Local memory

• Off-Chip
• Compiler controlled
• Local to each Thread

Memory Model

24/91

Shared Memory:
• Allows Threads within a Block to communicate with each other

• Use synchronization

• Very fast
• Only Registers are faster

• Can use as "Scratch-pad" memory

__global__ void kernel(int *in)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;

 // Allocate a shared array
 extern __shared__ int shared_array [];

 // each thread writes to one element of shared_array
 shared_array[i] = in[i];

 // Do more stu!
 //
}

Memory Model

25/91

Programming Practice

Optimizing Parallel Reduction in
CUDA

• Vector reduction: common and important data parallel primitive.

• Computing vector dot-product.
• Computing the norm of a vector.
• Computing the average value of the elements in a vector.
• . . .

• Easy to implement in CUDA (but hard to make it efficient).

• Serves as a great optimization example.

• We’ll walk step by step through 7 different versions.
• Demonstrates several important optimization strategies.

Parallel Reduction

28/91

• Tree-based approach used within each thread block:

• Need to be able to use multiple thread blocks.

• To process very large arrays.
• To keep all multiprocessors on the GPU busy.
• Each thread block reduces a portion of the array.

• But how do we communicate partial results between thread blocks?

Parallel Reduction

29/91

• If we could synchronize across all thread blocks, could easily reduce very large
arrays.

• Global sync after each block produces its result;
• Once all blocks reach sync, continue recursively.

• However, CUDA has no global synchronization. Reason:

• Expensive to build in hardware for GPUs with high processor count.
• Would force programmer to run fewer blocks (no more than # multiprocessors *

resident blocks / multiprocessor) to avoid deadlock, which may reduce
overall efficiency.

• Solution: decompose into multiple kernels.

• Kernel launch serves as a global synchronization point.
• Kernel launch has negligible HW overhead, low SW overhead.

Problem: Global Synchronization

30/91

• Avoid global sync by decomposing computation into multiple kernel invocations.

• In the case of reductions, code for all levels is the same: recursive kernel invocation.

Solution: Kernel Decomposition

31/91

• We should strive to reach GPU peak performance.

• Choose the right metric:

• GFLOP/s: for compute-bound kernels.
• Bandwidth: for memory-bound kernels.

• For reductions: very low arithmetic intensity (1 FLOP per element loaded,
bandwidth-optimal)

• Therefore, we should strive for peak bandwidth

• Example device: Nvidia G80 GPU

• 384-bit memory interface, 900 MHz DDR.
• Bandwidth 384 * 1800 / 8 = 86.4 GB/s

Optimization Goal

32/91

Kernel function code:

Impl # 1: Interleaved Addressing

33/91

An illustration of the workflow of threads:

Impl # 1: Interleaved Addressing

34/91

Problem of implementation # 1:

Impl # 1: Interleaved Addressing

35/91

Performance Evaluation for Reduction with 4M Elements

36/91

Replace divergent branch in inner loop:

With strided index and non-divergent branch:

Impl # 2: Interleaved Addressing with Non-divergent Branch

37/91

Impl # 2: Interleaved Addressing with Non-divergent Branch

38/91

Performance Evaluation for Reduction with 4M Elements

39/91

Replace strided indexing in inner loop:

With reverse loop and threadID-based indexing:

Impl # 3: Sequential Addressing

40/91

Impl # 3: Sequential Addressing

41/91

Performance Evaluation for Reduction with 4M Elements

42/91

Problem: Idle Threads

Half of the threads are idle on first loop iteration!

Impl # 3: Sequential Addressing

43/91

Halve the number of blocks, and replace single load:

With two loads and first add of the reduction:

Impl # 4: First Add During Load

44/91

Performance Evaluation for Reduction with 4M Elements

45/91

• At 17 GB/s, we’re far from bandwidth bound.

• And we know reduction has low arithmetic intensity.

• Therefore, a likely bottleneck is instruction overhead.

• Ancillary instructions that are not loads, stores, or arithmetic for the core
computation.

• In other words: address arithmetic and loop overhead.

• Strategy: Loop Unrool

Bottleneck: Instruction Overhead

46/91

• As reduction proceeds, the number of “active” threads decreases.

• When stride s ≤ 32, we have only one warp left.

• Instructions are SIMD synchronous within a warp.

• That means when stride s ≤ 32:

• We don’t need to __syncthreads().
• We don’t need “if (tid < s)” because it doesn’t save any work.

• Solution: unroll the last 6 iterations of the inner loop.

Strategy: Unroll the Last Warp

47/91

Note: This saves useless work in all warps, not just the last one! Without
unrolling, all warps execute every iteration of the for loop and if statement.

Impl # 5: Last Warp Unrolling

48/91

Performance Evaluation for Reduction with 4M Elements

49/91

• If we know the number of iterations at compile time, we could completely unroll the
reduction.

• The block size (number of threads in a block) is limited by the GPU. (512 for G80
GPU)

• We assume that the block sizes are power-of-2.

• We can easily unroll for a fixed block size, but we need to be generic – how can we
unroll for block sizes that we don’t know at compile time?

• Solution: Templates.

• CUDA supports C++ template parameters on device and host functions.ß

Impl # 6: Fully Unrolling

50/91

Unrolling with Templates:
• Specify block size as a function template parameter.

Impl # 6: Fully Unrolling

51/91

Note: all code in RED will be evaluated at compile time! Results in a very
efficient inner loop.

Impl # 6: Fully Unrolling

52/91

Q: Do we still need block size at compile time?
A: Nope, just a switch statement for 10 possible block sizes:

Impl # 6: Fully Unrolling

53/91

Performance Evaluation for Reduction with 4M Elements

54/91

Replace load and add of two elements:

With a while loop to add as many as necessary:

Impl # 7: Multiple Adds per Thread

55/91

Replace load and add of two elements:

With a while loop to add as many as necessary:

Impl # 7: Multiple Adds per Thread

56/91

Performance Evaluation for Reduction with 4M Elements

57/91

Final Optimized Kernel Function

58/91

Performance Comparison of Impl # 1 to # 7

59/91

Optimizing GEMM in CUDA

Naive implementation, each thread compute one entity in C.

This kernel takes about 0.5s to process three 4092 × 4092 fp32 matrices on A6000
GPU.

Matmul

61/91

• Total FLOPS: 2 ∗ 40923 + 40922 = 137 GFLOPS

• Total data to read (minimum!): 3 ∗ 40922 ∗ 4B = 201 MB

• Total data to store: 40922 ∗ 4B = 67 MB

GPU : 30TFLOPs/s of compute throughput and 768GB/s of global memory
bandwidth.

Ideally, 4.5ms for calculation and 0.34ms for memory.

compute-bound

Matmul - lowerbound

62/91

We achieves ∼300GFLOPs when multiplying two 4092 × 4092 fp32 matrices.
Upperbound ∼30TFLOPs.

So how can we start to make this faster?

One way is to optimize the memory access pattern of our kernel such that global
memory accesses can be coalesced (=combined) into fewer accesses.

Matmul - lowerbound

63/91

The threads of a block are grouped into so-called warps, consisting of 32 threads.
A warp is then assigned to a warp scheduler, which is the physical core that
executes the instructions. There are four warp schedulers per multiprocessor. The
grouping into warps happens based on a consecutive threadId.

The concept of a warp is relevant for this second kernel, as sequential memory accesses by threads that are part of the same warp can
be grouped and executed as one. This is referred to as global memory coalescing. It’s the most important thing to keep in mind when
optimizing a kernel’s GMEM memory accesses toward achieving the peak bandwidth.

Below is an example, where consecutive memory accesses by threads in the same warp are grouped, allowing each warp to execute 8
memory accesses using only 2 32B loads:

In reality, the GPU supports 32B, 64B and 128B memory accesses. So, if each thread is loading a 32bit float from global memory, the
warp scheduler (probably the MIO) can coalesce this 32*4B=128B load into a single transaction. This is only possible if the floats loaded
are consecutive in memory, and if access is aligned. If they aren’t, or if access cannot be coalesced for some other reason, then the GPU
will execute as many 32B loads as necessary to fetch all floats, leading to a lot of wasted bandwidth. Profiling our naive kernel, we can
observe the detrimental effect of non-coalesced access as we achieve only 15GB/s of GMEM throughput.

Looking back at the previous kernel, we assigned threads their entry of C like so:

const uint x = blockIdx.x * blockDim.x + threadIdx.x;
const uint y = blockIdx.y * blockDim.y + threadIdx.y;

Hence, threads of the same warp (those with consecutive threadIdx.x) were loading the rows of A non-consecutively from memory. The
naive kernel’s pattern of accessing the memory of A looked more like so:

Global Memory Coalescing

64/91

Threads of the same warp (those with consecutive threadIdx.x) were loading the
rows of A non-consecutively from memory. The naive kernel’s pattern of
accessing the memory of A looked more like so:

To enable coalescing, we can change how we assign positions of the result matrix C to threads. This change in the global memory
access pattern is illustrated below:

Global Memory Coalescing

65/91

The concept of a warp is relevant for this second kernel, as sequential memory
accesses by threads that are part of the same warp can be grouped and executed as
one. This is referred to as global memory coalescing. It’s the most important
thing to keep in mind when optimizing a kernel’s GMEM memory accesses
toward achieving the peak bandwidth.

The concept of a warp is relevant for this second kernel, as sequential memory accesses by threads that are part of the same warp can
be grouped and executed as one. This is referred to as global memory coalescing. It’s the most important thing to keep in mind when
optimizing a kernel’s GMEM memory accesses toward achieving the peak bandwidth.

Below is an example, where consecutive memory accesses by threads in the same warp are grouped, allowing each warp to execute 8
memory accesses using only 2 32B loads:

In reality, the GPU supports 32B, 64B and 128B memory accesses. So, if each thread is loading a 32bit float from global memory, the
warp scheduler (probably the MIO) can coalesce this 32*4B=128B load into a single transaction. This is only possible if the floats loaded
are consecutive in memory, and if access is aligned. If they aren’t, or if access cannot be coalesced for some other reason, then the GPU
will execute as many 32B loads as necessary to fetch all floats, leading to a lot of wasted bandwidth. Profiling our naive kernel, we can
observe the detrimental effect of non-coalesced access as we achieve only 15GB/s of GMEM throughput.

Looking back at the previous kernel, we assigned threads their entry of C like so:

const uint x = blockIdx.x * blockDim.x + threadIdx.x;
const uint y = blockIdx.y * blockDim.y + threadIdx.y;

Hence, threads of the same warp (those with consecutive threadIdx.x) were loading the rows of A non-consecutively from memory. The
naive kernel’s pattern of accessing the memory of A looked more like so:

Global Memory Coalescing

66/91

To enable coalescing, we can change how we assign positions of the result matrix
C to threads. This change in the global memory access pattern is illustrated below:

To implement this, we only need to change the first two lines:

const int x = blockIdx.x * BLOCKSIZE + (threadIdx.x / BLOCKSIZE);
const int y = blockIdx.y * BLOCKSIZE + (threadIdx.x % BLOCKSIZE);

if (x < M && y < N) {
 float tmp = 0.0;
 for (int i = 0; i < K; ++i) {
 tmp += A[x * K + i] * B[i * N + y];
 }

Global Memory Coalescing

67/91

To implement coalescing kernel:

1 template <const uint BLOCKSIZE>
2 __global__ void sgemm_global_mem_coalesce(int M, int N, int K, float alpha,
3 const float *A, const float *B,
4 float beta, float *C) {
5 const int cRow = blockIdx.x * BLOCKSIZE + (threadIdx.x / BLOCKSIZE);
6 const int cCol = blockIdx.y * BLOCKSIZE + (threadIdx.x % BLOCKSIZE);
7

8 // if statement is necessary to make things work under tile quantization
9 if (cRow < M && cCol < N) {

10 float tmp = 0.0;
11 for (int i = 0; i < K; ++i) {
12 tmp += A[cRow * K + i] * B[i * N + cCol];
13 }
14 C[cRow * N + cCol] = alpha * tmp + beta * C[cRow * N + cCol];
15 }
16 }

Global memory coalescing increases memory throughput from 15GB/s to
110GB/s. Performance reaches 2000 GFLOPS, a big improvement compared to the
300 GFLOPS of the first, naive kernel.

Global Memory Coalescing

68/91

Next to the large global memory, a GPU has a much smaller region of memory
that is physically located on the chip, called shared memory (SMEM).

Physically, there’s one shared memory per SM. Logically, this shared memory is
partitioned among the blocks. This means that a thread can communicate with the
other threads in its block via the shared memory chunk.

As the shared memory is located on-chip, it has a much lower latency and higher
bandwidth than global memory.

Shared Memory Cache-Blocking

69/91

So for this kernel, we’ll load a chunk of A and a chunk of B from global memory
into shared memory. Then we’ll perform as much work as possible on the two
chunks, with each thread still being assigned one entry of C. We’ll move the
chunks along the columns of A and the rows of B performing partial sums on C
until the result is computed.

 C[x * N + y] = alpha * tmp + beta * C[x * N + y];
}

And we call it like so:

// gridDim stays the same
dim3 gridDim(CEIL_DIV(M, 32), CEIL_DIV(N, 32));
// make blockDim 1-dimensional, but don't change number of threads
dim3 blockDim(32 * 32);
sgemm_coalescing<<<gridDim, blockDim>>>(M, N, K, alpha, A, B, beta, C);

Global memory coalescing increases memory throughput from 15GB/s to 110GB/s. Performance reaches 2000 GFLOPS, a big
improvement compared to the 300 GFLOPS of the first, naive kernel. For the next kernel, we’ll use the GPU’s fast on-chip memory,
called shared memory, to cache data that will be re-used.

Kernel 3: Shared Memory Cache-Blocking
Next to the large global memory, a GPU has a much smaller region of memory that is physically located on the chip, called shared
memory (SMEM). Physically, there’s one shared memory per SM. Logically, this shared memory is partitioned among the blocks. This
means that a thread can communicate with the other threads in its block via the shared memory chunk. On my A6000 GPU, each block
has access to a maximum of 48KB of shared memory.

As the shared memory is located on-chip, it has a much lower latency and higher bandwidth than global memory. I couldn’t find good
benchmark results for the Ampere architecture but for Volta (released in 2017) the benchmarks performed in this paperthis paperthis paperthis paperthis paperthis paperthis paperthis paperthis paperthis paperthis paperthis paperthis paper report
750GiB/s of global memory bandwidth, and 12,080GiB/s of shared memory bandwidth.

So for this next kernel, we’ll load a chunk of A and a chunk of B from global memory into shared memory. Then we’ll perform as
much work as possible on the two chunks, with each thread still being assigned one entry of C. We’ll move the chunks along the
columns of A and the rows of B performing partial sums on C until the result is computed.

This is illustrated below:

The important parts of the code are below, with variable names corresponding to the plot above:

// advance pointers to the starting positions
A += cRow * BLOCKSIZE * K; // row=cRow, col=0
B += cCol * BLOCKSIZE; // row=0, col=cCol
C += cRow * BLOCKSIZE * N + cCol * BLOCKSIZE; // row=cRow, col=cCol

Shared Memory Cache-Blocking

70/91

1 // advance pointers to the starting positions
2 A += cRow * BLOCKSIZE * K; // row=cRow, col=0
3 B += cCol * BLOCKSIZE; // row=0, col=cCol
4 C += cRow * BLOCKSIZE * N + cCol * BLOCKSIZE; // row=cRow, col=cCol
5 float tmp = 0.0;
6 for (int bkIdx = 0; bkIdx < K; bkIdx += BLOCKSIZE) {
7 // Have each thread load one of the elements in A & B
8 // Make the threadCol (=threadIdx.x) the consecutive index
9 // to allow global memory access coalescing

10 As[threadRow * BLOCKSIZE + threadCol] = A[threadRow * K + threadCol];
11 Bs[threadRow * BLOCKSIZE + threadCol] = B[threadRow * N + threadCol];
12 // block threads in this block until cache is fully populated
13 __syncthreads();
14 A += BLOCKSIZE;
15 B += BLOCKSIZE * N;
16 // execute the dotproduct on the currently cached block
17 for (int dotIdx = 0; dotIdx < BLOCKSIZE; ++dotIdx) {
18 tmp += As[threadRow * BLOCKSIZE + dotIdx] *
19 Bs[dotIdx * BLOCKSIZE + threadCol];
20 }
21 // need to sync again at the end, to avoid faster threads
22 // fetching the next block into the cache before slower threads are done
23 __syncthreads();
24 }
25 C[threadRow * N + threadCol] =
26 alpha * tmp + beta * C[threadRow * N + threadCol];

This kernel achieves ∼2200 GFLOPS, a 50% improvement over the previous
version. We’re still far away from hitting the ∼30 TFLOPs that the GPU can
provide.

Shared Memory Cache-Blocking

71/91

If we look at the mix of executed instructions, most of them are memory loads:

Metric Value

Compute Capability 8.6

max threads per block 1024

max threads per multiprocessor 1536

threads per warp 32

warp allocation granularity 4

max regs per block 65536

max regs per multiprocessor 65536

reg allocation unit size 256

reg allocation granularity warp

total global mem 48685 MB

max shared mem per block 48 KB

CUDA runtime shared mem overhead per block 1024 B

shared mem per multiprocessor 102400 B

multiprocessor count 84

max warps per multiprocessor 48

And here are the resource demands for our kernel:

Registers per Thread 37

SMEM per Block 8192 B

Threads per Block 1024

Work is scheduled onto the SMs on a block granularity. Each SM will load more blocks, as long as it has enough resources to
accommodate them. Calculation:

Shared memory: 8192B/Block + 1024B/Block for CUDA runtime usage = 9216B/Block. (102400B per SM) / (9216B per Block) =
11.11 ⇒ 11 Blocks upper limit.

Threads: 1024 Threads per Block, max 1536 threads per SM ⇒ Upper limit 1 block.

Registers: 37 regs per thread * 32 threads per warp = 1184 regs per warp. Register allocation granularity is 256 regs on a warp
level, hence rounding up to 1280 regs per warp. We have (1024 threads / 32) = 32 warps per block, hence 1280 regs per warp * 32
warps per block = 40960 regs per block. Max 65536 regs per SM ⇒ upper limit 1 block.

So this kernel is limited by the number of threads per block, and the number of registers per thread. We cannot load more than one
block per SM, giving us a final occupancy of 32 active warps / 48 max active warps = 66%.

A 66% occupancy is not too bad, so this doesn’t explain why our kernel runs so slow. Looking at the profiler gives us some hints. First,
if we look at the mix of executed instructions, most of them are memory loads:

Our inner loop looks like this in PTX (Godbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt linkGodbolt link):

ld.shared.f32 %f91, [%r8+3456];
ld.shared.f32 %f92, [%r7+108];
fma.rn.f32 %f93, %f92, %f91, %f90;

That’s not good, given that a memory load is bound to have a higher latency than a simple FMA, and given that we know our kernel
should be compute bound. We see this effect when looking at the profiler’s sampling of warp states. This quantifies how many cycles
were spent in each state per executed instruction:

That’s not good, given that a memory load is bound to have a higher latency than
a simple FMA, and given that we know our kernel should be compute bound.

Shared Memory Cache-Blocking

72/91

We see this effect when looking at the profiler’s sampling of warp states. This
quantifies how many cycles were spent in each state per executed instruction:

The meaning of the states is documented in the Kernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling GuideKernel Profiling Guide. For Stall MIO Throttle it reads:

Warp was stalled waiting for the MIO (memory input/output) instruction queue to be not full. This stall reason is high in cases of extreme utilization of the MIO pipelines,
which include special math instructions, dynamic branches, as well as shared memory instructions

We’re not using special math instructions, nor dynamic branches, so it’s clear that we’re stalling waiting for our SMEM accesses to
return. So how do we make our kernel issue less SMEM instructions? One way is to have each thread compute more than one output
element, which allows us to perform more of the work in registers and relying less on SMEM.

Kernel 4: 1D Blocktiling for Calculating Multiple Results per Thread
So this next kernel works like our last kernel, but adds a new inner loop, for calculating multiple C entries per thread. We now use a
SMEM cache size of BM*BK + BN*BK = 64*8 + 64*8 = 1024 floats, for a total of 4KB per block. Below a visualization. I have highlighted two
of the threads and the values they access in the inner loop in orange and red.

Shared Memory Cache-Blocking

73/91

Stall MIO Throttle
Warp was stalled waiting for the MIO (memory input/output) instruction queue to be not
full. This stall reason is high in cases of extreme utilization of MIO pipelines (shared
memory instructions).

So how can we make our kernel issue less SMEM instructions? One way is to have
each thread compute more than one output element, which allows us to perform
more of work in registers and relying less on SMEM.

Shared Memory Cache-Blocking

74/91

This kernel works like last kernel, but adds a new inner loop, for calculating
multiple C entries per thread.

All of the important changes for this kernel happen in the inner loop. The loading for GMEM to SMEM stays largely the same as
before. Let’s have a look:

1D Blocktiling

75/91

The major part of the implementation of this kernel:
1 // allocate thread-local cache for results in registerfile
2 float threadResults[TM] = {0.0};
3

4 // outer loop over block tiles
5 for (uint bkIdx = 0; bkIdx < K; bkIdx += BK) {
6 // populate the SMEM caches
7 As[innerRowA * BK + innerColA] = A[innerRowA * K + innerColA];
8 Bs[innerRowB * BN + innerColB] = B[innerRowB * N + innerColB];
9 __syncthreads();

10

11 // advance blocktile
12 A += BK;
13 B += BK * N;
14

15 // calculate per-thread results
16 for (uint dotIdx = 0; dotIdx < BK; ++dotIdx) {
17 // we make the dotproduct loop the outside loop, which facilitates
18 // reuse of the Bs entry, which we can cache in a tmp var.
19 float tmpB = Bs[dotIdx * BN + threadCol];
20 for (uint resIdx = 0; resIdx < TM; ++resIdx) {
21 threadResults[resIdx] +=
22 As[(threadRow * TM + resIdx) * BK + dotIdx] * tmpB;
23 }
24 }
25 __syncthreads();
26 }
27

28 // write out the results
29 for (uint resIdx = 0; resIdx < TM; ++resIdx) {
30 C[(threadRow * TM + resIdx) * N + threadCol] =
31 alpha * threadResults[resIdx] +
32 beta * C[(threadRow * TM + resIdx) * N + threadCol];
33 }

This kernel achieves ∼8600 GFLOPs, 2.2× faster than our previous kernel.

1D Blocktiling

76/91

Let’s calculate how many memory accesses each thread performed in our
previous kernel, where each thread calculated one result:

• GMEM: K/32 iterations of outer loop * 2 loads

• SMEM: K/32 iterations of outer loop * BLOCKSIZE (=32) * 2 loads

• Memory accesses per result: K/16 GMEM, K*2 SMEM

And for our new kernel, where each thread calculates eight results:
• GMEM: K/8 iterations of outer loop * 2 loads

• SMEM: K/8 iterations of outer loop * BK(=8) * (1 + TM(=8))

• Memory accesses per result: K/32 GMEM, K*9/8 SMEM

1D Blocktiling

77/91

As expected, we now spend much fewer cycles per instruction stalling due to
memory pressure:

// allocate thread-local cache for results in registerfile
float threadResults[TM] = {0.0};

// outer loop over block tiles
for (uint bkIdx = 0; bkIdx < K; bkIdx += BK) {
 // populate the SMEM caches (same as before)
 As[innerRowA * BK + innerColA] = A[innerRowA * K + innerColA];
 Bs[innerRowB * BN + innerColB] = B[innerRowB * N + innerColB];
 __syncthreads();

 // advance blocktile for outer loop
 A += BK;
 B += BK * N;

 // calculate per-thread results
 for (uint dotIdx = 0; dotIdx < BK; ++dotIdx) {
 // we make the dotproduct loop the outside loop, which facilitates
 // reuse of the Bs entry, which we can cache in a tmp var.
 float Btmp = Bs[dotIdx * BN + threadCol];
 for (uint resIdx = 0; resIdx < TM; ++resIdx) {
 threadResults[resIdx] +=
 As[(threadRow * TM + resIdx) * BK + dotIdx] * Btmp;
 }
 }
 __syncthreads();
}

This kernel achieves ~8600 GFLOPs, 2.2x faster than our previous kernel. Let’s calculate how many memory accesses each thread
performed in our previous kernel, where each thread calculated one result:

GMEM: K/32 iterations of outer loop * 2 loads

SMEM: K/32 iterations of outer loop * BLOCKSIZE (=32) * 2 loads

Memory accesses per result: K/16 GMEM, K*2 SMEM

And for our new kernel, where each thread calculates eight results:

GMEM: K/8 iterations of outer loop * 2 loads

SMEM: K/8 iterations of outer loop * BK(=8) * (1 + TM(=8))

Memory accesses per result: K/32 GMEM, K*9/8 SMEM

As expected, we now spend much fewer cycles per instruction stalling due to memory pressure:

Sidenote on Compiler Optimizations

Above we explicitly cached the entry of B into Btmp and reordered the two inner loops for efficiency. If we don’t do that, then the code
looks like this:

for (uint resIdx = 0; resIdx < TM; ++resIdx) {
 for (uint dotIdx = 0; dotIdx < BK; ++dotIdx) {
 threadResults[resIdx] +=
 As[(threadRow * TM + resIdx) * BK + dotIdx] * Bs[dotIdx * BN + threadCol];

1D Blocktiling

78/91

Our current kernel still suffers from the same stalling-for-memory problem as
later kernel, just to a lesser extent. So we’ll just apply the same optimization again:
computing even more results per thread. The main reason this makes our kernel
run faster is that it increases arithmetic intensity.

1D Blocktiling

79/91

In conclusion, all our kernels perform the same number of FLOPs, but we can reduce the number of GMEM accesses by calculating
more results per thread. We’ll continue optimizing arithmetic intensity for as long as we’re still memory bound.

Kernel 5: Increasing Arithmetic Intensity via 2D Blocktiling
The basic idea for kernel 5 will be to compute a grid of 8*8 elements of C per thread. The first stage of the kernel is for all threads to
work together to populate the SMEM cache. We’ll have each thread load multiple elements. This code looks like so:

for (uint loadOffset = 0; loadOffset < BM; loadOffset += strideA) {
 As[(innerRowA + loadOffset) * BK + innerColA] =
 A[(innerRowA + loadOffset) * K + innerColA];
}
for (uint loadOffset = 0; loadOffset < BK; loadOffset += strideB) {
 Bs[(innerRowB + loadOffset) * BN + innerColB] =
 B[(innerRowB + loadOffset) * N + innerColB];

In conclusion, all our kernels perform the same number of FLOPs, but we can
reduce the number of GMEM accesses by calculating more results per thread.

1D Blocktiling

80/91

The basic idea for this kernel will be to compute a grid of 8*8 elements of C per
thread. The first stage of the kernel is for all threads to work together to populate
the SMEM cache. We’ll have each thread load multiple elements. This code looks
like so:

1 // populate the SMEM caches
2 for (uint loadOffset = 0; loadOffset < BM; loadOffset += strideA) {
3 As[(innerRowA + loadOffset) * BK + innerColA] =
4 A[(innerRowA + loadOffset) * K + innerColA];
5 }
6 for (uint loadOffset = 0; loadOffset < BK; loadOffset += strideB) {
7 Bs[(innerRowB + loadOffset) * BN + innerColB] =
8 B[(innerRowB + loadOffset) * N + innerColB];
9 }

10 __syncthreads();

Now that the SMEM cache is populated, we have each thread multiply its relevant
SMEM entries and accumulate the result into local registers.

2D Blocktiling

81/91

Below I illustrated the (unchanged) outer loop along the input matrices, and the
three inner loops for the dot product and the TN and TM dimension:

The interesting parts of the code look like this:

2D Blocktiling

82/91

In the inner loop, we can reduce the number of SMEM accesses by making dotIdx
the outer loop, and explicitly loading the values we need for the two inner loops
into registers. Below is a drawing of the dotIdx loop across time, to visualize
which SMEM entries get loaded into thread-local registers at each step:

// allocate thread-local cache for results in registerfile
float threadResults[TM * TN] = {0.0};
// register caches for As and Bs
float regM[TM] = {0.0};
float regN[TN] = {0.0};

// outer-most loop over block tiles
for (uint bkIdx = 0; bkIdx < K; bkIdx += BK) {
 // populate the SMEM caches
 for (uint loadOffset = 0; loadOffset < BM; loadOffset += strideA) {
 As[(innerRowA + loadOffset) * BK + innerColA] =
 A[(innerRowA + loadOffset) * K + innerColA];
 }
 for (uint loadOffset = 0; loadOffset < BK; loadOffset += strideB) {
 Bs[(innerRowB + loadOffset) * BN + innerColB] =
 B[(innerRowB + loadOffset) * N + innerColB];
 }
 __syncthreads();

 // advance blocktile
 A += BK; // move BK columns to right
 B += BK * N; // move BK rows down

 // calculate per-thread results
 for (uint dotIdx = 0; dotIdx < BK; ++dotIdx) {
 // load relevant As & Bs entries into registers
 for (uint i = 0; i < TM; ++i) {
 regM[i] = As[(threadRow * TM + i) * BK + dotIdx];
 }
 for (uint i = 0; i < TN; ++i) {
 regN[i] = Bs[dotIdx * BN + threadCol * TN + i];
 }
 // perform outer product on register cache, accumulate
 // into threadResults
 for (uint resIdxM = 0; resIdxM < TM; ++resIdxM) {
 for (uint resIdxN = 0; resIdxN < TN; ++resIdxN) {
 threadResults[resIdxM * TN + resIdxN] +=
 regM[resIdxM] * regN[resIdxN];
 }
 }
 }
 __syncthreads();
}

In the inner loop, we can reduce the number of SMEM accesses by making dotIdx the outer loop, and explicitly loading the values we
need for the two inner loops into registers. Below is a drawing of the dotIdx loop across time, to visualize which SMEM entries get
loaded into thread-local registers at each step:

Resulting performance: 16TFLOPs, another 2x improvement. Let’s repeat the memory access calculation. We’re now calculating TM*TN
= 8*8 = 64 results per thread.

GMEM: K/8 (outer loop iters) * 2 (A+B) * 1024/256 (sizeSMEM/numThreads) loads

SMEM: K/8 (outer loop iters) * 8 (dotIdx) * 2 (A+B) * 8 loads

2D Blocktiling

83/91

Resulting performance: 16TFLOPs, another 2× improvement. Let’s repeat the
memory access calculation. We’re now calculating TM×TN = 8×8 = 64 results per
thread.

• GMEM: K/8 (outer loop iters) × 2 (A+B) × 1024/256 (sizeSMEM/numThreads) loads

• SMEM: K/8 (outer loop iters) × 8 (dotIdx) × 2 (A+B) × 8 loads

• Memory accesses per result: K/64 GMEM, K/4 SMEM

Slowly performance is reaching acceptable levels, however, warp stalls due to
memory pipeline congestion are still too frequent. For the next kernel we’ll take
two measures to try to improve that: Transposing As to enable auto-vectorization
of SMEM loads, and promising the compiler alignment on the GMEM accesses.

2D Blocktiling

84/91

The first optimization that mentioned earlier is to transpose As. This will allow us
to load from As using vectorized SMEM loads (LDS.128 in SASS):

Memory accesses per result: K/64 GMEM, K/4 SMEM

Slowly performance is reaching acceptable levels, however, warp stalls due to memory pipeline congestion are still too frequent. For
kernel 6 we’ll take two measures to try to improve that: Transposing As to enable auto-vectorization of SMEM loads, and promising
the compiler alignment on the GMEM accesses.

Kernel 6: Vectorize SMEM and GMEM Accesses
The first optimization that I already hinted at earlier is to transpose As. This will allow us to load from As using vectorized SMEM loads
(LDS.128 in SASS). Below the same visualization of the three inner loops as for kernel 5, but now with As transposed in memory:

Looking at the assembly we see that loading As into the registers, which used to be a 32b LDS load, is now also a 128b LDS.128 load, just
like it had already been for Bs. This gives us a 500GFLOPs speedup, or ~3%.

Vectorize SMEM and GMEM Accesses

85/91

Looking at the assembly we see that loading As into the registers, which used to
be a 32b LDS load, is now also a 128b LDS.128 load, just like it had already been
for Bs. This gives us a 500GFLOPs speedup, or ∼3%.

Next, we’ll vectorize all loads and stores from/to GMEM using vectordatatypes,
namely float4.

1 float4 tmp =
2 reinterpret_cast<float4 *>(&A[innerRowA * K + innerColA * 4])[0];
3 As[(innerColA * 4 + 0) * BM + innerRowA] = tmp.x;
4 As[(innerColA * 4 + 1) * BM + innerRowA] = tmp.y;
5 As[(innerColA * 4 + 2) * BM + innerRowA] = tmp.z;
6 As[(innerColA * 4 + 3) * BM + innerRowA] = tmp.w;
7

8 reinterpret_cast<float4 *>(&Bs[innerRowB * BN + innerColB * 4])[0] =
9 reinterpret_cast<float4 *>(&B[innerRowB * N + innerColB * 4])[0];

10 __syncthreads();

This kernel achieves 19TFLOPs. The profiler still shows a bunch of problem areas
and optimization opportunities: We’re running into shared-memory bank conflicts
(which cuBLAS avoids), our occupancy is higher than necessary, and we haven’t
implemented any double buffering.

Vectorize SMEM and GMEM Accesses

86/91

We’ve accumulated a total of five template parameters:
• BM, BN and BK, which specify how much data we cache from GMEM into SMEM.

• TM and TN, which specify how much data we cache from SMEM into the registers.

• The kernel implementation was correct for the ∼400 different hyperparameter
settings that remained.

It turns out that the optimal parameters vary quite a bit depending on the GPU
model.

• On A6000, BM=BN=128, BK=16, TM=TN=8 increased performance by 5%, from 19 to
20 TFLOPs.

• On A100 SMX4 40GB, that same configuration reached 12 TFLOPs, 6% worse than
the optimal setting found by the autotuner (BM=BN=64, BK=16, TM=TN=4), which
reached 12.6 TFLOPs.

Autotuning

87/91

We’ll now add another hierarchy of tiling, in between our blocktiling and
threadtiling loops: warptiling. Warptiling is somewhat confusing initially since
unlike blocks and threads, warps don’t show up anywhere in the CUDA code
explicitly. They are a hardware feature that has no direct analog in the scalar
CUDA-software world.
We can calculate a given thread’s warpId as warpId=threadIdx.x % warpSize,
where warpSize is a built-in variable that is equal to 32.

Warptiling

88/91

Warps are relevant for performance since (among other reasons):
• Warps are the unit of scheduling that is mapped to the warp-schedulers that are part

of the SM.

• Shared-memory bank conflicts (I’ll cover those in a future post) happen only between
threads that are in the same warp.

• There’s a register cache on recent GPUs, and tighter threadtiling gives us more
register cache locality.

Warptiling is elegant since we now make explicit all levels of parallelism:
• Blocktiling: Different blocks can execute in parallel on different SMs.

• Warptiling: Different warps can execute in parallel on different warp schedulers, and
concurrently on the same warp scheduler.

• Threadtiling: (a very limited amount of) instructions can execute in parallel on the
same CUDA cores (= instruction-level parallelism aka ILP)

Warptiling

89/91

After autotuning the parameters, performance improves from 19.7 TFLOPs to 21.7
TFLOPs on an A100. Here’s a plot that compares our warptiling kernel against
cuBLAS across increasing matrix sizes:

At dimensions 2048 and 4096, our measured FLOPs are only a few percentage points slower than cuBLAS. However, for smaller
matrices, we’re doing poorly in comparison to Nvidia’s library! This happens because cuBLAS contains not one single implementation
of SGEMM, but hundreds of them. At runtime, based on the dimensions, cuBLAS will pick which kernel to run. I traced the cuBLAS
call and these are the kernels it’s calling at each size:

Matrix size Name Duration

128 ampere_sgemm_32x32_sliced1x4_nn 15.295 μs

256 ampere_sgemm_64x32_sliced1x4_nn followed by splitKreduce_kernel 12.416 μs + 6.912 μs

512 ampere_sgemm_32x32_sliced1x4_nn 41.728 μs

1024 ampere_sgemm_128x64_nn 165.953 μs

2048 ampere_sgemm_128x64_nn 1.247 ms

4096 ampere_sgemm_128x64_nn 9.290 ms

At dimension 256 it calls two kernels: a matmul kernel followed by a reduction kernel. So if we were trying to write a high-
performance library that works for all shapes and sizes we would have specializations for different shapes, and at runtime dispatch to
the one that’s the best fit.

I also want to report a negative results: For this kernel, I additionally implemented an optimization called thread swizzling. This
technique assumes that threadblocks are launched in order of increasing blockIdx, and optimizes the mapping of blockIdx to C chunks
in a way that should increase L2 locality. This Nvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia post has more info and visualizations. It didn’t increase performance,
presumably because L2 hit rate is already fairly high at 80%, so I ended up removing the swizzling code.

It makes sense to move the loop over BK towards the outside, since it follows our maxim of “load some data, then do as much work
on that data as possible”. It further means that all computation that happens inside the BK loop will be independent and can be
parallelized (for example using ILP).

We can now also start prefetching the data necessary for the next loop iteration already, a technique called double buffering.

Work in Progress: Kernel 11
If I get back to working on this post, here’s what I’ll look at next:

1. Double buffering, for better interleaving of computation and memory loading. For now, see CUTLASS Pipelining. In CUTLASS,
double buffering is done on two levels: GMEM ⇒ SMEM, and SMEM ⇒ Registerfile.

In Hopper, new instructions were introduced for warp specialization, for example for having some warp use fewer registers
than others. This, in combination with special instructions to load directly from GMEM into SMEM without first going
through the registers, can be used to reduce register pressure.

Warptiling

90/91

At dimensions 2048 and 4096, our measured FLOPs are only a few percentage
points slower than cuBLAS. However, for smaller matrices, we’re doing poorly in
comparison to Nvidia’s library!
This happens because cuBLAS contains not one single implementation of
SGEMM, but hundreds of them. At runtime, based on the dimensions, cuBLAS
will pick which kernel to run.

At dimensions 2048 and 4096, our measured FLOPs are only a few percentage points slower than cuBLAS. However, for smaller
matrices, we’re doing poorly in comparison to Nvidia’s library! This happens because cuBLAS contains not one single implementation
of SGEMM, but hundreds of them. At runtime, based on the dimensions, cuBLAS will pick which kernel to run. I traced the cuBLAS
call and these are the kernels it’s calling at each size:

Matrix size Name Duration

128 ampere_sgemm_32x32_sliced1x4_nn 15.295 μs

256 ampere_sgemm_64x32_sliced1x4_nn followed by splitKreduce_kernel 12.416 μs + 6.912 μs

512 ampere_sgemm_32x32_sliced1x4_nn 41.728 μs

1024 ampere_sgemm_128x64_nn 165.953 μs

2048 ampere_sgemm_128x64_nn 1.247 ms

4096 ampere_sgemm_128x64_nn 9.290 ms

At dimension 256 it calls two kernels: a matmul kernel followed by a reduction kernel. So if we were trying to write a high-
performance library that works for all shapes and sizes we would have specializations for different shapes, and at runtime dispatch to
the one that’s the best fit.

I also want to report a negative results: For this kernel, I additionally implemented an optimization called thread swizzling. This
technique assumes that threadblocks are launched in order of increasing blockIdx, and optimizes the mapping of blockIdx to C chunks
in a way that should increase L2 locality. This Nvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia postNvidia post has more info and visualizations. It didn’t increase performance,
presumably because L2 hit rate is already fairly high at 80%, so I ended up removing the swizzling code.

It makes sense to move the loop over BK towards the outside, since it follows our maxim of “load some data, then do as much work
on that data as possible”. It further means that all computation that happens inside the BK loop will be independent and can be
parallelized (for example using ILP).

We can now also start prefetching the data necessary for the next loop iteration already, a technique called double buffering.

Work in Progress: Kernel 11
If I get back to working on this post, here’s what I’ll look at next:

1. Double buffering, for better interleaving of computation and memory loading. For now, see CUTLASS Pipelining. In CUTLASS,
double buffering is done on two levels: GMEM ⇒ SMEM, and SMEM ⇒ Registerfile.

In Hopper, new instructions were introduced for warp specialization, for example for having some warp use fewer registers
than others. This, in combination with special instructions to load directly from GMEM into SMEM without first going
through the registers, can be used to reduce register pressure.

At dimension 256 it calls two kernels: a matmul kernel followed by a reduction
kernel. So if we were trying to write a high- performance library that works for all
shapes and sizes we would have specializations for different shapes, and at
runtime dispatch to the one that’s the best fit.

Warptiling

91/91

	Main Talk
	Introduction
	Programming Model
	Programming Practice
	Optimizing Parallel Reduction in CUDA
	Optimizing GEMM in CUDA

