
CENG 5030
Energy Efficient Computing

Implementation 03: Winograd

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: October 16, 2023)

2023 Fall

1 Introduction

2 Strassen

3 Winograd

Overview

2/26

1 Introduction

2 Strassen

3 Winograd

Overview

3/26

Introduction

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

101000 0 0 0Initial:

Multiplier0 is 1

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Add:

0000

101000 0 0 0

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Add:

0000

0110

101000 0 0 0

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Add: 101000 1 1 0

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Shift: 010000 0 1 1
Multiplier0 is 0

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Shift: 100100 0 0 1
Multiplier0 is 1

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Add: 100100 0 0 1

0001

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Add:

0111

100100 0 0 1

0001

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Add: 100100 1 1 1

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Shift: 001100 0 1 1
Multiplier0 is 0

Motivation of This Lecture

4/26

• Reduce multiplication #

• Don’t care about addition #

Multiplication Procedure:

Control

Add

Shift right

4-bit ALU

Multiplicand

Product Multiplier

0110

Shift:

Final Result: =

011100 0 0 1

3000011110

Motivation of This Lecture

4/26

1 Introduction

2 Strassen

3 Winograd

Overview

5/26

Strassen

Naive Matrix Multiplication

Input: A,B,C ∈ RN×N

Output: AB
1: for all i ∈ 1, · · · ,N do
2: for all j ∈ 1, · · · ,N do
3: Cij =

∑N
t=1 Ait · Btj;

4: end for
5: end for
6: return C;

• Time Complexity: O(N3)

Matrix Multiplication: Naive Algorithm

6/26

To compute C = AB, we first partition A, B and C into equal-sized blocked
matrices such that

A =

[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
, C =

[
C11 C12
C21 C22

]
,

where Aij,Bij,Cij ∈ R
N
2 ×

N
2 . We then have:[

C11 C12
C21 C22

]
=

[
A11B11 + A12B21 A11B12 + A12B22
A21B11 + A22B21 A21B12 + A22B22

]

Blockwise Matrix Multiplication

7/26

Recursive Matrix Multiplication

Input: A,B,C ∈ RN×N

Output: AB
1: function M(A, B)
2: if A is 1 × 1 then
3: return A11 · B11;
4: end if
5: for all i ∈ {1, 2} do
6: for all j ∈ {1, 2} do
7: Cij = M(Ai1,B1j) + M(Ai2,B2j);
8: end for
9: end for

10: return
[

C11 C12
C21 C22

]
;

11: end function

Matrix Multiplication: Recursive Algorithm

8/26

The recursive algorithm can be formulated as:

T(N) =

 Θ(1), if N = 1;

8T(
N
2
) + Θ(N2), if N > 1.

• This algorithm makes eight recursive calls.

• Besides, it also adds two n × n matrices, which requires n2 time.

• By Master Theorem, the time complexity of the recursive algorithm is:

T(n) = Θ(Nlog8
2) = Θ(N3).

Time Complexity Analysis

9/26

• f = O(g): f grows no faster than g

• f = Θ(g): f grows at the same rate as g

• f = Ω(g): f grows at least as fast as g

• Note: Θ(g) = O(g) ∧ Ω(g)

Limit definitions:

• f = O(g) if lim
n→+∞

f (n)
g(n)

< ∞, including 0

• f = Ω(g) if lim
n→+∞

f (n)
g(n)

> 0, including ∞

• f = Θ(g) if lim
n→+∞

f (n)
g(n)

= c, c ∈ (0,∞)

• Note: lim
n→+∞

means for all n ≥ N for some constant N

Background: Asymptotic Order

10/26

• f = O(g): f grows no faster than g

• f = Θ(g): f grows at the same rate as g

• f = Ω(g): f grows at least as fast as g

• Note: Θ(g) = O(g) ∧ Ω(g)

Limit definitions:

• f = O(g) if lim
n→+∞

f (n)
g(n)

< ∞, including 0

• f = Ω(g) if lim
n→+∞

f (n)
g(n)

> 0, including ∞

• f = Θ(g) if lim
n→+∞

f (n)
g(n)

= c, c ∈ (0,∞)

• Note: lim
n→+∞

means for all n ≥ N for some constant N

Background: Asymptotic Order

10/26

Master Theorem
Let T(n) be a monotonically increasing function that satisfies

T(n) =

 c, if N = 1;

aT(
n
b
) + f (n), if N > 1.

where a ≥ 1, b ≥ 2, c > 0. If f (n) ∈ Θ(nd) when d ≥ 0, then:

T(n) =


Θ(nd), if a < bd

Θ(ndlogn), if a = bd

Θ(nlogba), if a > bd

In Strassen’s case, a = 8, b = 2, d = 2 → a > bd.

http://cse.unl.edu/~choueiry/S06-235/files/MasterTheorem-HandoutNoNotes.pdf

Background: Master Theorem

11/26

http://cse.unl.edu/~choueiry/S06-235/files/MasterTheorem-HandoutNoNotes.pdf

Master Theorem
Let T(n) be a monotonically increasing function that satisfies

T(n) =

 c, if N = 1;

aT(
n
b
) + f (n), if N > 1.

where a ≥ 1, b ≥ 2, c > 0. If f (n) ∈ Θ(nd) when d ≥ 0, then:

T(n) =


Θ(nd), if a < bd

Θ(ndlogn), if a = bd

Θ(nlogba), if a > bd

In Strassen’s case, a = 8, b = 2, d = 2 → a > bd.

http://cse.unl.edu/~choueiry/S06-235/files/MasterTheorem-HandoutNoNotes.pdf

Background: Master Theorem

11/26

http://cse.unl.edu/~choueiry/S06-235/files/MasterTheorem-HandoutNoNotes.pdf

Suppose we need to calculate matrix multiplication M × N, following the idea of
blockwise multiplication, we can first split the matrices into:

M =

[
A B
C D

]
, N =

[
E F
G H

]
Then, we calculate the intermediate matrices:

S1 =(B − D)(G + H)

S2 =(A + D)(E + H)

S3 =(A − C)(E + F)
S4 =(A + B)H
S5 =A(F − H)

S6 =D(G − E)
S7 =(C + D)E.

Strassen Algorithm

12/26

The final Strassen algorithm results are:

[
A B
C D

]
·
[

E F
G H

]
=

[
S1 + S2 − S4 + S6 S4 + S5

S6 + S7 S2 − S3 + S5 − S7

]
.

1Jason Cong and Bingjun Xiao (2014). “Minimizing computation in convolutional neural
networks”. In: Proc. ICANN, pp. 281–290.

Strassen Algorithm1

13/26

Algorithm Strassen’s Algorithm

1: function STRASSEN(M, N)
2: if M is 1 × 1 then
3: return M11N11;
4: end if

5: Let M =

[
A B
C D

]
and N =

[
E F
G H

]
;

6: Set S1= STRASSEN(B − D, G + H);
7: Set S2= STRASSEN(A + D, E + H);
8: Set S3= STRASSEN(A − C, E + F);
9: Set S4= STRASSEN(A + B, H);

10: Set S5= STRASSEN(A, F − H);
11: Set S6= STRASSEN(D, G − E);
12: Set S7= STRASSEN(C + D, E);

13: return
[

S1 + S2 − S4 + S6 S4 + S5
S6 + S7 S2 − S3 + S5 − S7

]
;

14: end function

Strassen Algorithm

14/26

• Strassen algorthm makes seven recursive calls.

• Besides, the additions and subtractions take N2 time.

• Therefore, Strassen algorithm can be formulated as:

T(N) =

 Θ(1), if N = 1;

7T(
N
2
) + Θ(N2), if N > 1.

By Master Theorem, the time complexity of the recursive algorithm is:

T(n) = Θ(Nlog7
2) = Θ(N2.8074).

Time Complexity Analysis

15/26

Matrix size w/o Strassen w/ Strassen
(256, 256, 256) 23 23
(512, 512, 512) 191 176 (↓ 7.9%)
(512, 512, 1024) 388 359 (↓ 7.5%)
(1024, 1024, 1024) 1501 1299 (↓ 13.5%)

class XPUBackend final : public Backend {

XPUBackend(MNNForwardType type, MemoryMode mode);

virtual ~XPUBackend();

virtual Execution* onCreate(const vector<Tensor*>& inputs,

const vector<Tensor*>& outputs, const MNN::Op* op);

virtual void onExecuteBegin() const;

virtual void onExecuteEnd() const;

virtual bool onAcquireBuffer(const Tensor* tensor, StorageType storageType);

virtual bool onReleaseBuffer(const Tensor* tensor, StorageType storageType);

virtual bool onClearBuffer();

virtual void onCopyBuffer(const Tensor* srcTensor, const Tensor* dstTensor) const;

}

2Xiaotang Jiang et al. (2020). “MNN: A Universal and Efficient Inference Engine”. In:
Proc. MLSys.

Strassen Algorithm in MNN2

16/26

1 Introduction

2 Strassen

3 Winograd

Overview

17/26

Winograd

3Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm3

18/26

3Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm3

18/26

3Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm3

18/26

Generalization to 2D cases:
Suppose the input feature map is

and the kernel is:

4Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm4

19/26

Using Im2Col function, the convolution process can be defined as:

5Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm5

20/26

We can split the matrices into blocks as:

which can be denoted as:

6Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm6

21/26

Then, the we can use 1D winograd algorithm to calculate the blockwise result:

where

7Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm7

22/26

8Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm8

23/26

8Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm8

23/26

8Andrew Lavin and Scott Gray (2016). “Fast Algorithms for Convolutional Neural Networks”.
In: Proc. CVPR, pp. 4013–4021.

Winograd Algorithm8

23/26

M
erge

𝑌𝑖𝑗
′ 𝑧 =෍

𝑘

𝑋𝑖𝑗
′ 𝑘 ⋅ 𝑊𝑖𝑗

′ 𝑘 𝑧

𝑋
(4, 4, 𝑈, 𝑖𝑐)

𝑋′
(4, 4, 𝑈, 𝑖𝑐)

𝑊
(3, 3, 𝑖𝑐 , 𝑜𝑐)

𝑊′
(4, 4, 𝑖𝑐 , 𝑜𝑐)

matrix mul

𝑈, 𝑜𝑐 𝑈, 𝑖𝑐 𝑖𝑐 , 𝑜𝑐

matrix mul

matrix mul

matrix mul

𝑌′
(4, 4, 𝑈, 𝑜𝑐)

𝑌 = 𝐴𝑇𝑌′𝐴 𝑌

𝑊′ = 𝐺𝑊𝐺𝑇𝑋′ = 𝐵𝑇𝑋𝐵

(2, 2, 𝑈, 𝑜𝑐)

Optimized Winograd algorithm in MNN

24/26

Sparse Winograd

Training in the Winograd Domain
Workshop track - ICLR 2017

Winograd
domain

𝐶𝑇 ⋅ () ⋅ 𝐶 𝐺𝑇 ⋅ () ⋅ 𝐺

𝐴𝑇 ⋅ () ⋅ 𝐴

ReLU

Activation
Layer 𝑖

Kernel
Layer 𝑖

ReLU-ed
Transformed
Activation

Layer 𝑖

Transformed
Kernel
Layer 𝑖

Activation
Layer 𝑖 + 1

Eltwise
Product

(a)

Eltwise
Muliply

Channel wise
Summation

Prune

Train

Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4× 4 transformed kernel restores sparsity to the weights. (c) Mov-
ing the ReLU layer after Winograd transformation also restores sparsity to the activations.

During the dense training phase, we train a dense 4× 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Producing 4 output pixels:

Direct Convolution:
- 4*9=36 multiplications (1x)

Winograd convolution:
- 4*4=16 multiplications (2.25x less)

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

9
9Xingyu Liu et al. (2018). “Efficient sparse-winograd convolutional neural networks”. In:

Proc. ICLR.

26/26

Workshop track - ICLR 2017

Winograd
domain

𝐶𝑇 ⋅ () ⋅ 𝐶 𝐺𝑇 ⋅ () ⋅ 𝐺

𝐴𝑇 ⋅ () ⋅ 𝐴

ReLU

Activation
Layer 𝑖

Kernel
Layer 𝑖

ReLU-ed
Transformed
Activation

Layer 𝑖

Transformed
Kernel
Layer 𝑖

Activation
Layer 𝑖 + 1

Eltwise
Product

(a)

Eltwise
Muliply

Channel wise
Summation

Prune

Train

Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4× 4 transformed kernel restores sparsity to the weights. (c) Mov-
ing the ReLU layer after Winograd transformation also restores sparsity to the activations.

During the dense training phase, we train a dense 4× 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

Producing 4 output pixels:

Direct Convolution:
- 4*9=36 multiplications (1x)
- sparse weight [NIPS’15] (3x)
- sparse activation (relu) (3x)
- Overall saving: 9x

Winograd convolution:
- 4*4=16 multiplications (2.25x less)
- dense weight (1x)
- dense activation (1x)
- Overall saving: 2.25x

Training in the Winograd Domain

9
9Xingyu Liu et al. (2018). “Efficient sparse-winograd convolutional neural networks”. In:

Proc. ICLR.

26/26

Workshop track - ICLR 2017

Winograd
domain

Transformed
Kernel
Layer 𝑖

𝐶𝑇 ⋅ () ⋅ 𝐶

ReLU

Activation
Layer 𝑖

Transformed
ReLU-ed

Activation
Layer 𝑖

Eltwise
Product

(c)

Eltwise
Muliply

Prune

1

𝐴𝑇 ⋅ () ⋅ 𝐴

Activation
Layer 𝑖 + 1

Channel wise
Summation

Train
Transformed
Activation

Layer 𝑖

Figure 1: Combining Winograd convolution with sparse weights and activations. (a) Original
Winograd-based convolution proposed by Lavin (2015) fills in the non-zeros in both the weights
and activations. (b) Pruning the 4× 4 transformed kernel restores sparsity to the weights. (c) Mov-
ing the ReLU layer after Winograd transformation also restores sparsity to the activations.

During the dense training phase, we train a dense 4× 4 kernel (for m = 2) directly in the transform
domain. The transformed kernel is initialized and trained directly by back-propagation through the
inverse transform — eliminating the need to maintain a kernel in the spatial domain or to transform
a spatial kernel.

During the pruning phase, we prune the transformed kernel by computing the threshold T required
to achieve a desired pruning rate R and setting all weights less than T to zero. In our experiments
we used the same R for all network layers. Because sensitivity varies from layer to layer, we expect
that better performance could be achieved by varying the pruning rate Ri for each layer i.

During retraining, we retrain the model using a ”sparsity mask” to force the weights that were pruned
to remain zero.

3 MOVING RELU TO THE WINOGRAD DOMAIN

In conventional CNNs, the ReLU non-linearity is applied to the output activations of the previous
layer to produce the input activations of the current layer (Figure 1a & b). The ReLU operation
zeros all negative activations resulting in significant sparsity in the spatial input activations. Unfor-
tunately, the Winograd transform fills in this sparsity, resulting in dense transformed activations and
no savings in the number of multiplies.

To give sparse activations in the transformed domain, where the multiplies are performed, we move
the ReLU operation after the Winograd transform (Figure 1c). The ReLU zeros all negative trans-
formed activations, reducing the number of multiplies. Because this ReLU is really associated with
the previous layer, we perform this transformed ReLU starting with layer 2.

4 RESULTS

We used Tensorflow (Abadi et al. (2016)) and Tensorpack (Wu (2016)) to train VGG-nagadomi
(Nagadomi (2014))(Simonyan & Zisserman (2014)) on the CIFAR-10 dataset (Krizhevsky & Hinton

2

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

Producing 4 output pixels:

Direct Convolution:
- 4*9=36 multiplications (1x)
- sparse weight [NIPS’15] (3x)
- sparse activation (relu) (3x)
- Overall saving: 9x

Winograd convolution:
- 4*4=16 multiplications (2.25x less)
- sparse weight (2.5x)
- dense activation (2.25x)
- Overall saving: 12x

Solution: Fold Relu into Winograd

9
9Xingyu Liu et al. (2018). “Efficient sparse-winograd convolutional neural networks”. In:

Proc. ICLR.

26/26

ResultWorkshop track - ICLR 2017

Te
st

 A
cc

ur
ac

y

Weight Density
(%)

92.2

92.4

92.6

92.8

93

93.2

93.4

20 25 30 35 40 45 50 55 60 65 70

Spatial
Pruning

Winograd
ReLU +
Pruning

Figure 2: Test accuracy vs density for the three architectures of Figure 1 on VGG-nagadomi.

re-training until accuracy converges. We varied the pruning rate R from 20% to 70%. The first
convolution layer is not included in pruning but is included in re-training.

Figure 2 shows accuracy as a function of density for the three architectures of Figure 1. The network
of Figure 1c (which moves pruning and ReLU to the transform domain) can be pruned to 40%
density without significant (> 0.1%) loss of accuracy. The conventional network of Figure 1a can
only be pruned to 60% density before accuracy falls.

Figure 3: Activation density of convolution layers of VGG-nagadomi. Whiskers show one standard
deviation above and below the mean.

Figure 3 shows the activation density for each network layer for the architectures of Figure 1a and
1c. Moving ReLU into the Winograd domain is effective in achieving activation sparsity with an
overall activation density of 41.1% compared to 36.9% density for the spatial activations.

The original VGG-nagadomi network (no pruning, no Winograd) requires 2.3 × 108 multiplies
per forward pass. Pruning this network and exploiting sparse activations reduces this by 4.6× to
5.0×107. Using the Winograd transformation (Figure 1a) requires 1.1×108 multiplies, a reduction
of 2.2× compared to the original network, but an increase of 2.1× compared to the pruned network.
Moving pruning and ReLU into the Winograd domain requires 2.3×107 multiplies. It combines the
2.2× savings from Winograd with the 4.6× savings from sparsity to give a net reduction of 10.2×
compared to the original network.

5 CONCLUSION

We have shown that we can combine the ≈ 5× computation savings of sparse weights and activa-
tions with the 2−4× savings of the Winograd transform by making two modifcations to conventional
CNNs. To make the weights sparse at the point of multiplication, we train and prune the weights
in the transform domain. We move the ReLU non-linear operation after the Winograd transform to
make the activations sparse at the point of multiplication. The net result is a 10.2× reduction in
computation for a 2× 2 output patch (m = 2) with no loss of accuracy.

We expect that even greater savings on computation can be realized by using larger patch sizes (e.g.,
m = 4) and by using different pruning rates Ri for each network layer. To determine the scope of
these techniques, they need to be evaluated on larger networks and data sets and on networks with
residual bypassing layers (He et al. (2016)).

3

Workshop track - ICLR 2017

Figure 2: Test accuracy vs density for the three architectures of Figure 1 on VGG-nagadomi.

re-training until accuracy converges. We varied the pruning rate R from 20% to 70%. The first
convolution layer is not included in pruning but is included in re-training.

Figure 2 shows accuracy as a function of density for the three architectures of Figure 1. The network
of Figure 1c (which moves pruning and ReLU to the transform domain) can be pruned to 40%
density without significant (> 0.1%) loss of accuracy. The conventional network of Figure 1a can
only be pruned to 60% density before accuracy falls.

Ac
tiv

at
io

n
D

en
si

ty

0

0.1

0.2

0.3

0.4

0.5

0.6

conv1 conv2 conv3 conv4 conv5 conv6 conv7 Overall

spatial activations transformed activations

Figure 3: Activation density of convolution layers of VGG-nagadomi. Whiskers show one standard
deviation above and below the mean.

Figure 3 shows the activation density for each network layer for the architectures of Figure 1a and
1c. Moving ReLU into the Winograd domain is effective in achieving activation sparsity with an
overall activation density of 41.1% compared to 36.9% density for the spatial activations.

The original VGG-nagadomi network (no pruning, no Winograd) requires 2.3 × 108 multiplies
per forward pass. Pruning this network and exploiting sparse activations reduces this by 4.6× to
5.0× 107. Using the Winograd transformation (Figure 1a) requires 1.1× 108 multiplies, a reduction
of 2.2× compared to the original network, but an increase of 2.1× compared to the pruned network.
Moving pruning and ReLU into the Winograd domain requires 2.3× 107 multiplies. It combines the
2.2× savings from Winograd with the 4.6× savings from sparsity to give a net reduction of 10.2×
compared to the original network.

5 CONCLUSION

We have shown that we can combine the ≈ 5× computation savings of sparse weights and activa-
tions with the 2− 4× savings of the Winograd transform by making two modifcations to conventional
CNNs. To make the weights sparse at the point of multiplication, we train and prune the weights
in the transform domain. We move the ReLU non-linear operation after the Winograd transform to
make the activations sparse at the point of multiplication. The net result is a 10.2× reduction in
computation for a 2 × 2 output patch (m = 2) with no loss of accuracy.

We expect that even greater savings on computation can be realized by using larger patch sizes (e.g.,
m = 4) and by using different pruning rates Ri for each network layer. To determine the scope of
these techniques, they need to be evaluated on larger networks and data sets and on networks with
residual bypassing layers (He et al. (2016)).

3

Liu et al. “Efficient Sparse-Winograd Convolutional Neural Networks”, submitted to ICLR 2017 workshop

9
9Xingyu Liu et al. (2018). “Efficient sparse-winograd convolutional neural networks”. In:

Proc. ICLR.

26/26

	Main Talk
	Introduction
	Strassen
	Winograd

