1/28

Lecture 10: Network Architecture Search

Bei Yu

(Latest update: April 19, 2021)

Spring 2021

A2 e

Overview

Search Space Design

Blackbox Optimization
NAS as a hyperparameter optimization
Reinforcement Learning
Evolution methods
Regularized methods
Baysian Optimization
Differentiable search
Efficient methods

NAS Benchmark

2/28

Overview

Search Space Design

3/28

Basic architecture search

Each node in the graphs corresponds to a layer in a neural network’

"Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A survey”. In: JVLR 20.55,
pp. 1-21.
3/28

Cell-based search

Normal cell and reduction cell can be connected in different order?

2Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A survey”. In: JVLR 20.55,
pp. 1-21.
4/28

Graph-based search space

Randomly wired neural networks generated by the classical Watts-Strogatz model®

3Saining Xie et al. (2019). “Exploring randomly wired neural networks for image recognition”. In: Proc. ICCV,
pp. 1284-1293.
5/28

Overview

Blackbox Optimization
NAS as a hyperparameter optimization
Reinforcement Learning
Evolution methods
Regularized methods
Baysian Optimization
Differentiable search
Efficient methods

6/28

NAS as hyperparameter optimization

Select method to.
combine hidden state

tayer

Select one Select second Select operation for
S hidden state hidden state first hidden state
\ \ \ \ \
\ \ \ \ \
\

\ \ \
\ LTI T LT
\ 7 \ 7 \
- - -

F repeat B times {

softmax

Select operation for
second hidden state

controller
hidden layer

N/

Controller architecture for recursively constructing one block of a convolutional cell*

> 5 categorical choices for N block
» 2 categorical choices of hidden states, each with domain 0, 1,...,N — 1
» 2 categorical choices of operations
> 1 categorical choices of combination method
> Total number of hyperparameters for the cell: 5B (with B = 5 by default)

» Unstricted search space

> Possible with conditional hyperparameters
(but only up to a prespectified maximum number of layers)
> Example: chain-structured search space
> Top-level hyperparameter: number of layers L
> Hyperparameters of layer K conditional on L > k

“Barret Zoph, Vijay Vasudevan, et al. (2018). “Learning Transferable Architectures for Scalable Image Recognition”. In:
Proc. CVPR.

6/28

Reinforcement learning

Sample architecture A
with probability p

)

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

J

Overview of the reinforcement learning method with RNN®

Compute gradient of p and
scale it by R to update
the controller

Reinforcement learning with a RNN controller

» State-of-the-art results for CIFAR-10, Penn Treebank

» Large computation demands
800 GPUs for 3-4 weeks, 12, 800 archtectures evaluated

5Barret Zoph and Quoc Le (2017). “Neural Architecture Search with Reinforcement Learning”. In: Proc. ICLR.
7/28

2o

Y W

: : 17
Reinforcement learning &

132
a
P4

E
i
B

Reinforcement learning with a RNN controller

J(0c) = Ep(a,.1:0.)[R]
where R is the reward (e.g., accuracy on the validation dataset)

Apply REINFORCEMENT rule
Vo.J(0:) = Y11 Eparri0.) [Vo. 10g P(ar|ag_1y.150:)R]

Use Monte Carlo approximation with control variate methods, the graident can be
approximated by

Approximation of gradients
% 22;1 2?21 Ve, log P(at|a(t—1);1; ec)(Rk - b)

8/28

Reinforcement Learning
Another example on GAN search:®

s

Off-policy data

Memory Buffer

[state,action,reward,next state]

[state,action,reward,next state]

[state,action,reward,next state]

gy
! Off-policy reinforcment learning module for GANs architecture search

1

1

1 New

1 Action [1 cel

i (GERI (Corm) ((Upsampie) (Shortout ;

1

1 ’

1

1 Policy Network

1 Previous]
1) Cells

1

; ® O o

I current current progressive Previous

H depth performance state o

1

1 State]

1

Overview of the E2GAN

Reward define

[state,action,reward,next state]]

[state,action,reward,next state]]

Ri(s,a) = IS(1) — IS(t — 1) + «(FID(t — 1) — FID(t))

The objective loss function

J(7T) = Zt:O]E(s,,a,) p(w)R(sh at) = Eorchitecture p(-/r)ISﬁnal - aFIDﬁnal

8Yuan Tian et al. (2020). “Off-policy reinforcement learning for efficient and effective GAN architecture search”. In:

Proc. ECCV.
9/28

Evolution (already since the 1990s)

» Typically optimized both architecture and weights with evolutionary methods’;®
» Mutation steps, such as adding, changing or removing a layer®

Crons

[CseNsReBNsReBNsReBN+R]

test accuracy (%)

0.9 28.1 70.2 wall time (hours) 256.2

"Peter J Angeline, Gregory M Saunders, and Jordan B Pollack (1994). “An evolutionary algorithm that constructs recurrent
neural networks”. In: |IEEE transactions on Neural Networks 5.1, pp. 54-65.

8Kenneth O Stanley and Risto Miikkulainen (2002). “Evolving neural networks through augmenting topologies”. In:
Evolutionary computation 10.2, pp. 99—-127.

9Esteban Real, Sherry Moore, et al. (2017). “Large-scale evolution of image classifiers”. In: arXiv preprint
arXiv:1703.01041.

10/28

Regularized / Aging Evolution

» Standard evolutionary algorithm®, oldest solutions are dropped (even the best)
» State-of-the-art results (CIFAR-10, ImageNet); Fixed-length cell search space

0.92/ Eyolution —_ I
oy g-/"ﬁ;‘ -
L>; A o
S / /
o [RL
<\ g
o 7/»'
£
(%]
o)
|_
Q.
o
= RS
0.89

0 Experiment Time (hours) 200

10Esteban Real, Alok Aggarwal, et al. (2019). “Regularized evolution for image classifier architecture search”. In:
Proceedings of the aaai conference on artificial intelligence. Vol. 33, pp. 4780-4789.

11/28

Baysian Optimization

» Joint optimization of a vision architecture with 238 hyperparameters with TPE
> Auto-Net'?

» Joint architecture and hyperparameter search with SMAC
> First Auto-DL system to win a competition dataset against human experts

> Kernels for GP-based NAS

> Arc kernel'®
» NASBOT™

» Sequential model-based optimization: PNAS'®

" James Bergstra, Daniel Yamins, and David Cox (2013). “Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures”. In: FProc. ICML, pp. 115-123.

2Hector Mendoza et al. (2016). “Towards automatically-tuned neural networks”. In: Workshop on Automatic Machine
Learning, pp. 58-65.

3Kevin Swersky, Jasper Snoek, and Ryan P Adams (2013). “Multi-task bayesian optimization”. In: Proc. NIPS,
pp. 2004-2012.

4Kirthevasan Kandasamy et al. (2018). “Neural architecture search with bayesian optimisation and optimal transport”. In:
Proc. NIPS, pp. 2016-2025.

15Chenxi Liu et al. (2018). “Progressive neural architecture search”. In: Proc. ECCV, pp. 19-34,

12/28

DARTS'®

Continous relaxiation

M)

(i X (
OW(x) = o0 22

o(x)

"®Hanxiao Liu, Karen Simonyan, and Yiming Yang (2019). “DARTS: Differentiable architecture search?. In: Proc. ICLR.
13/28

DARTS &)

A bi-level optimization

min L, (w*(a),)

s.t. w*(a) = argmin L (w, @)
w

Algorithm 1 DARTS algorithm

Require: Create a mixed operation O(¥) parameterized by o’) for each edge (i,)
Ensure: The architecture characterized by «

1: while not converged do

2 Update architecture « by descending /o Lyai(W — & Vw Lirain(w, @), @)

3: (€ = 0 if using first order approximation)

4: Update weights w by descending </, Lsain(W, @)

5. end while
6: Derive the findal architecture based on the learned «

14/28

SNAS'’

SAMPLING
p(2) ;
@ H i
/ ’ \ o 0? 0* 0 E ot 02 0° 0 [0 .
on o o [@o 0y 010 o
o2 [@o o o ©2 0 0 0 1
©3 0 0 0 1 03 o o [i]o \
' \
@20 0 0 1 w2 [llo o o
w3 01 00 w3 o o [i]o
23 o o [ilo | @23 01 oo “
zm DAG(ZW) 7@ DAG(Z®)
E[£]

Stochastic NAS
Ez po @) [R(Z)] = Ez ., (z)[Le(Z)]

% =2 Oiil) = 30, Z1,015(x)

where E , (2)[R(Z)] is the objective loss, Z; ; is a one-hot random variable vector to each edge
(i,7) in the neural network and x; is the intermediate node

7Sirui Xie et al. (2019). “SNAS: stochastic neural architecture search”. In: Proc. ICLR.
15/28

SNAS

Apply Gummbel-softmax trick to relax the p,(Z)

k k
exp(L8 tG) a&’w"”))

k k
Zi‘/ _fOLi,j(GiJ) log af/_;'_ng

Y exp(Bt Oy

where Z; ; is the softened one-hot random variable, «;; is the architecture parameter, A is
the temperature of the Softmax function, and Gﬁj satisfies that

Gumbel distribution
k k
Gij = —log (—log (UiJ))

where de- is a uniform random variable

16/28

Difference between DARTS and SNAS

E[£]

(@) (b)

A comparison between DARTS (i.e., the left) and SNAS (i.e., the right)

Summary

» Deterministic gradients in DARTS and Stochastic gradients in SNAS

» DARTS require that the derived neural network should be retrained while SNAS has no need

17/28

G
_mu.uu

&

185
NE

&

?)
)
P4

O

24

i

X

Efficient methods

Main approaches for making NAS efficient

Weight inheritance & network morphisms

Weight sharing & one-shot models

18 19

>

>

» Discretize methods
> Multi-fidelity optimization'®,
| 4

Meta-learning®®

8 Arber Zela et al. (2018). “Towards automated deep learning: Efficient joint neural architecture and hyperparameter
search”. In: arXiv preprint arXiv:1807.06906.

"9Frederic Runge et al. (2018). “Learning to design RNA". In: arXiv preprint arXiv:1812.11951.
20Catherine Wong et al. (2018). “Transfer learning with neural automl”. In: Proc. NIPS, pp. 835683651
18/28

Network morphisms?’

» Change the network structure, but not the modelled function

i.e., for every input the network yields the same output as before applying the network
morphism

> Allow efficient moves in architecture space

Parent Network

r c F
A s E B
Child Network ‘
t D F
r
s
A C E B

21Tao Wei et al. (2016). “Network morphism”. In: Proc. ICML, pp. 564-572.
19/28

22 23 24 25

Weight inheritance & network morphisms=<<,

modely modely —
perf. = 82% SGDRtrain | Perf. =90%

o
o of®
o w“e‘w
o po?
. . |modelsy modely

CPPYTETTRIDLS | pert. = 82% SGDRtrain | Lot = gg%
—_—

modelpest
perf. = 82%

#299powtL ayppdn

\ model. mOdel7Lm,g,, \

Mneigh
perf. = 82% SGDRtrain perf. = 84%
—_—

22Han Cai, Tianyao Chen, et al. (2017). “Efficient architecture search by network transformation”. In: arXiv preprint

arXiv:1707.04873.
23Thomas Elsken, J Metzen, and Frank Hutter (2017). “Simple and efficient architecture search for CNNs”. In: Workshop

on Meta-Learning at NIPS.
24Corinna Cortes et al. (2017). “Adanet: Adaptive structural learning of artificial neural networks”. In: Proc. ICML,

pp. 874-883.
25Han Cai, Jiacheng Yang, et al. (2018). “Path-level network transformation for efficient architecture search”. In: arXiv

preprint arXiv:1806.02639.

20/28

Discretize methods
Another example: PC-DARTS?8

Partial Channel Connection —
Sample /™~
So3 Concat
- +
&
N +
% & -
fo3 (X0i So;3)
o
DEZN 11
Zoreoexplaf)}
— Edge Normalization
PCy .
0 o3 (%o; So3)
Xo Connection
] PCiy. -
x |1 Partial Channel IEEAGSURAE)
1 Connection m _’
i fz',’zc(xzi S23, ch
x| — T
o Sirejexp{Bir i}

26Yuhui Xu et al. (2020). “PC-DARTS: Partial channel connections for memory-efficient differentiable architecture search”.
In: Proc. ICLR.
21/28

152
Discretize methods L‘?;é

22/28

Partial channel connection

exp oy
T (xi814) = Yoco Socoowe?, (Siy *xi) + (1 = Sij* x;)

where S, ; defines a channel sampling mask, which assigns 1 to selected channels and 0 to masked
ones.

Edge normalization

PC _ exp B
'xj - Zi<j Zi,<jexplﬁi/yj 'ﬁJ(xi)

Edge normalization can mitigate the undesired fluctuation introduced by partial channel connection

Overview

NAS Benchmark

23/28

£
Benchmark 33

The motivation

NAS algorithms are hard to reproduce normally

» Some NAS algorithms require months of compute time, making these methods inaccessible to
most researchers

» Different proposed NAS algorithms are hard to compare since their different training
procedures and different search spaces

Related works

» Chris Ying et al. (2019). “NAS-Bench-101: Towards reproducible neural architecture search”.
In: Proc. ICML, pp. 7105-7114

» Xuanyi Dong and Yi Yang (2020). “NAS-Bench-102: Extending the scope of reproducible
neural architecture search”. In: Proc. ICLR

23/28

NAS-Bench-101

24/28

global avg pool

stack 3

downsample]

stack 2 [

downsample]

stack 1

conv stem @

The stem of the search space Operation on node
The stem is composed of three cells, followed by a downsampling layer. The downsampling layer
halves the height and width of the feature map via max-pooling and the channel count is doubled.
The pattern are repeated three times, followed by global average pooling and a final dense softmax
layer. The initial layer is a stem consisting of one 3 x 3 convolution with 128 output channels.

NAS-Bench-101

The space of cell architectures is a directed acyclic graph on V nodes and E edges, each node has
one of L labels, representing the corresponding operation. The constraints on the search space

The search space

> [=3

» 3 x 3 convolution
» 1 x 1 convolution
» 3 x 3 max-pool

> V<7
> E<9

» input node and output node are pre-defined on two of V nodes

Encoding is implemented as a 7 x 7 upper-triangular binary matrix, by de-duplication and
verification, there are 423, 000 neural network architectures

25/28

NAS-Bench-101 L)

The dataset of NAS-Bench-101 is a mapping from the (A, Epoch, trial#) to
» Training accuracy

Validation accuracy

Testing accuracy

>
>
» Training time in seconds
>

Number of trainable parameters

Applications

» Compare different NAS algorithms

» Research on generalization abilities of NAS algorithms

26/28

NAS-Bench-201

NI global
avg. pool

—> zeroize
skip-connect
1x1 conv
3%3 conv

—> 3X3 avg pool

predefined operation set

Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural cell with 4 nodes. Each cellis a

directed acyclic graph, where each edge is associated with an operation selected from a predefined operation as shown in
Bottom-right

Comparison between NAS-Bench-101 and NAS-Bench-201

NAS-Bench-101 uses Operation on node while NAS-Bench-201 uses Operation on edge as its
search space

#architectures | #datasets | ||O|| | Search space constraint | Supported NAS alogrithms Diagnostic information
NAS-Bench-101 510M 1 3 constrain #edges partial -
Nas-Bench-201 15.6K 3 5 no constraint all fine-grained info. (e.g., #params, FLOPs, latency)

27/28

Thank You!

	Main Talk
	Search Space Design
	Blackbox Optimization
	NAS as a hyperparameter optimization
	Reinforcement Learning
	Evolution methods
	Regularized methods
	Baysian Optimization
	Differentiable search
	Efficient methods

	NAS Benchmark

