
CENG 5030
Energy Efficient Computing

Lecture 10: Network Architecture Search

Bei Yu

(Latest update: April 19, 2021)

Spring 2021

1 / 28

Overview

Search Space Design

Blackbox Optimization
NAS as a hyperparameter optimization
Reinforcement Learning
Evolution methods
Regularized methods
Baysian Optimization
Differentiable search
Efficient methods

NAS Benchmark

2 / 28

Overview

Search Space Design

Blackbox Optimization
NAS as a hyperparameter optimization
Reinforcement Learning
Evolution methods
Regularized methods
Baysian Optimization
Differentiable search
Efficient methods

NAS Benchmark

3 / 28

Basic architecture search

input

L0

L1

Ln

output

input

L0

L2

L4

L6

L8

L10

L1

L3

L7

L9

L5

output

Ln−1

Each node in the graphs corresponds to a layer in a neural network1

1Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A survey”. In: JMLR 20.55,
pp. 1–21.

3 / 28

Cell-based search

input

input

output

output

input

output

Normal cell and reduction cell can be connected in different order2

2Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A survey”. In: JMLR 20.55,
pp. 1–21.

4 / 28

Graph-based search space

classifier classifier classifier

conv1 conv1 conv1

Randomly wired neural networks generated by the classical Watts-Strogatz model3

3Saining Xie et al. (2019). “Exploring randomly wired neural networks for image recognition”. In: Proc. ICCV,
pp. 1284–1293.

5 / 28

Overview

Search Space Design

Blackbox Optimization
NAS as a hyperparameter optimization
Reinforcement Learning
Evolution methods
Regularized methods
Baysian Optimization
Differentiable search
Efficient methods

NAS Benchmark

6 / 28

NAS as hyperparameter optimization

so
ftm

ax
!

la
ye

r
co

nt
ro

lle
r!

hi
dd

en
 la

ye
r

Select one!
hidden state

Select second!
hidden state

Select operation for !
first hidden state

Select operation for!
second hidden state

Select method to!
combine hidden state

repeat B times

Controller architecture for recursively constructing one block of a convolutional cell4

I 5 categorical choices for Nth block
I 2 categorical choices of hidden states, each with domain 0, 1, ...,N − 1
I 2 categorical choices of operations
I 1 categorical choices of combination method
I Total number of hyperparameters for the cell: 5B (with B = 5 by default)

I Unstricted search space
I Possible with conditional hyperparameters

(but only up to a prespectified maximum number of layers)
I Example: chain-structured search space

I Top-level hyperparameter: number of layers L
I Hyperparameters of layer K conditional on L ≥ k

4Barret Zoph, Vijay Vasudevan, et al. (2018). “Learning Transferable Architectures for Scalable Image Recognition”. In:
Proc. CVPR.

6 / 28

Reinforcement learning

Overview of the reinforcement learning method with RNN5

Reinforcement learning with a RNN controller
,

I State-of-the-art results for CIFAR-10, Penn Treebank

I Large computation demands
800 GPUs for 3-4 weeks, 12, 800 archtectures evaluated

5Barret Zoph and Quoc Le (2017). “Neural Architecture Search with Reinforcement Learning”. In: Proc. ICLR.
7 / 28

Reinforcement learning

Reinforcement learning with a RNN controller
J(θc) = EP(a1:T ;θc)[R]

where R is the reward (e.g., accuracy on the validation dataset)

Apply REINFORCEMENT rule
5θcJ(θc) =

∑T
t=1 EP(a1:T ;θc)[5θc log P(at|a(t−1):1; θc)R]

Use Monte Carlo approximation with control variate methods, the graident can be
approximated by

Approximation of gradients
1
m
∑m

k=1
∑T

t=15θc log P(at|a(t−1):1; θc)(Rk − b)

8 / 28

Reinforcement Learning
Another example on GAN search:6

Overview of the E2GAN

Reward define
Rt(s, a) = IS(t)− IS(t − 1) + α(FID(t − 1)− FID(t))

The objective loss function
J(π) =

∑
t=0 E(st,at) p(π)R(st, at) = Earchitecture p(π)ISfinal − αFIDfinal

6Yuan Tian et al. (2020). “Off-policy reinforcement learning for efficient and effective GAN architecture search”. In:
Proc. ECCV.

9 / 28

Evolution (already since the 1990s)
I Typically optimized both architecture and weights with evolutionary methods7;8
I Mutation steps, such as adding, changing or removing a layer9

0.9 28.1 256.270.2

22.6

85.3

94.6
91.8

wall time (hours)

te
st

 a
cc

ur
ac

y
(%

)

Input

Input

Output

C

C + BN + R

Global Pool

C + BN + R

C

C + BN + R

C + BN + R

BN + R

C + BN + R

C

Global Pool

Output

C + BN + R + BN + R

C + BN + R + BN + R + BN + R + BN + R

BN + R

C + BN + R

Global Pool

Output

C

C

C

Input

C + BN + R

C + BN + R + BN + R

C + BN + R + BN + R

C + BN + R + BN + R + BN + R + BN + R

C + BN + R

C + BN + R

C + BN + R

C + BN + R

C + BN + R

Global Pool

Output

C

C

C

C

C

Input

7Peter J Angeline, Gregory M Saunders, and Jordan B Pollack (1994). “An evolutionary algorithm that constructs recurrent
neural networks”. In: IEEE transactions on Neural Networks 5.1, pp. 54–65.

8Kenneth O Stanley and Risto Miikkulainen (2002). “Evolving neural networks through augmenting topologies”. In:
Evolutionary computation 10.2, pp. 99–127.

9Esteban Real, Sherry Moore, et al. (2017). “Large-scale evolution of image classifiers”. In: arXiv preprint
arXiv:1703.01041.

10 / 28

Regularized / Aging Evolution
I Standard evolutionary algorithm10, oldest solutions are dropped (even the best)
I State-of-the-art results (CIFAR-10, ImageNet); Fixed-length cell search space

0 200Experiment Time (hours)
0.89

0.92

T
o
p
 T

e
st

in
g
 A

cc
u
ra

cy

Evolution

RL

RS

10Esteban Real, Alok Aggarwal, et al. (2019). “Regularized evolution for image classifier architecture search”. In:
Proceedings of the aaai conference on artificial intelligence. Vol. 33, pp. 4780–4789.

11 / 28

Baysian Optimization

I Joint optimization of a vision architecture with 238 hyperparameters with TPE11

I Auto-Net12
I Joint architecture and hyperparameter search with SMAC
I First Auto-DL system to win a competition dataset against human experts

I Kernels for GP-based NAS
I Arc kernel13
I NASBOT14

I Sequential model-based optimization: PNAS15

11James Bergstra, Daniel Yamins, and David Cox (2013). “Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures”. In: Proc. ICML, pp. 115–123.

12Hector Mendoza et al. (2016). “Towards automatically-tuned neural networks”. In: Workshop on Automatic Machine
Learning, pp. 58–65.

13Kevin Swersky, Jasper Snoek, and Ryan P Adams (2013). “Multi-task bayesian optimization”. In: Proc. NIPS,
pp. 2004–2012.

14Kirthevasan Kandasamy et al. (2018). “Neural architecture search with bayesian optimisation and optimal transport”. In:
Proc. NIPS, pp. 2016–2025.

15Chenxi Liu et al. (2018). “Progressive neural architecture search”. In: Proc. ECCV, pp. 19–34.
12 / 28

DARTS16

Continous relaxiation
Ō(i,j)(x) =

∑
o∈O

exp(α
(i,j)
O)∑

o′∈O exp(α
(i,j)
o′)

o(x)

16Hanxiao Liu, Karen Simonyan, and Yiming Yang (2019). “DARTS: Differentiable architecture search”. In: Proc. ICLR.
13 / 28

DARTS

A bi-level optimization
min
α
Lval(w∗(α), α)

s.t. w∗(α) = argmin
w
Ltrain(w, α)

Algorithm 1 DARTS algorithm

Require: Create a mixed operation Ô(i,j) parameterized by α(i,j) for each edge (i, j)
Ensure: The architecture characterized by α
1: while not converged do
2: Update architecture α by descending5αLval(w− ξ 5w Ltrain(w, α), α)
3: (ξ = 0 if using first order approximation)
4: Update weights w by descending5wLtrain(w, α)
5: end while
6: Derive the findal architecture based on the learned α

14 / 28

SNAS17

0 1 0 0
0 0 0 1
0 0 1 0
1 0 0 0
0 0 1 0
0 1 0 0

0 0 1 0
1 0 0 0
0 0 0 1
0 0 0 1
0 1 0 0
0 0 1 0

0

1

2

3

0

1

2

3

0

1

2

3

![ℒ]

(0,	1)

(0,	2)

(0,	3)

(1,	2)

(1,	3)

(2,	3)

(0,	1)

(0,	2)

(0,	3)

(1,	2)

(1,	3)

(2,	3)

%& 0%' %(%& 0%' %(

)*+(-(&))

.	.	.

/(-)

)*+(-('))-(&) -(')

SAMPLING

(a) (b)
Stochastic NAS

EZ pα(Z)[R(Z)] = EZ pα(Z)[Lθ(Z)]

xj =
∑

i<j Õi,j(xi) =
∑

i<j Z
T
i,jOi,j(xi)

where EZ pα(Z)[R(Z)] is the objective loss, Zi,j is a one-hot random variable vector to each edge
(i, j) in the neural network and xj is the intermediate node

17Sirui Xie et al. (2019). “SNAS: stochastic neural architecture search”. In: Proc. ICLR.
15 / 28

SNAS

Apply Gummbel-softmax trick to relax the pα(Z)

Zk
i,j = fαi,j(G

k
i,j) =

exp(
(log αk

i,j+Gk
i,j)

λ)∑n
l=0 exp(

log αl
i,j+Gl

i,j
λ)

where Zi,j is the softened one-hot random variable, αi,j is the architecture parameter, λ is
the temperature of the Softmax function, and Gk

i,j satisfies that

Gumbel distribution
Gk

i,j = − log (− log (Uk
i,j))

where Uk
i,j is a uniform random variable

16 / 28

Difference between DARTS and SNAS

A comparison between DARTS (i.e., the left) and SNAS (i.e., the right)

Summary

I Deterministic gradients in DARTS and Stochastic gradients in SNAS

I DARTS require that the derived neural network should be retrained while SNAS has no need
17 / 28

Efficient methods

Main approaches for making NAS efficient

I Weight inheritance & network morphisms

I Weight sharing & one-shot models

I Discretize methods

I Multi-fidelity optimization18,19

I Meta-learning20

18Arber Zela et al. (2018). “Towards automated deep learning: Efficient joint neural architecture and hyperparameter
search”. In: arXiv preprint arXiv:1807.06906.

19Frederic Runge et al. (2018). “Learning to design RNA”. In: arXiv preprint arXiv:1812.11951.
20Catherine Wong et al. (2018). “Transfer learning with neural automl”. In: Proc. NIPS, pp. 8356–8365.

18 / 28

Network morphisms21
I Change the network structure, but not the modelled function

i.e., for every input the network yields the same output as before applying the network
morphism

I Allow efficient moves in architecture space

Parent Network

Child Network

21Tao Wei et al. (2016). “Network morphism”. In: Proc. ICML, pp. 564–572.
19 / 28

Weight inheritance & network morphisms22,23,24,25

22Han Cai, Tianyao Chen, et al. (2017). “Efficient architecture search by network transformation”. In: arXiv preprint
arXiv:1707.04873.

23Thomas Elsken, J Metzen, and Frank Hutter (2017). “Simple and efficient architecture search for CNNs”. In: Workshop
on Meta-Learning at NIPS.

24Corinna Cortes et al. (2017). “Adanet: Adaptive structural learning of artificial neural networks”. In: Proc. ICML,
pp. 874–883.

25Han Cai, Jiacheng Yang, et al. (2018). “Path-level network transformation for efficient architecture search”. In: arXiv
preprint arXiv:1806.02639.

20 / 28

Discretize methods
Another example: PC-DARTS26

3x3 sep

5x5 sep

Identity

… …

+

+

+

Concat
Sample0

1

2

3
+𝑞1,3

Partial Channel
Connection

Partial Channel
Connection

Partial Channel
Connection

Partial Channel Connection

Edge Normalization

𝑝𝑜1

𝐱0

𝐱1

𝐱2

𝑓0,3
PC(𝐱0; 𝐒0,3)

𝑓1,3
PC(𝐱1; 𝐒1,3)

𝑓2,3
PC(𝐱2; 𝐒2,3) 𝐱3

PC

𝐱0

𝐒0,3

𝑓0,3
PC(𝐱0; 𝐒0,3)

𝑝𝑜 =
exp{𝛼𝑖,𝑗

𝑜 }

σ𝑜′∈𝒪 exp{𝛼𝑖,𝑗
𝑜′}

𝑞𝑖,𝑗 =
exp{𝛽𝑖,𝑗}

σ𝑖′<𝑗 exp{𝛽𝑖′,𝑗}

𝑝𝑜2

𝑝𝑜8

0

1

2

3

26Yuhui Xu et al. (2020). “PC-DARTS: Partial channel connections for memory-efficient differentiable architecture search”.
In: Proc. ICLR.

21 / 28

Discretize methods

Partial channel connection
f PCi,j (xi; Si,j) =

∑
o∈O

expαo
i,j∑

o′∈O expαo′
i,j
· (Si,j ∗ xi) + (1− Si,j ∗ xi)

where Si,j defines a channel sampling mask, which assigns 1 to selected channels and 0 to masked
ones.

Edge normalization
xPCj =

∑
i<j

exp βi,j∑
i′<j exp βi′,j

· fi,j(xi)
Edge normalization can mitigate the undesired fluctuation introduced by partial channel connection

22 / 28

Overview

Search Space Design

Blackbox Optimization
NAS as a hyperparameter optimization
Reinforcement Learning
Evolution methods
Regularized methods
Baysian Optimization
Differentiable search
Efficient methods

NAS Benchmark

23 / 28

Benchmark

The motivation
NAS algorithms are hard to reproduce normally

I Some NAS algorithms require months of compute time, making these methods inaccessible to
most researchers

I Different proposed NAS algorithms are hard to compare since their different training
procedures and different search spaces

Related works

I Chris Ying et al. (2019). “NAS-Bench-101: Towards reproducible neural architecture search”.
In: Proc. ICML, pp. 7105–7114

I Xuanyi Dong and Yi Yang (2020). “NAS-Bench-102: Extending the scope of reproducible
neural architecture search”. In: Proc. ICLR

23 / 28

NAS-Bench-101

conv stem

stack 1

stack 2

stack 3

downsample

downsample

global avg pool
dense

cell
2-3

cell
2-2

cell
2-1

The stem of the search space

in

1x1

3x3

3x3

MP

3x3

out

Operation on node

The stem is composed of three cells, followed by a downsampling layer. The downsampling layer
halves the height and width of the feature map via max-pooling and the channel count is doubled.
The pattern are repeated three times, followed by global average pooling and a final dense softmax
layer. The initial layer is a stem consisting of one 3× 3 convolution with 128 output channels.

24 / 28

NAS-Bench-101
The space of cell architectures is a directed acyclic graph on V nodes and E edges, each node has
one of L labels, representing the corresponding operation. The constraints on the search space

The search space

I L = 3
I 3× 3 convolution
I 1× 1 convolution
I 3× 3 max-pool

I V ≤ 7

I E ≤ 9

I input node and output node are pre-defined on two of V nodes

Encoding is implemented as a 7× 7 upper-triangular binary matrix, by de-duplication and
verification, there are 423, 000 neural network architectures

25 / 28

NAS-Bench-101

The dataset of NAS-Bench-101 is a mapping from the (A,Epoch, trial#) to
I Training accuracy
I Validation accuracy
I Testing accuracy
I Training time in seconds
I Number of trainable parameters

Applications

I Compare different NAS algorithms

I Research on generalization abilities of NAS algorithms

26 / 28

NAS-Bench-201

conv cell N×image residual block
(stride=2)

global
avg. pool

architecture

zeroize
skip-connect
1 1 conv
3 3 conv
3 3 avg pool

×
×
×

predefined operation set

cell

cell

cell

cell

….…

….…

cell N× residual block
(stride=2)

cell N×

Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural cell with 4 nodes. Each cell is a
directed acyclic graph, where each edge is associated with an operation selected from a predefined operation as shown in
Bottom-right

Comparison between NAS-Bench-101 and NAS-Bench-201
NAS-Bench-101 uses Operation on node while NAS-Bench-201 uses Operation on edge as its
search space

#architectures #datasets ‖O‖ Search space constraint Supported NAS alogrithms Diagnostic information
NAS-Bench-101 510M 1 3 constrain #edges partial -
Nas-Bench-201 15.6K 3 5 no constraint all fine-grained info. (e.g., #params, FLOPs, latency)

27 / 28

Thank You!

28 / 28

	Main Talk
	Search Space Design
	Blackbox Optimization
	NAS as a hyperparameter optimization
	Reinforcement Learning
	Evolution methods
	Regularized methods
	Baysian Optimization
	Differentiable search
	Efficient methods

	NAS Benchmark

