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Basic architecture search
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Each node in the graphs corresponds to a layer in a neural network1

1Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A survey”. In: JMLR 20.55,
pp. 1–21.
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Cell-based search
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Normal cell and reduction cell can be connected in different order2

2Thomas Elsken, Jan Hendrik Metzen, Frank Hutter, et al. (2019). “Neural architecture search: A survey”. In: JMLR 20.55,
pp. 1–21.
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Graph-based search space

classifier classifier classifier

conv1 conv1 conv1

Randomly wired neural networks generated by the classical Watts-Strogatz model3

3Saining Xie et al. (2019). “Exploring randomly wired neural networks for image recognition”. In: Proc. ICCV,
pp. 1284–1293.
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NAS as hyperparameter optimization
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Controller architecture for recursively constructing one block of a convolutional cell4

I 5 categorical choices for Nth block
I 2 categorical choices of hidden states, each with domain 0, 1, ...,N − 1
I 2 categorical choices of operations
I 1 categorical choices of combination method
I Total number of hyperparameters for the cell: 5B (with B = 5 by default)

I Unstricted search space
I Possible with conditional hyperparameters

(but only up to a prespectified maximum number of layers)
I Example: chain-structured search space

I Top-level hyperparameter: number of layers L
I Hyperparameters of layer K conditional on L ≥ k

4Barret Zoph, Vijay Vasudevan, et al. (2018). “Learning Transferable Architectures for Scalable Image Recognition”. In:
Proc. CVPR.
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Reinforcement learning

Overview of the reinforcement learning method with RNN5

Reinforcement learning with a RNN controller
,

I State-of-the-art results for CIFAR-10, Penn Treebank

I Large computation demands
800 GPUs for 3-4 weeks, 12, 800 archtectures evaluated

5Barret Zoph and Quoc Le (2017). “Neural Architecture Search with Reinforcement Learning”. In: Proc. ICLR.
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Reinforcement learning

Reinforcement learning with a RNN controller
J(θc) = EP(a1:T ;θc)[R]

where R is the reward (e.g., accuracy on the validation dataset)

Apply REINFORCEMENT rule
5θcJ(θc) =

∑T
t=1 EP(a1:T ;θc)[5θc log P(at|a(t−1):1; θc)R]

Use Monte Carlo approximation with control variate methods, the graident can be
approximated by

Approximation of gradients
1
m
∑m

k=1
∑T

t=15θc log P(at|a(t−1):1; θc)(Rk − b)
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Reinforcement Learning
Another example on GAN search:6

Overview of the E2GAN

Reward define
Rt(s, a) = IS(t)− IS(t − 1) + α(FID(t − 1)− FID(t))

The objective loss function
J(π) =

∑
t=0 E(st,at) p(π)R(st, at) = Earchitecture p(π)ISfinal − αFIDfinal

6Yuan Tian et al. (2020). “Off-policy reinforcement learning for efficient and effective GAN architecture search”. In:
Proc. ECCV.
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Evolution (already since the 1990s)
I Typically optimized both architecture and weights with evolutionary methods7;8
I Mutation steps, such as adding, changing or removing a layer9
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7Peter J Angeline, Gregory M Saunders, and Jordan B Pollack (1994). “An evolutionary algorithm that constructs recurrent
neural networks”. In: IEEE transactions on Neural Networks 5.1, pp. 54–65.

8Kenneth O Stanley and Risto Miikkulainen (2002). “Evolving neural networks through augmenting topologies”. In:
Evolutionary computation 10.2, pp. 99–127.

9Esteban Real, Sherry Moore, et al. (2017). “Large-scale evolution of image classifiers”. In: arXiv preprint
arXiv:1703.01041.
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Regularized / Aging Evolution
I Standard evolutionary algorithm10, oldest solutions are dropped (even the best)
I State-of-the-art results (CIFAR-10, ImageNet); Fixed-length cell search space
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10Esteban Real, Alok Aggarwal, et al. (2019). “Regularized evolution for image classifier architecture search”. In:
Proceedings of the aaai conference on artificial intelligence. Vol. 33, pp. 4780–4789.
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Baysian Optimization

I Joint optimization of a vision architecture with 238 hyperparameters with TPE11

I Auto-Net12
I Joint architecture and hyperparameter search with SMAC
I First Auto-DL system to win a competition dataset against human experts

I Kernels for GP-based NAS
I Arc kernel13
I NASBOT14

I Sequential model-based optimization: PNAS15

11James Bergstra, Daniel Yamins, and David Cox (2013). “Making a science of model search: Hyperparameter optimization
in hundreds of dimensions for vision architectures”. In: Proc. ICML, pp. 115–123.

12Hector Mendoza et al. (2016). “Towards automatically-tuned neural networks”. In: Workshop on Automatic Machine
Learning, pp. 58–65.

13Kevin Swersky, Jasper Snoek, and Ryan P Adams (2013). “Multi-task bayesian optimization”. In: Proc. NIPS,
pp. 2004–2012.

14Kirthevasan Kandasamy et al. (2018). “Neural architecture search with bayesian optimisation and optimal transport”. In:
Proc. NIPS, pp. 2016–2025.

15Chenxi Liu et al. (2018). “Progressive neural architecture search”. In: Proc. ECCV, pp. 19–34.
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DARTS16

Continous relaxiation
Ō(i,j)(x) =

∑
o∈O

exp(α
(i,j)
O )∑

o′∈O exp(α
(i,j)
o′ )

o(x)

16Hanxiao Liu, Karen Simonyan, and Yiming Yang (2019). “DARTS: Differentiable architecture search”. In: Proc. ICLR.
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DARTS

A bi-level optimization
min
α
Lval(w∗(α), α)

s.t. w∗(α) = argmin
w
Ltrain(w, α)

Algorithm 1 DARTS algorithm

Require: Create a mixed operation Ô(i,j) parameterized by α(i,j) for each edge (i, j)
Ensure: The architecture characterized by α
1: while not converged do
2: Update architecture α by descending5αLval(w− ξ 5w Ltrain(w, α), α)
3: (ξ = 0 if using first order approximation)
4: Update weights w by descending5wLtrain(w, α)
5: end while
6: Derive the findal architecture based on the learned α
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SNAS17
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Stochastic NAS

EZ pα(Z)[R(Z)] = EZ pα(Z)[Lθ(Z)]

xj =
∑

i<j Õi,j(xi) =
∑

i<j Z
T
i,jOi,j(xi)

where EZ pα(Z)[R(Z)] is the objective loss, Zi,j is a one-hot random variable vector to each edge
(i, j) in the neural network and xj is the intermediate node

17Sirui Xie et al. (2019). “SNAS: stochastic neural architecture search”. In: Proc. ICLR.
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SNAS

Apply Gummbel-softmax trick to relax the pα(Z)

Zk
i,j = fαi,j(G

k
i,j) =

exp(
(log αk

i,j+Gk
i,j)

λ )∑n
l=0 exp(

log αl
i,j+Gl

i,j
λ )

where Zi,j is the softened one-hot random variable, αi,j is the architecture parameter, λ is
the temperature of the Softmax function, and Gk

i,j satisfies that

Gumbel distribution
Gk

i,j = − log (− log (Uk
i,j))

where Uk
i,j is a uniform random variable
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Difference between DARTS and SNAS

A comparison between DARTS (i.e., the left) and SNAS (i.e., the right )

Summary

I Deterministic gradients in DARTS and Stochastic gradients in SNAS

I DARTS require that the derived neural network should be retrained while SNAS has no need
17 / 28



Efficient methods

Main approaches for making NAS efficient

I Weight inheritance & network morphisms

I Weight sharing & one-shot models

I Discretize methods

I Multi-fidelity optimization18,19

I Meta-learning20

18Arber Zela et al. (2018). “Towards automated deep learning: Efficient joint neural architecture and hyperparameter
search”. In: arXiv preprint arXiv:1807.06906.

19Frederic Runge et al. (2018). “Learning to design RNA”. In: arXiv preprint arXiv:1812.11951.
20Catherine Wong et al. (2018). “Transfer learning with neural automl”. In: Proc. NIPS, pp. 8356–8365.
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Network morphisms21
I Change the network structure, but not the modelled function

i.e., for every input the network yields the same output as before applying the network
morphism

I Allow efficient moves in architecture space

Parent Network

Child Network

21Tao Wei et al. (2016). “Network morphism”. In: Proc. ICML, pp. 564–572.
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Weight inheritance & network morphisms22,23,24,25

22Han Cai, Tianyao Chen, et al. (2017). “Efficient architecture search by network transformation”. In: arXiv preprint
arXiv:1707.04873.

23Thomas Elsken, J Metzen, and Frank Hutter (2017). “Simple and efficient architecture search for CNNs”. In: Workshop
on Meta-Learning at NIPS.

24Corinna Cortes et al. (2017). “Adanet: Adaptive structural learning of artificial neural networks”. In: Proc. ICML,
pp. 874–883.

25Han Cai, Jiacheng Yang, et al. (2018). “Path-level network transformation for efficient architecture search”. In: arXiv
preprint arXiv:1806.02639.
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Discretize methods
Another example: PC-DARTS26
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26Yuhui Xu et al. (2020). “PC-DARTS: Partial channel connections for memory-efficient differentiable architecture search”.
In: Proc. ICLR.
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Discretize methods

Partial channel connection
f PCi,j (xi; Si,j) =

∑
o∈O

expαo
i,j∑

o′∈O expαo′
i,j
· (Si,j ∗ xi) + (1− Si,j ∗ xi)

where Si,j defines a channel sampling mask, which assigns 1 to selected channels and 0 to masked
ones.

Edge normalization
xPCj =

∑
i<j

exp βi,j∑
i′<j exp βi′,j

· fi,j(xi)
Edge normalization can mitigate the undesired fluctuation introduced by partial channel connection
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Benchmark

The motivation
NAS algorithms are hard to reproduce normally

I Some NAS algorithms require months of compute time, making these methods inaccessible to
most researchers

I Different proposed NAS algorithms are hard to compare since their different training
procedures and different search spaces

Related works

I Chris Ying et al. (2019). “NAS-Bench-101: Towards reproducible neural architecture search”.
In: Proc. ICML, pp. 7105–7114

I Xuanyi Dong and Yi Yang (2020). “NAS-Bench-102: Extending the scope of reproducible
neural architecture search”. In: Proc. ICLR
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NAS-Bench-101
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The stem is composed of three cells, followed by a downsampling layer. The downsampling layer
halves the height and width of the feature map via max-pooling and the channel count is doubled.
The pattern are repeated three times, followed by global average pooling and a final dense softmax
layer. The initial layer is a stem consisting of one 3× 3 convolution with 128 output channels.
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NAS-Bench-101
The space of cell architectures is a directed acyclic graph on V nodes and E edges, each node has
one of L labels, representing the corresponding operation. The constraints on the search space

The search space

I L = 3
I 3× 3 convolution
I 1× 1 convolution
I 3× 3 max-pool

I V ≤ 7

I E ≤ 9

I input node and output node are pre-defined on two of V nodes

Encoding is implemented as a 7× 7 upper-triangular binary matrix, by de-duplication and
verification, there are 423, 000 neural network architectures
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NAS-Bench-101

The dataset of NAS-Bench-101 is a mapping from the (A,Epoch, trial#) to
I Training accuracy
I Validation accuracy
I Testing accuracy
I Training time in seconds
I Number of trainable parameters

Applications

I Compare different NAS algorithms

I Research on generalization abilities of NAS algorithms
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NAS-Bench-201
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Top: the macro skeleton of each architecture candidate. Bottom-left: examples of neural cell with 4 nodes. Each cell is a
directed acyclic graph, where each edge is associated with an operation selected from a predefined operation as shown in
Bottom-right

Comparison between NAS-Bench-101 and NAS-Bench-201
NAS-Bench-101 uses Operation on node while NAS-Bench-201 uses Operation on edge as its
search space

#architectures #datasets ‖O‖ Search space constraint Supported NAS alogrithms Diagnostic information
NAS-Bench-101 510M 1 3 constrain #edges partial -
Nas-Bench-201 15.6K 3 5 no constraint all fine-grained info. (e.g., #params, FLOPs, latency)
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Thank You!
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