Lecture 03: Pruning

Bei Yu

(Latest update: December 19, 2020)

Spring 2021

1/45

2/45

These slides contain/adapt materials developed by

> Wei Wen et al. (2016). “Learning structured sparsity in deep neural networks”. In:
Proc. NIPS, pp. 2074—-2082

» Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating
Very Deep Neural Networks”. In: Proc. ICCV

» Ruichi Yu et al. (2018). “NISP: Pruning networks using neuron importance score
propagation”. In: Proc. CVPR, pp. 9194-9203

P Shijin Zhang et al. (2016). “Cambricon-x: An accelerator for sparse neural networks”.
In: Proc. MICRO. |IEEE, pp. 1-12

» Jorge Albericio et al. (2016). “Cnvlutin: Ineffectual-neuron-free deep neural network
computing”. In: ACM SIGARCH Computer Architecture News 44.3, pp. 1-13

Deeper and Larger Networks

Modern Deep CNN: 5 — 1000 Layers

A
\
Low-Level High-Level
Features > - w Features +&Classes
;

1-3 Layers

© VGG-16, 16 parameter layers

© VGG-19, 19 parameter layers

© GoogleNet, 22 parameter layers

© ResNet : -18, -34, -50, -101, -152 layers

vVvyYVyyvyy

3/45

Researchers design deeper and larger networks to ensure model performance.

Memory and Computations

4/45

Inception-v4
80 TN :
Inception-v3 [ResNet-152
ResNet-50 o VGG-16 VGG-19
75 ResNet-101
ResNet-34
B 70 ResNet-18
>
8 GooglLeNet
3 ENet
S 65
—
3 © BN-NIN
F 60 5M - 35M - 65M - 95M - 125M --155M
BN-AlexNet
55 AlexNet
50
0 5 10 15 20 25 30 35 40

Operations [G-Ops]

P The size of the blob is proportional to the number of network parameters.
» More than millions of parameters and billions of operations.
» Challenges in memory and energy, finally affect the performance.

Overview

Sparse Regression

Pruning

Sparse Hardware Architecture

5/45

Overview

Sparse Regression

6/45

Linear Regression

Input
> y=(y,... ,yN)T: N samples to measure performance
> X = (x, ... xM)T: N parameters, where x(!) = (Ei), .., is parameter

vector for sample y;

Output
> 3= (81,0,-.. ,,BP)T: linear regression model coefficients, s.t. y ~ X3
1 1 1
n] (A) 80 s
S I SRR B s
YN ng) ng) x,(,N) Bp

6/45

Linear Regression

Input
» y=(y1,...,yn) " : N samples to measure performance
> X = (xU), ..., xM)T: N parameters, where x(!) = (xii), .., is parameter

vector for sample y;

Output
> 3= (B1,B,-..,5,)": linear regression model coefficients, s.t. y ~ X3
1 1 1
N R R T W]
S R RN] B s
N ng) ng) xl(,N) Bp

Obijective
min |ly — X33
E lly Bll3

6/45

Challenges in Linear Regression

7/45

X X5 R
X — x§2) xéz) o x1(72) N: sample #
I U p: parameter #
XEN) ng) xi(,N)

» Time consuming to run simulation or measure — sample# N is limited
> If N < parameter# p, — no unique solutions
» Overfitting problem

» Should reduce parameter#

8/45

Local Analysis

f(X1,' o ,Xi+AXi,' o ,XK) _f(x17' " ,XK)

Si - Axi

> © Computationally efficient
> © Only take into account local variation around nominal value

8/45

Local Analysis

f(X1,"' ,Xi+AX,‘,"' ,XK) —f(X1,"' ,XK)

Si - Axi

> © Computationally efficient
> © Only take into account local variation around nominal value

Least Squares

mﬁgnllnyﬁHﬁ - B=X"X)"'XTy

> © Global view

> © Too complicated model after analysis

> © Need large simulation size (N > p)

> © Otherrwise X ' X may be singular (difficult to invert)

¢p-Norm Regularization

minimize [ly — X3,
subjectto ||B]lo < A.

> © Global view

» © N'P-hard

» Orthogonal matching pursuit (OMP): iterative heuristics

> © Computational expensive

» Good in temperature analysis, but NOT good in energy analysis

9/45

Ridge Regression

P
argﬂmin ly — X833 +)\Z 151113
=/

10/45

Ridge Regression

p
arg min v —XBI5 + 2> 1513

i=j

- B=X'X+A)"'XTy

10/45

Lasso

p
arg min|ly ~ XBl5+A) 15

i=J
> “/ penalty” (Lasso)

» 3 optimally solved by Coordinate Descent [Friedman+,AOAS'07]

>)\: nonnegative regularization parameter

11/45

12/45

FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue

areas are the constraint regions |B1| + |B2| < t and B? + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.

=] =

Closed-Form For Single Variable

w
—— LASSO A

Ridge

Least Square

13/45

Coordinate Descent 3#3

> The idea behind coordinate descent is, simply, to optimize a target function with
respect to a single parameter at a time, iteratively cycling through all parameters until
convergence is reached

» Coordinate descent is particularly suitable for problems, like the lasso, that have a
simple closed form solution in a single dimension but lack one in higher dimensions

14/45

Coordinate Descent (cont.)

@ Let us consider minimizing () with respect to j3;, while
temporarily treating the other regression coefficients 3_; as

fixed:
1 n
Q(B;1B_;) = on Z(yz - Z ;8 — :B8;)* + X|B;| + Constant
=1 k#j
o Let

Tij = Yi — Z ziBr
ki

n
~ 1 .
Zj="n Z TijTig,
i=1
where {7;;}"_; are the partial residuals with respect to the ;"

predictor, and Z; is the OLS estimator based on {7;;, z;;}1*,

15/45

Coordinate Descent (cont.)

@ We have already solved the problem of finding a
one-dimensional lasso solution; letting ﬂj denote the

minimizer of Q(,Bj|,§_j),
Bj = S(z[N)
@ This suggests the following algorithm:
repeat
for j=1,2,...,p
Zj =n-1 E?:l Zijri + ﬁ;s)
2(s+1) 5.
B; « 8(%[N)
T T — (ﬂ§s+1) - ﬂ§s))xij for all <.

until convergence

15/45

Group Lasso

» We denote X as being composed of J groups X1, X>, ..., X;
> X3 = ZJ. X;3;, where 3; represents the coefficients belonging to the jth group

argﬁmin Iy — X85 + Z NG
J

= argﬁmin ly = > X85+ > Nlsi
7 j

Example:

16/45

(B

A

-1

17/45

Overview

Pruning

18/45

Structured Sparsity Learning’
Random sparsity, theoretical Speedup # practical Speedup

1 EIQuadro K600
-‘E ETesla K40¢

5 TIGTX Titan

@2 -O-Sparsity

0

convl conv2 conv3d conv4 convS

Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is
GEMM of cuBLAS. The sparse matrixes are stored in the format of Compressed
Sparse Row (CSR) and accelerated by cuSPARSE.

Hardcoding nonzero weights in source
code in B. Liu, etc.,, CVPR 2015

Software customization

Random Irregular Poor Nlolor
. memory cache trivial
sparsity access locality speedup,
Hardware customization

Customizing an EIE chip accelerator
for compressed DNN in S. Han ISCA
2017

TWei Wen et al. (2016). “Learning structured sparsity in deep neural networks”. In: Proc. NIPS, pp. 2074-2082.

18/45

Structured Sparsity Learning

Structural Sparsity

L EIQuadro K600
% ETesla K40c
‘gf_ EIGTX Titan
@© -O-Sparsity

0

convd conv4d convs

convl conv2
Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is
GEMM of cuBLAS. The sparse matrixes are stored in the format of Compressed

Sparse Row (CSR) and accelerated by cuSPARSE.

Higher speedup with

Regular Good
:tr{;;rcsti;lred memory cache Grea(tj software or hardware
P Y access locality speedup customization

19/45

Structural Sparsity Learning — Some Examples

Dense matrix to block sparse matrix

02|01 [02]-06[0104]-01]06 02 | -0.6 011 0.6
04|-03|04|01|02]|-04]01]05 0.4 01 0.1 05
—

07 [-01[-03]01]05[-01]05]01 [[07 01 05 | 01
-0.1| 06 |-05|03|-04)|-02]|03| 06 -0.11 0.6 03 106

Removing 2D filters in convolution (2D-filter-wise sparsity)

3D filter =
stacked 2D filters

20/45

Structural Sparsity Learning — Some Examples @

Removing rows/columns in GEMM (row/column-wise sparsity)

feature map Non-structured sparsity
conv2_1: weight sparsity (col:8.7% row:19.5% elem:94.6%)

> <
- ©
S
]
= .
2 Structured sparsity
Weight matrix E conv2_1: weight sparsity (col:75.2% row:21.9% elem:91.5%)

GEneral Matrix Matrix Multiplication

21/45

Structured Sparsity Learning ?51}9

ey
Group Lasso Regularization
» Ep(W) is the loss on data.
> R(-) is non-structured regularization applying on every weight, e.g., £,-norm.
» R,(-) is the structured sparsity regularization for G groups on each layer:
G
= W@
g=1
@)
> Here || - || is group lasso, or ||w(®)||, = Z'Wg |(w®))2, where |w®)] is the number

of weights in wl®),

22/45

Structural Sparsity Learning

Group Lasso Regularization

Learned structured sparsity is determined by the way of splitting groups.

Penalize unimportant

filters and channels Learn filter shapes

channel-wise W(fl) .
! e
/

\

\Q
v\
v\
v

|
[=
\Q
\

\

\

\

]
filter-wise Wn(,l)

i

““shape-wise
(O]

senmpky

shortcut

Learn the depth of layers

dzpth-wise w

E(W) =Ep(W) + X -R(W) + Ay > Rg(W")

23/45

=1

Channel Pruning?

<. n H
nonlinear nonlinear

We aim to reduce the width of feature map B, while minimizing the
reconstruction error on feature map C. Our optimization algorithm performs
within the dotted box, which does not involve nonlinearity. This figure
illustrates the situation that two channels are pruned for feature map B. Thus
corresponding channels of filters W can be removed. Furthermore, even
though not directly optimized by our algorithm, the corresponding filters in
the previous layer can also be removed (marked by dotted filters). c, n:
number of channels for feature maps B and C, kj, X k,,: kernel size.

2Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep Neural Networks”. In:
Proc. ICCV.

24/45

Channel Pruning?

Formally, to prune a feature map with ¢ channels, we consider applying

n X ¢ X kp X k,, convolutional filters W on N X ¢ X kj, X k,, input volumes X
sampled from this feature map, which produces N X r output matrix Y. Here,
N is the number of samples, n is the number of output channels, and &, k,, are
the kernel size. For simple representation, bias term is not included in our
formulation. To prune the input channels from ¢ to desired ¢/ (0 < ¢’ < ¢),
while minimizing reconstruction error, we formulate our problem as follow:

gm Zﬂ,x wi'

subject to || 8|, < ¢’

||-|| is Frobenius norm. Xj is N x kk,, matrix sliced from ith channel of
input volumes X, i = 1,...,c. Wjis n X kyk,, filter weights sliced from ith
channel of W. 3 is coefficient vector of length ¢ for channel selection, and ;
is ith entry of 3. Notice that, if 8; = 0, X; will be no longer useful, which

__could be safely pruned from feature map. W; could also be removed.

6]

2Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep Neural Networks”. In:

Proc. ICCV.
24/45

: 1B
Channel Pruning? _}_Eﬁg_

&

Solving this £y minimization problem in Eqn. 1 is NP-hard. we relax the ¢, to
£; regularization:

2

+ 18I,
F

subject to || 8|, < ¢/, Vi|[Wil|p =1

o1
Taw N

c
Y- BXW; "
i=1

@

A is a penalty coefficient. By increasing), there will be more zero terms in 3
and one can get higher speed-up ratio. We also add a constrain Vi [|[W;|, = 1

to this formulation, which avoids trivial solution. Now we solve this problem

in two folds. First, we fix W, solve (3 for channel selection. Second, we fix 3,
solve W to reconstruct error.

2Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep Neural Networks”. In:
Proc. ICCV.

24/45

b

Channel Pruning?

24/45

(i) The subproblem of 3: In this case, W is fixed. We solve 3 for channel
selection.

~ LASSO

B (\)= arg;nm + A8l

Zﬂl

3

subject to ||B]l, < ¢

Here Z; = X;W; ' (size N x n). We will ignore ith channels if 5; = 0.
(ii) The subproblem of W: In this case, 3 is fixed. We utilize the selected
channels to minimize reconstruction error. We can find optimized solution by
least squares:
2

argmmHY X'(W)T HF @)
Here X' = [51X1 B2X3 ... BiXj ... BcXc| (size N X ckpky,). W' is n X ckpk,,
reshaped W, W/ = [W; W3 ... W; ... W,]. After obtained result W', it is
reshaped back to W. Then we assign 5; < 5; || Wiz, Wi < Wi/ [|Wi|f.
Constrain Vi ||Wj|| = 1 satisfies.

2Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep Neural Networks”. In:
Proc. ICCV.

Feature Pruning®

Pruning Networks using Neuron Importance Score Propagation (NISP)

FRL: final response layer
Measure the importance of the neurons across the entire model;

>

>

» Rank features on the final response layer;

P> Minimize the reconstruction errors of (important) final responses;
>

Back-propagate the importance values and prune the neurons.

3Ruichi Yu et al. (2018). “NISP: Pruning networks using neuron importance score propagation”. In: Proc. CVPR,
pp. 9194-9203.

25/45

Feature Pruning
Pruning Networks using Neuron Importance Score Propagation (NISP)

» Prune network using NISP.
» Fine-tune the pruned network.

Images (T PretrainedNetwork ;L\\
> I
| Feature
I Selection
|
_______________ /
(_ —— — — ~
= - = - |
oo = - —_— — = Neuron
£ |2 o T = e e L
2 | p— p— f— - — IImportance
@ \ — . = NIsSP — —
£
('S

(7 A £ |
) Pre-defined
> P —
@ @ @ @ @ I Pruning ratios

26/45

Feature Pruning @

Pruning Networks using Neuron Importance Score Propagation (NISP)

Some notations:

» The I-th layer () (x) is represented as:

FOx) = D (whx + p0).

27/45

Feature Pruning
Pruning Networks using Neuron Importance Score Propagation (NISP)

Some notations:

» The I-th layer () (x) is represented as:

FOx) = D (whx + p0).

P A network with depth n as a function F):

F(n) :f(n) of(n_l) O - of(l)‘

27/45

Feature Pruning
Pruning Networks using Neuron Importance Score Propagation (NISP)

Some notations:

» The I-th layer () (x) is represented as:

FOx) = D (whx + p0).

P A network with depth n as a function F):

F(n) :f(n) Of(n_l) O - of(l)‘

» The sub-network from i-th to j-th layer:

G(lv.]) :f(]) of(j_l) O« of(l).

27/45

Feature Pruning
Pruning Networks using Neuron Importance Score Propagation (NISP)

» Define a binary vector s;': neuron prune indicator for the [-th layer.

P> The objective function for a single sample is defined as:
F (s x, 505 F) = (sn, [F(x) = F(s] ©x)]),

where (-, -) is dot product, ® is element-wise product, and | - | is element-wise
absolute value.

28/45

Feature Pruning

Pruning Networks using Neuron Importance Score Propagation (NISP)
» Define a binary vector s;': neuron prune indicator for the [-th layer.
P> The objective function for a single sample is defined as:

F (57 1%, 80 F) = (s, [F(x) = F(s7 ©x)]),

where (-, -) is dot product, ® is element-wise product, and | - | is element-wise
absolute value.

» For all samples in the dataset:

M
: *) . I+1,
arg H;lnz F(s71x™, sn3 GU+1m)

L om=1

» Derive an upper-bound on this objective and minimize the upper-bound.

28/45

Overview

Sparse Hardware Architecture

29/45

EIE: Efficient Inference Engine on
Compressed Deep Neural Network

Han et al.
ISCA 2016

29/45

29/45

Deep Learning Accelerators

* First Wave: Compute (Neu Flow)

* Second Wave: Memory (Diannao family)

* Third Wave: Algorithm / Hardware Co-Design (EIE)

Google TPU: “This unit is designed for dense matrices. Sparse
architectural support was omitted for time-to-deploy reasons.
Sparsity will have high priority in future designs”

EIE: the First DNN Accelerator for ISCA’E&
Sparse, Compressed Model

209+892=> 2

Sparse Weight Sparse Activation

70% dynamic sparsity

Weight Sharing

90% static sparsity 4-bit weights

e] e]
[C]10x less computation [C13x less computation

I 5x less memory footprint [l 8x less memory footprint

29/45

29/45

@(0 ai 0 ag)

X
woopwo,a) 0 wo,3|

0.0 17111,21 0
0 i’le’li 0 iw2’3i
0'0'0'0"

! [|

01 0 wysamwysz
ws,oi 0 i 0 i 0 i
0700 wes,
0 hors 010

bo
by
—by
b3
—by
bs
bg
—b,

ReLU
=

[Han et al. ISCA’
EIE: Parallelization on Sparsity e

29/45

PE PE PE PE
PE PE PE PE
Central Control
PE | PE | | PE PE
PE PE PE PE

—

a

PEO
PE1
PE2
PE3

(0@ 0 a)

wo,0wo,1! 0 'wo 3!

bo

r
b3
by

be
by

ReLU
=

[Han et al. ISCA’E&
Dataflow

Sy

rule of thumb:
O*A=O W*Ozo DA

29/45

[Han et al. ISCA’
EIE Architecture Frres

Weight decode
Compressed 4-bit - 16-bit
DNN Model —|virtual weight| Weight | Real weight
Encodt.ad Weight Look-up w Prediction
Relative Index Result
Sparse Format Index : @ esu
Input P 4-bit Accum 16-bit
Image Relative Index : Absolute Index

Address Accumulate

rule of thumb: 0*A =0 W*0=0 209—92=> 2

29/45

[Han et al. ISCA'16

Post Layout Result of EIE

Technology 40 nm

#PEs 64

on-chip SRAM 8 MB

Sp Mat Max Model Size 84 Million

A0 Al

Ptr_Even Arithm Ptr_Odd

Static Sparsity 10x

Dynamic Sparsity 3x

Quantization 4-bit

SpMat

ALU Width 16-bit

Area 40.8 mmA2

MxV Throughput 81,967 layers/s

Power 586 mW

1. Post layout result
2. Throughput measured on AlexNet FC-7

29/45

[Han et al. ISCA'16

Speedup on EIE

SpMat ECPU Dense (Baseline) ECPU Compressed EGPU Dense B GPU Compressed EmGPU Dense BmGPU Compressed B EIE
507x 1018x 618x.
- 94x 115x 210 135x. 92x

189x

63x 98x o

Pir_Even Arithm Ptr_Odd

E 3
SpMat = | b
Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-wd NT-LSTM | Geo Mean
1 9 y
89x /()

R

Geo Mean

"CPU GPU mGPU El

m

29/45

[Han et al. ISCA'16

Energy Efficiency on EIE

SpMat B CPU Dense (Baseline) @CPU Compressed GPU Dense EGPU Compressed EmGPU Dense EmGPU Compressed BEIE
S 1,533x 119.797x 76788x
¥ 14,826¢ 24207

Pir_Even Arithm Ptr_Odd

SpMat

VGG-8 NT-We NT-Wd NT-LSTM | Geo Mean

/f'\
24,207x (() /

VGG-7

Alex-6 Alex-7 Alex-8 VGG-6

Geo Mean

o3x 99

6x 7X

1x

"CPU GPU mGPUEIE

§ 4 G

29/45

29/45

1E+06

1E+05

1E+04

1E+03

1E+02

1E+01

1E+00

Comparison: Throughput

[Han et al. ISCA’16
‘ -‘ '
lﬁﬂ-.-"‘-_g

EIE
Throughput (Layers/s in log scale) ‘
ASIC
ASIC ASId
f SIC
GPU ‘
ASIC
CPU mGPU
FPGA
Core-i7 5930k TitanX Tegra K1 A-Eye DabDianNao TrueNorth EIE EIE
22nm 28nm 28nm 28nm 28nm 28nm 45nm 28nm
CPU GPU mGPU FPGA ASIC ASIC ASIC ASIC
64PEs 256PEs

[Han et al. ISCA’
Comparison: Energy Efficiency T8

EIE
Energy Efficiency (Layers/J in log scale)
1E+06
1E+05 ASIC | ASIC
1E+04
ASIC ASIC
1E+03
1E+02
1E+01 GPU mGPU
1E+00 CFU PG
Core-i7 5930k TitanX Tegra K1 A-Eye DabDianNao TrueNorth EIE EIE
22nm 28nm 28nm 28nm 28nm 28nm 45nm 28nm
CPU GPU mGPU FPGA ASIC ASIC ASIC ASIC

64PEs 256PEs

29/45

Weight Sparsity* &

Indexing Module (IM) for sparse data

connections input neurons connections

1] 0]
0] @
O I
g Indexing Indexing ol
o | \ 1]
0] [1]
0] 0]
PE #0 PE #1

P IM is used for indexing needed neurons of sparse networks with different levels of
sparsities.

P> A centralized IM is designed in the buffer controller and only transfer the indexed
neurons to processing engines.

4Shijin Zhang et al. (2016). “Cambricon-x: An accelerator for sparse neural networks”. In: Proc. MIGRO. IEEE, pps 1—12;
30/45

Weight Sparsity

Direct indexing and hardware implementation

s ——

0]
7] *+++++++»+*+*+++
n Output /r
u o neuron nnnaﬂnnn “
ae
[[ol1]2/0l01507%
g . @Fmﬂm Input neurons
|
Indication fo
mmm Indexing results
(2))

» Neurons are selected from all input neurons directly based on existed connections in
the binary string.

31/45

Weight Sparsity

Step indexing and hardware implementation

Input Neuron
16 E
. .
n . Output m &
n . Neuron *+?+ 5 =+ §
He -
z hBoo z
\T
Distance . mmm indexing results

(a) (b)

» Neurons are selected based on the distances between input neurons with existed
synapses.

32/45

Feature Sparsity®

Lots of Runtime Zeroes

Ineffectual zero computations

2

Alexnet Google

NN VGG19 VGG_M VGG_S AVG
Fraction of zero neurons in multiplications

Computer Architecture News 44.3, pp. 1-13.
33/45

5Jorge Albericio et al. (2016). “Cnvlutin: Ineffectual-neuron-free deep neural network computing”. In: ACM SIGARCH
] = =

Feature Sparsity

DaDianNao®

NBin
Neuron 16,
Lane O
/ Y H
N
,,,,,,,,,,,,,,,,, e i
" B (eDRAM) N Ro]
Neurons i §

v Fitero [3]_: @ NBout

Filter O

Filter 15

Filter 15

8Yunji Chen et al. (2014). “Dadiannao: A machine-learning supercomputer”. In: 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture. |EEE, pp. 609-622.

34/45

Feature Sparsity

Processing in DaDianNao

o[1/1]2|0
Neuron | 1/2[1]ol3

Lanes I
15[0[1[1]1]

Synapse | ©
Lanes | "L L L1

Filter O 15|jj':|j

Synapse | ©
Lanes | "L 11

Filter 15 15|:|:|:|j

35/45

Feature Sparsity

Processing in DaDianNao

o[1]1]2] |o]
Neuron | 15[l
Lanes A
15[o[1]1]
Synapse | °©
Lanes | "LLL
Filter O 15‘]]]

Synapse | ©
Lanes | "LLL

Filter 15 15‘]]]

o O s O s

36/45

Feature Sparsity

Processing in DaDianNao

of1[1]2] [o] *2s.

1121

Neuron
Lanes

o
(]
R3

o

03
.
.

Synapse | © H—'@

.
..
st
ssssmmmssmansnss®®

Lanes | Multiplication of corresponding
. RS neuron and synapse elements
Filter O 15 D:D N
Synapse | © H—"é
Lanes | '

Filter 15 15|:|:|:|' T |:|

37/45

Feature Sparsity

Processing in DaDianNao

Zero removal.

o[i[1]2lo] Zere [i[1]2
Neuron | 1(5/1/0/3 removal [, 15
Lanes R R
ts ol
Synapse | ©
Lanes | "L L1 L

Filter 0|, D:ED

Synapse | °©
Lanes| 'L,

Filter 15 15|:|:|:|j

38/45

Feature Sparsity
Processing in DaDianNao

Zero removal.

o[1[1]2lo] Zere [1]5

Neuron 11211103 removal

Lanes I i :

Sonan
Synapse | °©
Lanes| '

Filter O |, D:D

Synapse | °©
Lanes | TLLL

Filter 15 15|:|:D

o 1 o O s s

39/45

Feature Sparsity

Processing in DaDianNao

Lanes can not longer operate in lock-step

o[i[1]2[o] Zere
Neuron | 1[5/1lo/3 removal . " .:‘.“
Lanes I
SGEEEEH B
Synapse | °©
Lanes | '
Filter O

5
ma X F
Lanes can 9 :
I not longer : :
s ELH J

operate in L
Synapse | °©

Filter 15 15|:|:|:|
40/45

9—»6

lock-step!
Lanes| '

41/45

Feature Sparsity

CNVLUTIN: Decoupling Lanes

0
Neuron
Lanes

Subunit 0

Neuron Lane O-

Filter O
Synapses
Synapse | °©

Lane O
Lanes| ' ﬂ
[T11]
1<

Filter 15—
Filter O 15 |::>

Synapse | °©

Lanes| '

Subunit 15
Filter 15

Neuron Lane 15-

Filter O
Synapses

Filter1-
: Lane 15 P
DaDianNao

Filter 15-

CNVLUTIN

Feature Sparsity
CNVLUTIN: Decoupling Lanes

Subunit 0
Neuron Lane O 1

Offsets

; J,

Synapses FiIterO
Subunit 15

~
Neuron Lane 15 1

Offsets |2 m

Filter O

Synapses
Lane 15

g=

Fiter 15 [| []
/)

42/45

Feature Sparsity
CNVLUTIN: Decoupling Lanes

Subunit O

Neuron Lane 0
Offsets

Fittero| | ||

Synapses
Lane O

Filter 15

Subunit 15
Neuron Lane 15

Offsets |2 m

Filter O

B B

£

Synapses
Lane 15

=

Filter 15

43/45

9

. a2
Feature Sparsity L
CNVLUTIN: Decoupling Lanes

¥z %g

&
b

Subunit 0

Neuron
Lane 0

Nbin oo et 1-wide Neuron Lanes

from central
eDRAM

Offsets [X g

Filter Synapse [
Lane 0 Lane0

Filter Synapse = W,
Lane 15 Lane0 [4
-

SB (eDRAM)

A9pooud

to central

Subunit 15 4
Nbin . J> cDRAM

from central LZ::’?Q [—[— : ’ i
i k .1 ., 16-synapse
N W o R Synapse Lanes

[a} :
2 Filter synapse| l
‘u’:‘ Lane 15 Lane 15

Decoupled Neuron Lanes: Partitioned SB:
Neuron + coordinate 16-wide accesses
Proceed independently 1 synapse per filter

44/45

Further Discussion: Reading List e

» Wenlin Chen et al. (2015). “Compressing neural networks with the hashing trick”. In:
Proc. ICML, pp. 2285-2294

P> Huizi Mao et al. (2017). “Exploring the granularity of sparsity in convolutional neural
networks”. In: CVPR Workshop, pp. 13-20

» Zhuang Liu et al. (2017). “Learning efficient convolutional networks through network
slimming”. In: Proc. ICCV/, pp. 2736-2744

» Chenglong Zhao et al. (June 2019). “Variational convolutional neural network pruning”.
In: Proc. CVPR

P> Junru Wu et al. (2018). “Deep k-Means: Re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions”. In: Proc. ICML

45/45

	Background
	Main Talk
	Sparse Regression
	Pruning
	Sparse Hardware Architecture

