

香港中文大學 The Chinese University of Hong Kong

CENG5030 Part 2-3: CNN Inaccurate Speedup-1 —- Overview

Bei Yu

(Latest update: March 25, 2019)

Spring 2019

「日本本語を本語を入所を入り、

These slides contain/adapt materials developed by

- Song Han, Jeff Pool, et al. (2015). "Learning both weights and connections for efficient neural network". In: *Proc. NIPS*, pp. 1135–1143
- Song Han, Huizi Mao, and William J. Dally (2016). "Deep Compression: Compressing deep neural networks with pruning, trained quantization and huffman coding". In: *Proc. ICLR*
- Song Han, Xingyu Liu, et al. (2016). "EIE: efficient inference engine on compressed deep neural network". In: Proc. ISCA, pp. 243–254

Learning both Weights and Connections for Efficient Neural Networks

Han et al. NIPS 2015

Pruning Happens in Human Brain 1000 Trillion Synapses 500 Trillion 50 Trillion Synapses Synapses Newborn Adolescent 1 year old

Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.

Pruning AlexNet

60 Million

6M 10x less connections

• Pruning

Retrain to Recover Accuracy

Iteratively Retrain to Recover Accuracy

Pruning RNN and LSTM

Pruning RNN and LSTM

90%

90%

- 90%

95%

- Original: a basketball player in a white uniform is playing with a ball
- **Pruned 90%**: a basketball player in a white uniform is playing with a basketball
- Original : a brown dog is running through a grassy field
- **Pruned 90%**: a brown dog is running through a grassy area
- Original : a man is riding a surfboard on a wave
- Pruned 90%: a man in a wetsuit is riding a wave on a ٠ beach
 - **Original** : a soccer player in red is running in the field
- **Pruned 95%:** a man in a red shirt and black and white black shirt is running through a field

Exploring the Granularity of Sparsity that is Hardware-friendly

4 types of pruning granularity

Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding

Han et al. ICLR 2016 Best Paper

[Han et al. ICLR'16]

Trained Quantization

Trained Quantization

weights (32 bit float)					cluster index (2 bit uint)				centroids	
2.09	-0.98	1.48	0.09		3	0	2	1	3:	2.00
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50
-0.91	1.92	0	-1.03		0	3	1	0	1:	0.00
1.87	0	1.53	1.49		3	1	2	2	0:	-1.00

After Trained Quantization: Discrete Weight

[Han et al. ICLR'16]

After Trained Quantization: Discrete Weight after Training

[Han et al. ICLR'16]

How Many Bits do We Need?

How Many Bits do We Need?

More Aggressive Compression: Ternary Quantization

Results: Compression Ratio

Network	Original Compressed Size Size	Compression Ratio	Original Accuracy	Compressed Accuracy
LeNet-300	1070KB → 27KB	40x	98.36% -	→ 98.42%
LeNet-5	1720KB → 44KB	39x	99.20% -	→ 99.26%
AlexNet	240MB → 6.9MB	35x	80.27% -	→ 80.30%
VGGNet	550MB → 11.3MB	49x	88.68% -	→ 89.09%
Inception- V3	91MB → 4.2MB	22x	93.56% -	→ 93.67%
ResNet-50	97MB → 5.8MB	17x	92.87% -	→ 93.04%

SqueezeNet

1110

landola et al, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size", arXiv 2016

Compressing SqueezeNet

Network	Approach	Size	Ratio	Top-1 Accuracy	Top-5 Accuracy
AlexNet	-	240MB	1x	57.2%	80.3%
AlexNet	SVD	48MB	5x	56.0%	79.4%
AlexNet	Deep Compression	6.9MB	35x	57.2%	80.3%
SqueezeNet	-	4.8MB	50x	57.5%	80.3%
SqueezeNet	Deep Compression	0.47MB	510x	57.5%	80.3%

Results: Speedup

Deep Compression Applied to Industry

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Han et al. ISCA 2016

Deep Learning Accelerators

• First Wave: Compute (Neu Flow)

• Second Wave: Memory (Diannao family)

• Third Wave: Algorithm / Hardware Co-Design (EIE)

Google TPU: "This unit is designed for dense matrices. Sparse architectural support was omitted for time-to-deploy reasons. Sparsity will have high priority in future designs"

[Han et al. ISCA'16]

EIE: the First DNN Accelerator for Sparse, Compressed Model

EIE: Parallelization on Sparsity

$$\vec{a} \left(\begin{array}{cccc} 0 & a_1 & 0 & a_3 \end{array} \right) \\ \times & & \vec{b} \\ \begin{pmatrix} w_{0,0} | \boldsymbol{w}_{0,1} | & 0 & | \boldsymbol{w}_{0,3} | \\ 0 & | & \mathbf{0} & | \boldsymbol{w}_{1,2} | & 0 & | \\ 0 & | & \mathbf{0} & | \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \boldsymbol{w}_{2,3} | \\ 0 & | & \mathbf{0} & | & \mathbf{0} & | \\ 0 & | & \mathbf{0} & | & \mathbf{0} | \\ 0 & | & \mathbf{0} & | \\ 0 & | &$$

EIE: Parallelization on Sparsity

Dataflow

rule of thumb: 0 * A = 0 W * 0 = 0

EIE Architecture

Weight decode

rule of thumb: 0 * A = 0 W * 0 = 0 2.09, 1.92=> 2

Post Layout Result of EIE

- 1. Post layout result
- 2. Throughput measured on AlexNet FC-7

Speedup on EIE

Energy Efficiency on EIE

Comparison: Throughput

Comparison: Energy Efficiency

Further Discussion: Readling List

- Wenlin Chen et al. (2015). "Compressing neural networks with the hashing trick". In: Proc. ICML, pp. 2285–2294
- Wei Wen et al. (2016). "Learning structured sparsity in deep neural networks". In: Proc. NIPS, pp. 2074–2082
- Huizi Mao et al. (2017). "Exploring the granularity of sparsity in convolutional neural networks". In: CVPR Workshop, pp. 13–20
- Zhuang Liu et al. (2017). "Learning efficient convolutional networks through network slimming". In: Proc. ICCV, pp. 2736–2744