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Learning both Weights and Connections 
for Efficient Neural Networks 

 
Han et al.  

NIPS 2015

Compression Acceleration Regularization
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Pruning Neural Networks

Pruning Trained Quantization Huffman Coding  16
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Pruning Happens in Human Brain

Christopher A Walsh. Peter Huttenlocher (1931-2013). Nature, 502(7470):172–172, 2013.  

Pruning Trained Quantization Huffman Coding

50 Trillion
Synapses  

500 Trillion
Synapses  

1000 Trillion
Synapses  

Newborn 1 year old Adolescent 
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Pruning AlexNet

CONV Layer: 3x FC Layer: 10x

Pruning Trained Quantization Huffman Coding

[Han et al. NIPS’15]
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Pruning Neural Networks

Pruning Trained Quantization Huffman Coding

[Han et al. NIPS’15]

10x less connections
60 Million

6M

 19

-0.01x +x+12

3 / 6



Pruning Trained Quantization Huffman Coding

[Han et al. NIPS’15]
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Pruning Trained Quantization Huffman Coding

[Han et al. NIPS’15]
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Retrain to Recover Accuracy

Pruning Trained Quantization Huffman Coding

[Han et al. NIPS’15]
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Iteratively Retrain to Recover Accuracy

Pruning Trained Quantization Huffman Coding

[Han et al. NIPS’15]
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Pruning RNN and LSTM

Lecture 10 - 8 Feb 2016Fei-Fei Li & Andrej Karpathy & Justin JohnsonFei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 10 - 8 Feb 201651

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

Image Captioning

*Karpathy et al "Deep Visual-
Semantic Alignments for 
Generating Image Descriptions"

Pruning Trained Quantization Huffman Coding

[Han et al. NIPS’15]
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• Original: a basketball player in a white uniform is 
playing with a ball

• Pruned 90%: a basketball player in a white uniform is 
playing with a basketball

• Original : a brown dog is running through a grassy field
• Pruned 90%: a brown dog is running through a grassy 

area

• Original : a soccer player in red is running in the field
• Pruned 95%: a man in a red shirt and black and white 

black shirt is running through a field

• Original : a man is riding a surfboard on a wave
• Pruned 90%: a man in a wetsuit is riding a wave on a 

beach

Pruning Trained Quantization Huffman Coding

95%

90%

90%

90%

[Han et al. NIPS’15]

Pruning RNN and LSTM
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Exploring the Granularity of Sparsity that is 
Hardware-friendly 
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irregular sparsity more regular sparsity

=>

fully-dense 
 model

4 types of pruning granularity

=>=>

[Han et al, NIPS’15] [Molchanov et al, ICLR’17]

regular sparsity
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Deep Compression: Compressing Deep 
Neural Networks with Pruning, Trained 

Quantization and Huffman Coding 
 

Han et al.  
ICLR 2016  
Best Paper

Pruning Trained Quantization Huffman Coding
4 / 6



Trained Quantization
[Han et al. ICLR’16]

Pruning Trained Quantization Huffman Coding

2.09,  2.12,  1.92,  1.87

2.0

 29

4 / 6



Trained Quantization

Pruning Trained Quantization Huffman Coding

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4× 4 matrix. On the top left is the 4× 4 weight matrix, and on the
bottom left is the 4× 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4×4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

[Han et al. ICLR’16]
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After Trained Quantization:  
Discrete Weight 

Pruning Trained Quantization Huffman Coding

[Han et al. ICLR’16]
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After Trained Quantization:  
Discrete Weight after Training 

Pruning Trained Quantization Huffman Coding

[Han et al. ICLR’16]

Weight Value
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How Many Bits do We Need?

Pruning Trained Quantization Huffman Coding

[Han et al. ICLR’16]
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How Many Bits do We Need?

Pruning Trained Quantization Huffman Coding

[Han et al. ICLR’16]
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CHAPTER 4. TRAINED QUANTIZATION AND DEEP COMPRESSION 57

Table 4.9: Comparison of uniform quantization and non-uniform quantization (this work) with
different update methods. -c: updating centroid only; -c+l: update both centroid and label. Baseline
ResNet-50 accuracy: 76.15%, 92.87%. All results are after retraining.

Quantization Method 1bit 2bit 4bit 6bit 8bit
Uniform (Top-1) - 59.33% 74.52% 75.49% 76.15%
Uniform (Top-5) - 82.39% 91.97% 92.60% 92.91%
Non-uniform -c (Top-1) 24.08% 68.41% 76.16% 76.13% 76.20%
Non-uniform -c (Top-5) 48.57% 88.49% 92.85% 92.91% 92.88%
Non-uniform -c+l (Top-1) 24.71% 69.36% 76.17% 76.21% 76.19%
Non-uniform -c+l (Top-5) 49.84% 89.03% 92.87% 92.89% 92.90%

73%
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77%

2bits 4bits 6bits 8bits

To
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1 
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cc
ur
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y

Number of bits per weight for ResNet-50
after fine-tuning

Non-uniform quantization Uniform quantization

full-precision top-1  

accuracy: 76.15%

Figure 4.10: Non-uniform quantization performs better than uniform quantization.

non-uniform quantization (this work), all the layers of the baseline ResNet-50 can be compressed
to 4-bits without losing accuracy. For uniform quantization, however, all the layers of the baseline
ResNet-50 can be compressed to 8 bits without losing accuracy (at 4 bits, there are about 1.6% top-1
accuracy loss when using uniform quantization). The advantage of non-uniform quantization is that
it can better capture the non-uniform distribution of the weights. When the probability distribution
is higher, the distance between each centroid would be closer. However, uniform quantization can
not achieve this.

Table 4.9 compares the performance two non-uniform quantization strategies. During fine-tuning,
one strategy is to only update the centroid; the other strategy is to update both the centroid and the
label (the label means which centroid does the weight belong to). Intuitively, the latter case has more
degree of freedom in the learning process and should give better performance. However, experiments
show that the improvement is not significant, as shown in the third row and the fourth row in Table

4 / 6



Normalize
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Under review as a conference paper at ICLR 2017

Equation 2. We use scaled gradients for 32-bit weights:

∂L

∂w̃l
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

W p
l × ∂L

∂wt
l

: w̃l > ∆l

1× ∂L

∂wt
l

: |w̃l| ≤ ∆l

Wn
l × ∂L

∂wt
l

: w̃l < −∆l

(8)

Note we use scalar number 1 as factor of gradients of zero weights. The overall quantization process
is illustrated as Figure 1. The evolution of the ternary weights from different layers during training is
shown in Figure 2. We observe that as training proceeds, different layers behave differently: for the
first quantized conv layer, the absolute values of W p

l and Wn
l get smaller and sparsity gets lower,

while for the last conv layer and fully connected layer, the absolute values of W p
l and Wn

l get larger
and sparsity gets higher.

We learn the ternary assignments (index to the codebook) by updating the latent full-resolution
weights during training. This may cause the assignments to change between iterations. Note that
the thresholds are not constants as the maximal absolute values change over time. Once an updated
weight crosses the threshold, the ternary assignment is changed.

The benefits of using trained quantization factors are: i) The asymmetry of W p
l ̸= Wn

l enables
neural networks to have more model capacity. ii) Quantized weights play the role of "learning rate
multipliers" during back propagation.

3.2 QUANTIZATION HEURISTIC

In previous work on ternary weight networks, Li & Liu (2016) proposed Ternary Weight Networks
(TWN) using ±∆l as thresholds to reduce 32-bit weights to ternary values, where ±∆l is defined
as Equation 5. They optimized value of ±∆l by minimizing expectation of L2 distance between
full precision weights and ternary weights. Instead of using a strictly optimized threshold, we adopt
different heuristics: 1) use the maximum absolute value of the weights as a reference to the layer’s
threshold and maintain a constant factor t for all layers:

∆l = t× max(|w̃|) (9)

and 2) maintain a constant sparsity r for all layers throughout training. By adjusting the hyper-
parameter r we are able to obtain ternary weight networks with various sparsities. We use the first
method and set t to 0.05 in experiments on CIFAR-10 and ImageNet dataset and use the second one
to explore a wider range of sparsities in section 5.1.1.
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Figure 2: Ternary weights value (above) and distribution (below) with iterations for different layers
of ResNet-20 on CIFAR-10.
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More Aggressive Compression:  
Ternary Quantization
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Results: Compression Ratio

Network Original 
Size

Compressed 
Size

Compression  
Ratio

Original 
Accuracy

Compressed 
Accuracy

LeNet-300 1070KB 27KB 40x 98.36% 98.42%

LeNet-5 1720KB 44KB 39x 99.20% 99.26%

AlexNet 240MB 6.9MB 35x 80.27% 80.30%

VGGNet 550MB 11.3MB 49x 88.68% 89.09%

Inception-
V3

91MB 4.2MB 22x 93.56% 93.67%

ResNet-50 97MB 5.8MB 17x 92.87% 93.04%

Compression Acceleration Regularization

Can we make compact models to begin with?

[Han et al. ICLR’16]
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SqueezeNet

Iandola et al,  “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size”, arXiv 2016

 37Compression Acceleration Regularization
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Compressing SqueezeNet

Network Approach Size Ratio Top-1 
Accuracy

Top-5 
Accuracy

AlexNet - 240MB 1x 57.2% 80.3%

AlexNet SVD 48MB 5x 56.0% 79.4%

AlexNet Deep 
Compression 6.9MB 35x 57.2% 80.3%

SqueezeNet - 4.8MB 50x 57.5% 80.3%

SqueezeNet Deep 
Compression 0.47MB 510x 57.5% 80.3%

 38Compression Acceleration Regularization
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Results: Speedup
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Deep Compression Applied to Industry

Compression Acceleration Regularization  40

Deep 
Compression

4 / 6
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EIE: Efficient Inference Engine on 
Compressed Deep Neural Network 

 
Han et al.  
ISCA 2016
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Deep Learning Accelerators

• First Wave: Compute (Neu Flow)  

• Second Wave: Memory (Diannao family)  

• Third Wave: Algorithm / Hardware Co-Design (EIE)

 43

Google TPU: “This unit is designed for dense matrices. Sparse 
architectural support was omitted for time-to-deploy reasons. 
Sparsity will have high priority in future designs” 

5 / 6



Sparse Weight
90% static sparsity

Weight Sharing
4-bit weights

[Han et al. ISCA’16]
EIE: the First DNN Accelerator for  

 Sparse, Compressed Model

Sparse Activation
70% dynamic sparsity

10x less computation

5x less memory footprint

3x less computation

8x less memory footprint

Compression Acceleration Regularization  44

0 * A = 0 W * 0 = 0 2.09, 1.92=> 2
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EIE: Parallelization on Sparsity
[Han et al. ISCA’16]
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EIE: Parallelization on Sparsity
[Han et al. ISCA’16]
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Dataflow
[Han et al. ISCA’16]
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rule of thumb: 
0 * A = 0   W * 0 = 0
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EIE Architecture

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Song Han∗ Xingyu Liu∗ Huizi Mao∗ Jing Pu∗ Ardavan Pedram∗

Mark A. Horowitz∗ William J. Dally∗†

∗Stanford University, †NVIDIA
{songhan,xyl,huizi,jingpu,perdavan,horowitz,dally}@stanford.edu

Abstract—State-of-the-art deep neural networks (DNNs)
have hundreds of millions of connections and are both compu-
tationally and memory intensive, making them difficult to de-
ploy on embedded systems with limited hardware resources and
power budgets. While custom hardware helps the computation,
fetching weights from DRAM is two orders of magnitude more
expensive than ALU operations, and dominates the required
power.

Previously proposed ‘Deep Compression’ makes it possible
to fit large DNNs (AlexNet and VGGNet) fully in on-chip
SRAM. This compression is achieved by pruning the redundant
connections and having multiple connections share the same
weight. We propose an energy efficient inference engine (EIE)
that performs inference on this compressed network model and
accelerates the resulting sparse matrix-vector multiplication
with weight sharing. Going from DRAM to SRAM gives EIE
120× energy saving; Exploiting sparsity saves 10×; Weight
sharing gives 8×; Skipping zero activations from ReLU saves
another 3×. Evaluated on nine DNN benchmarks, EIE is
189× and 13× faster when compared to CPU and GPU
implementations of the same DNN without compression. EIE
has a processing power of 102 GOPS/s working directly on
a compressed network, corresponding to 3 TOPS/s on an
uncompressed network, and processes FC layers of AlexNet at
1.88×104 frames/sec with a power dissipation of only 600mW.
It is 24,000× and 3,400× more energy efficient than a CPU
and GPU respectively. Compared with DaDianNao, EIE has
2.9×, 19× and 3× better throughput, energy efficiency and
area efficiency.

Keywords-Deep Learning; Model Compression; Hardware
Acceleration; Algorithm-Hardware co-Design; ASIC;

I. INTRODUCTION

Neural networks have become ubiquitous in applications
including computer vision [1]–[3], speech recognition [4],
and natural language processing [4]. In 1998, Lecun et
al. classified handwritten digits with less than 1M parame-
ters [5], while in 2012, Krizhevsky et al. won the ImageNet
competition with 60M parameters [1]. Deepface classified
human faces with 120M parameters [6]. Neural Talk [7]
automatically converts image to natural language with 130M
CNN parameters and 100M RNN parameters. Coates et
al. scaled up a network to 10 billion parameters on HPC
systems [8].

Large DNN models are very powerful but consume large
amounts of energy because the model must be stored in
external DRAM, and fetched every time for each image,
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Virtual	weight
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Real	weight
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Encoded	Weight	
Relative	Index	
Sparse	Format	
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Compressed	
DNN	Model Weight		

Look-up

Index		
Accum

Prediction

Input	
Image

Result

Figure 1. Efficient inference engine that works on the compressed deep
neural network model for machine learning applications.

word, or speech sample. For embedded mobile applications,
these resource demands become prohibitive. Table I shows
the energy cost of basic arithmetic and memory operations
in a 45nm CMOS process [9]. It shows that the total energy
is dominated by the required memory access if there is
no data reuse. The energy cost per fetch ranges from 5pJ
for 32b coefficients in on-chip SRAM to 640pJ for 32b
coefficients in off-chip LPDDR2 DRAM. Large networks do
not fit in on-chip storage and hence require the more costly
DRAM accesses. Running a 1G connection neural network,
for example, at 20Hz would require (20Hz)(1G)(640pJ) =
12.8W just for DRAM accesses, which is well beyond the
power envelope of a typical mobile device.

Previous work has used specialized hardware to accelerate
DNNs [10]–[12]. However, these efforts focus on acceler-
ating dense, uncompressed models - limiting their utility
to small models or to cases where the high energy cost
of external DRAM access can be tolerated. Without model
compression, it is only possible to fit very small neural
networks, such as Lenet-5, in on-chip SRAM [12].

Efficient implementation of convolutional layers in CNN
has been intensively studied, as its data reuse and manipu-
lation is quite suitable for customized hardware [10]–[15].
However, it has been found that fully-connected (FC) layers,
widely used in RNN and LSTMs, are bandwidth limited
on large networks [14]. Unlike CONV layers, there is no
parameter reuse in FC layers. Data batching has become
an efficient solution when training networks on CPUs or
GPUs, however, it is unsuitable for real-time applications
with latency requirements.

Network compression via pruning and weight sharing
[16] makes it possible to fit modern networks such as
AlexNet (60M parameters, 240MB), and VGG-16 (130M
parameters, 520MB) in on-chip SRAM. Processing these
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Post Layout Result of EIE

Technology 40 nm

# PEs 64

on-chip SRAM 8 MB

Max Model Size 84 Million

Static Sparsity 10x

Dynamic Sparsity 3x

Quantization 4-bit

ALU Width 16-bit

Area 40.8 mm^2

MxV Throughput 81,967 layers/s

Power 586 mW

1. Post layout result
2. Throughput measured on AlexNet FC-7 
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102

Speedup on EIE

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
2x

5x
1x

9x 10x

1x
2x 3x 2x 3x

14x
25x

14x 24x 22x
10x 9x 15x 9x 15x

56x 94x

21x

210x 135x

16x
34x 33x 25x

48x

0.6x
1.1x

0.5x
1.0x 1.0x

0.3x 0.5x 0.5x 0.5x 0.6x

3x
5x

1x

8x 9x

1x
3x 2x 1x

3x

248x
507x

115x

1018x 618x

92x 63x 98x 60x
189x

0.1x

1x

10x

100x

1000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Sp
ee
du
p

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
5x

9x
3x

17x 20x

2x
6x 6x 4x 6x7x 12x 7x 10x 10x

5x 6x 6x 5x 7x
26x 37x

10x

78x 61x

8x
25x 14x 15x 23x

10x 15x
7x 13x 14x

5x 8x 7x 7x 9x

37x 59x
18x

101x 102x

14x
39x 25x 20x 36x

34,522x 61,533x
14,826x

119,797x 76,784x

11,828x 9,485x 10,904x 8,053x
24,207x

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo MeanEn
er

gy
 E

ffi
ci

en
cy

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10× weight sparsity and 3× activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

CPU GPU mGPU EIE

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v × aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M×V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the

SpMat

SpMat

Ptr_Even Ptr_OddArithm
Act_0 Act_1

Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10× weight sparsity and 3× activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v × aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M×V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the

SpMat

SpMat

Ptr_Even Ptr_OddArithm
Act_0 Act_1

Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
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