

香港中文大學 The Chinese University of Hong Kong

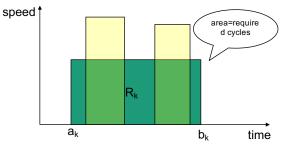
CENG5030 Part 1-3: DVFS

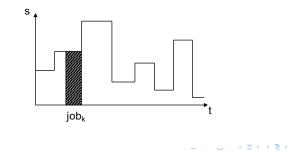
Bei Yu

(Latest update: March 25, 2019)

Spring 2019

・ロト・日本・日本・日本・日本・日本


These slides contain/adapt materials developed by


Frances F Yao (2007). "Algorithmic problems in scheduling jobs on variable-speed processors". In: *Proceedings of Combinatorial Pattern Matching*, pp. 3–3

DVS Scheduling Model

- A set of n jobs
 - a_k: arrival time
 - b_k : deadline
 - R_k: required CPU cycles
- Preemptive execution
- Schedule S specifies:
 - 0≤s(t)< ∞
 - which job is executed at time t
- Cost $E(S) = \int_0^1 s(t)^2 dt$
- What's the optimal (Min-Energy) schedule
 - Good characterization →efficient computation
 - Benchmark for heuristics



The Basics

- Each job will be executed at one uniform speed in optimal schedule
 - Convexity: $s^2 + {s'}^2 > (\frac{s+s'}{2})^2 + (\frac{s+s'}{2})^2$
- Optimal schedule needs at most n different speeds
 - the flatter the better
- Strategy:

Determine peak speed s^{*}, apply iterative procedure to find 2nd peak speed etc.

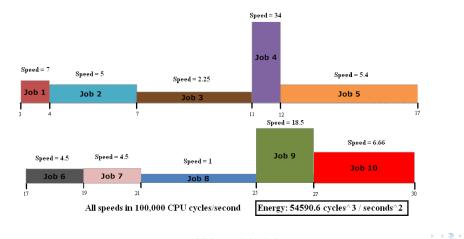
Naive Algorithms

Created two algorithms that guarantee a deadline feasible solution with little regard for energy consumption:

Naive 1

Run each job, j, at a speed such that the completion time of job j is $\min[a_{j+1}, b_j]$.

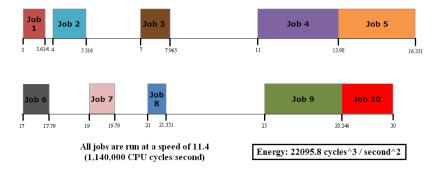
Naive 2


Find the minimum speed necessary to complete every job before its deadline. Run every job at that speed.

Case Study

Table 1: Data Set 1 – Medium Length Jobs

	rapie il Bata set i					inediam Bongen 0000					
Job	1	2	3	4	5	6	7	8	9	10	
a_j	3	4	7	11	12	17	19	21	25	27	
b_j	12	11	20	18	19	30	39	48	30	30	
R_{j}	7	15	11	34	27	9	9	4	37	20	

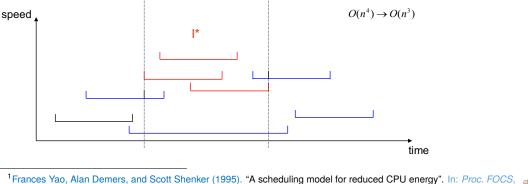

FPE

Ξ.

Case Study

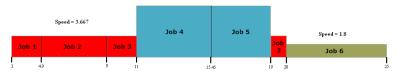
Table 1: Data Set 1 – Medium Length Jobs

	raore		Java	DOU 1	mediam Bengen 9000					
Job	1	2	3	4	5	6	7	8	9	10
a_j	3	4	7	11	12	17	19	21	25	27
b_j	12	11	20	18	19	30	39	48	30	30
R_j	7	15	11	34	27	9	9	4	37	20

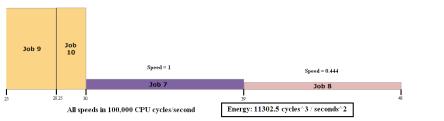


Optimal Scheduling¹

- What's the peak speed in the optimal schedule?
- $g(I) = \frac{\sum R_j}{|I|}$ defines the speed lower bound over any I
- $s^* = \max_{I \in \mathcal{S}}^{|\mathcal{I}|} (I)$ defines peak speed and critical interval I^*
- s* over critical interval is feasible
- Extract critical interval, update jobs and repeat


¹Frances Yao, Alan Demers, and Scott Shenker (1995). "A scheduling model for reduced CPU energy". In: Proc. FOCS pp. 374–382.

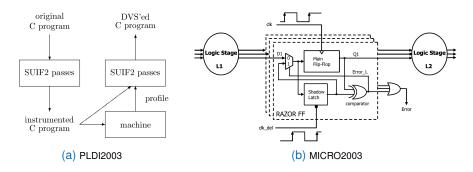
Case Study


Table 1: Data Set 1 – Medium Length Jobs

	raoro			occ x	incaram Bengen 9999						
Job	1	2	3	4	5	6	7	8	9	10	
a_j	3	4	7	11	12	17	19	21	25	27	
b_j	12	11	20	18	19	30	39	48	30	30	
R_j	7	15	11	34	27	9	9	4	37	20	

```
Speed = 7.625
```


FFE


Ξ.

▶ ★ 臣 ▶

Optimal YDS Schedule

DVFS at Different Levels

- System Level DVFS²
- Program Level DVFS³
- Hardware Level DVFS⁴

²Mark Weiser et al. (1994). "Scheduling for reduced CPU energy". In: Proc. OSDI.

³Chung-Hsing Hsu and Ulrich Kremer (2003). "The design, implementation, and evaluation of a compiler algorithm for CPU energy reduction". In: *Proc. PLDI*. vol. 38. 5, pp. 38–48.

⁴Dan Ernst et al. (2003). "Razor: A low-power pipeline based on circuit-level timing speculation". In: *Proc. MICRO*; p. 7. = 🔊 <