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Multi-Voltage Design @IBM
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Figure 3: Flexible voltage island layout style.

"Ruchir Puri et al. (2003). “Pushing ASIC performance in a power envelope”. In: Proc. DAC, pp. 788-793.
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Level-Converter?

VddH Converter with Embedded Logic (NAND2)
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Figure 6: Single-supply level converters

vddL

Level-converter is used to avoid excessive static power consumption between the low and
high voltage regions.

2Ruchir Puri et al. (2003). “Pushing ASIC performance in a power envelope”. In: Proc. DAC, pp. 788-793.
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Placement Level Multi-Voltage®
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3Huaizhi Wu and Martin DF Wong (2009). “Incremental improvement of voltage assignment”. In: /EEE TCAD 28.2, pp. 217-230.
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(a) (b)

Fig. 3. Example of optimization: (a) layout-aware partitioning, (b) region
definition of power domains, and (c) level shifter insertion in the updated
floorplan. In blue are instances assigned to the bottom domain and in red are
instances assigned to the top domain. In yellow are level shifters. Design:
AES (~11K instances). Technology: 28LP.

4

“4Kristof Blutman et al. (2017). “Floorplan and placement methodology for improved energy reduction in stacked power-domain design”. In: Proc. ASPDAC, &

pp. 444-449.




Floorplanning Level Multi-Voltage

~N
~Low voltage

6 » Modules are assigned high-voltage or
High voltage
low-voltage.

» Low voltage — high delay.

> Trade off between the power saving and
performance.
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Floorplanning Level Multi-Voltage

~Low voltage

6 » Modules are assigned high-voltage or
High voltage low-voltage.

> Low voltage — high delay.

P> Trade off between the power saving and
performance.

» Consider Power Network Resource

> High voltage modules should pack close
> Generate Voltage Island

Power Network Resource

7127



What's Netlist?
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What's Floorplanning?

After floorplanning| ' N
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B*-Tree®
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Figure 6: (a) An admissible placement. (b) The vertical B*-tree repre-
senting the placement.
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®
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5Yun-Chih Chang et al. (2000). “B*-Trees: A New Representation for Non-Slicing Floorplans”. In: Proc. DAC, pp. 458-463.
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Classic Design Flow’
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Fig. 4. Voltage island floorplanning framework.

» Integer linear programming (ILP) based
» More complicated ILP formulation is develped in ICCAD’07°.

6Wan-Ping Lee, Hung-Yi Liu, and Yao-Wen Chang (2007). “An ILP algorithm for post-floorplanning voltage-island generation considering power-network planning”.
In: Proc. ICCAD, pp. 650-655.

7Wai-Kei Mak and Jr-Wei Chen (2007). “Voltage island generation under performance requirement for SoC designs”. In: Proc:ASPDAG! pp. 798-803.
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e Let the available set of operating voltages for core i be

{Vi1, Viz, ..., Vir, } where Vj;, denotes the voltage of core i
when it operates at voltage level p (1 <i<m, 1 <p<
L;).

e Let P;, denote the power consumption of core i when it
operates at voltage level p (1 <i<m, 1 <p<L;).

e Let S;; denote the number of signals from core i to core j
(1<i<m, 1<j<m).

e Let P;, j, denote the extra power consumption for the
level shifters added (if any) to the interconnects from
core i to core j when core i operates at voltage Vi, and
core j operates at voltage Vj,. (Note that Pij jq is 0 when
i = j or Vip > Vjq,, since no level shifters are inserted in
these cases. For other cases, P;j j, can be pre-computed
using the switching activity information of the signals.)

e Let N; denote the set of physically neighboring cores of
core i (1 <i<m).

We define binary decision variables b;p (1 <i<m, 1 <p<
L;) such that b;;, is 1 if core i is assigned voltage level p, and
bip is 0 otherwise. It is easy to see that we should assign a
single voltage for each core, so we have

Li

Ship=1 for1<i<m (1)

p=1

12/27 bip =0o0r 1 (2)
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using the switching activity information of the signals.)

e Let N; denote the set of physically neighboring cores of
core i (1 <i<m).

We define binary decision variables b;p (1 <i<m, 1 <p<
L;) such that b;;, is 1 if core i is assigned voltage level p, and
bip is 0 otherwise. It is easy to see that we should assign a
single voltage for each core, so we have

Li

> bip=1

p=1

for1<i<m (1)

bip =0o0r 1 (2)

The core power consumption P.ores is the total power con-
sumption of all cores. We have

m L;
Peores =y > (Pip-bip) ®3)

i=1 p=1

The level shifter power consumption Pspifters is the power
consumed by the added level shifters. Level shifters consume
power just like conventional buffers. As we discussed before,
level shifters must be inserted to the interconnects from low
voltage cores to high voltage cores. We have

m m Li Lj

Pshifters = Z Z z Z(Pipv]'fl “bip - bjq)

i=1 j=1p=1g=1

We define the fragmentation cost F' to model the power net-
work complexity problem. The fragmentation cost is equal to
the number of pair of physically adjacent cores operating at
different voltage levels. We have

F:Z‘ Z Z (bw‘qu)

i=1j s.t. i<j<m 1<p<L;
A JEN; 1<q<Lj
Vip#Viq

Notice that the condition 7 < j is to ensure that no pair is
considered twice.

However, the equations for Pspifters and F above are illegal
in an ILP because they are non-linear. As a result, we intro-
duce Boolean variables b}, ;, (1<i<m, 1<j<m, 1<p<
Li, 1 < q < Lj) to replace by - bjq by enforcing the following
artificial constraints in our ILP:

b;p,jq 2 bip +bjq — 1 (4)
bgp,jq =0orl (5)

2



Overview
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N P—Completeness [Garey & Johnson,1979]8

» Decision Problem (Yes/No Problem)

» NP: Set of problems w. Nondeterministic Polynomial time algorithm
> P: Set of problems w. (Deterministic) Polynomial time algorithm
» NP-Complete: hardest problems in NP

If a problem in A/P-Complete solved in polynomial time — any problem in /P solved in
polynomial time

—NP-C)

8Some contents & figures on this part come from Prof. Takahashi
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N P—Completeness [Garey & Johnson,1979]8

» Decision Problem (Yes/No Problem)

» NP: Set of problems w. Nondeterministic Polynomial time algorithm
> P: Set of problems w. (Deterministic) Polynomial time algorithm

» NP-Complete: hardest problems in NP

» Conjecture: P # NP

If a problem in A/P-Complete solved in polynomial time — any problem in /P solved in
polynomial time

—NP-C)

8Some contents & figures on this part come from Prof. Takahashi ] =1 =
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Polynomial Time Reduction

» Provides difficulty relation between problems

¢l —I

[1; Instances I,

[1, Instances I,

» SAT is N'P-Complete — 3SAT, Hamilton, TSP, Coloring...

14/27




NP-Hardness [Garey & Johnson,1979]

15/27

P Optimization problem

» Is neither in AP nor in N’P-Complete

» N P-hard if a related decision problem is A"P-complete
» E.g. Travelling Salesman Problem (TSP)

P> No polynomial time algorithm

Other types of problem P-NP

NPhard
Opt. Problem etc. ®

Decision Problem




Strategies of Algorithm Design

1. Check whether problem is easy or not?

2. If possible, prove is N'P-hard or N'P-complete
3. For easy problem (in P):

4. For not easy problem (in N'P-hard):

16/27
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Background: Dynamic Programming

17/27



Case 1: Calculating Binomial Coefficient

1 il =0 @irlz=mn
n
(k) =<'<’,Z:11)+(”,;1) if0<k<n
0 otherwise.

Suppose 0 < k < n. If we calculate (Z) directly by

function C(n, k)
if k = 0 or k = n then return 1
elsereturn C(n — 1,k - 1)+C(n — i, 7%)

many of the values C(i,j), i <n, j < k, are calculated over and over. |

1 LR e

17/27



Case 1: Calculating Binomial Coefficient

- 1 il =0 @irlz=mn
(k) 5 (Z:ll) + (”,Zl) 0=k < n
0 otherwise.

Suppose 0 < k < n. If we calculate <Z> directly by

function C(n, k)
if k = 0 or k = n then return 1
elsereturn C(n — 1,k - 1)+C(n — i, 7%)

many of the values C(i, j), i <n, j < k, are calculated over and over. |

1 <1 I

Question

Can we have a better Algorithm?

17/27



Case 2: Knapsack Problem

n
max E XiVi
i=1

n
S.t. Zx;wi <Ww
i=1

> v;: value of object i
> w;: weight of object i
> x; € {0, 1}

Question

» Design a Dynamic Programming Algorithm to Solve it.
> What is x; can be floating value?

Fraen

18/27



Principle of Optimality

In an optimal sequence of decisions or choices, each subsequence must also be optimal.

19/27



Overview

DAC’07: Voltage Partitioning
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9 Specifically, if d = 3, then L1 = (ui,u2,...,up,|), L2 =
(UL 415 WLy 4 Lof)s @0 L = (UL, 4 Lof 4155 Un)-
Before presenting our algorithm for OVPP, we first define four
notations for clear presentation:

e Ui = Zg:l cq,i < j, i.e., the cumulative capacitance from
the unit ¢ to the unit j.
o B} = the total energy of ((u1,...,ui), (Wit1,...,up)), i €

{1,...,p—1}, i.e., the total energy of an ordered bi-partition
of the first p units with a cut right behmd the unit <. By
Definition 1, E}, = C1; - ”1 +Cit1,p- vZJ

. E'; = mini=1,... p-1 B, ie., the minimum total energy of
ordered bi-partitions of the first p units.

e S; = j such that E) = Ej, i.e., an optimal cut position
which yields the minimum total energy Ej.

Now we can have the following recurrence as a recursive solu-
tion to OVPP for dual-Vdd’s. Forp=2,...,n—1,

S5 .
E;Jrl = Epil if vp+1 = vp, (1)
P i .
mini=sx_p By i vps1 > vp.
The correctness of the recurrence can be proven by mathemat- ks ;}) 322 gz) ;l‘(‘) f:% ;‘65
ical induction. Specifically, given that an optimal cut position Ci - - - - - -
Sy, for the first p functional units is known, and that we request Vi 0.8 1.0 1.0 L 1.0 _1-1 1.2
for an optimal cut position of the first p + 1 functional units, (a) Ordered Functional Units
then Equation (1) implies to keep the known optimal position Sy _
if vp41 = wp, or to find an optimal cut from the known opti- L 1 2 3 4 5 6
mal position to the position right behind the functional unit p if Cli] [20] 22 5.2 6.2 7.7 9.2
vp+1 > vp. Note that it is trivial to show the initial conditions ST - 1 1 1 4 4
S; =1and E} = c;-v+ca-v3. By the recurrence, E}; yields the E; - 1.48 | 448 [ 5.48 | 8.02 | 10.52
minimum total energy of ordered bi-partitions of all n functional b) Dual-Vdd Partitioning
units, and S records an optlmal cut position for E};.
Given Equatlon (1), the minimum total energy of all n func- S, . B} 3 1 5 -
tional units using triple- Vdd’s can further be computed by Eoin - 1156 | 10.24 | 9.80 | 10.18 -
min  {B5 + Cprin - 02} ) S | - L 1 1 4 -

p=2,...,n—1 (c) Triple-Vdd Partitioning

9Hng-Yi Liu, Wan-Ping Lee, and Yao-Wen Chang (2007). “A provably good approximation algorithm for power optimization using multiple supply voltages™. In:
Proc. DAC, pp. 887-890.
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5.4.2  Performance Bound of FOVP for VPP
4. PROBLEM COMPLEXITY Since VPP is NP-Hard, it is desired to develop an efficient

A - L . approximation algorithm with a guaranteed constant performance
Although Gu et al. claim that their polynomial-time algorithm bound. Fortunately, we have the following good property from

is exact for VPP [7], we show that their claim is incorrect by prov- Definition 1.
ing the NP-hardness of VPP. Before proving the NP-hardness,
we first point out the flaw in the lemma for which Gu et al. try PROPERTY 1. Any algorithm is an a2Auppruzimation algorithm
to prove for the correctness of their algorithm. Lemma 1 of [7] for VPP, if the mazimum available voltage is o times as large as
(with the notations used in this paper) contains the inequality: the minimum one.
v(F;) < vj;,Yu; € F;. However, by Definition 1, the direction of . . .
t}(m i)ncquélity ]should be reversed, and the mistake in their opti- Now we Cd; further show that tbe FOVP algorithm never
mality claim thus follows. Now, we can prove the following the- reaches the o perforrqancg bo‘"?dv ie., FOVP never prqduces
orem by restriction [6]: reducing the perfect number-partitioning such a worst-case solution, in which all the functional units are
problem [6], a well-known NP-complete problem, to VPP. operated at the globally maximum mapped voltage.
. THEOREM 3. The FOVP algorithm never produces a worst-
THEOREM 1. VPP is NP-hard. case solution to VPP.

Ckt | # of | Power Saving | Running Time (s) | Speedup
Units | [7] and FOVP [7] FOVP
tl 1001 68.02% 0.09 <0.01 N/A
t2 2000 67.69% 0.36 0.01 36X
t3 2999 67.34% 0.84 0.01 84X
t4 3999 67.53% 1.61 0.02 80X
t5 4999 67.66% 2.43 0.02 121X
t6 | 5999 67.84% 3.62 0.02 181X
t7 | 6999 67.50% 5.17 0.03 172X
t8 7999 67.61% 6.47 0.03 215X
t9 8999 67.75% 8.29 0.04 206X
t10 9999 67.64% 10.20 0.04 255X

> On perfect'number pal’tltlon https://en.wikipedia.org/wiki/Partition_problem
» Correction:'®

107a0 Lin et al. (2010). “A revisit to voltage partitioning problem”. In: Proc. GLSVLSI, pp. 115-118.
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Overview

ICCAD’06: Voltage Assignment on Netlist
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ICCAD’06: Voltage Assignment on Netlist'’

Given k choices of supply voltages VDDj, 1 < j <k, an
n-vertex DAG G = (V, E) and delay d; for each vertex v; € V,
d; € {d},d?,...,d"}, where d/ denotes the delay of a vertex v;
operated at the jth voltage domain V DDy, according to static
timing analysis (STA), the arrival time a; and the required time
r; of v; are derived as follows:

) i, FI,
Phase I Phase ITI a; = {glax“dl’ 9 L f ﬁ @
k) T
| Voltage assignment I-— l Floorplanning ‘ . minu,eFO, aj — di, FO; 75 é 3
T Tcycle7 FOl = ¢

Phase IT

Level shifters insertion

where F'I; and FO; are sets of the fan-in and fan-out vertices of
vy, respectively, and Tty is the clock cycle time of the netlist.

Timing
onvergence?

YES . L -
— Using the STA model, we define the static-timing constraint as
follows.
(2) Aigorithm Flow (b) Notations

Question:

» How to define a slack for each vertex v;?

> Please provide a mathematical formulation minizing total power consumption.

11Wan—Ping Lee, Hung-Yi Liu, and Yao-Wen Chang (2006). “Voltage island aware floorplanning for power and timing optimization”. In: Proc. ICCAD, pp. 389-394.
22/27
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Power
Power

Delay

(b)

Fig. 11. Two processes of redundant-point pruning: sorting and pruning.
(a) Sort all points by their y-coordinates. i, represents that this point is the jth
lowest one in the curve. (b) The final pruned result; there are five nonredundant
points.
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Power

Teyee=7

= (6,12)

Power

Delay

Fig. 12.  Backtracing procedure for finding an optimal solution. According to
Teycle, We identify the best resulting s* point in the DP curves of POs. Then,
we backtrace an optimal solution of each block.

@VDDI1
@VDD3

@’Q ’@ @ @VDD2
Q @ Q @VDD3

@VDD3
(a) (b)

Fig. 13.  According to Definition 10, by is the common block in PO;1’s
and PO2’s fan-in cones. (a) PO1 and PO32 share some blocks, as in the
overlapping portion. (b) After backtracing a solution, these overlapped blocks
may be set in several different voltages. Assign the highest one to the common
block by and then run the voltage-assignment algorithm again to find a better
solution.

» Further speed-up: dual to min-cost flow'?

» Overcome reconverge issue:'3

1ZCNang Ma and Evangeline FY Young (2008). “Network flow-based power optimization under timing constraints in MSV-driven floorplanning”. In: Proc. ICCAD

pp. 1-8.

13Yifamg Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPDpp. 27-34.
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Consistency Relaxation

< backward solution propagation

(vy=1:v,=1)[ ¢=3,g=7]
(vy=2: v,=2)[ c=2, g=5]

(v,=1: v,=2, v;=2)[ c=5,q=3.5] / (v=D[c=3.1,q=8.2]

(V1=2; v2=1, V3=2)[ c=5, q=4,4] (V4=2)[ c=2.9, Q=8]

(v,=3)[ c=2.7,q=7.9]

(vy=1: v,=1)[ c=4,q=7]
(v5=2: v,=2)[ ¢=3, g=6] 15

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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14

Consistency Relaxation

(vy=1:v,=1)[ ¢=3,g=7]
(vy=2: v,=2)[ c=2, g=5]

/ (vi=D[ c=3.1,q=8.2]

(v=2)[ =29, q=8]

(v,=3)[ c=2.7,q=7.9]
(vy=1: v,=1)[ c=4,q=7]

(v5=2: v,=2)[ ¢=3, g=6] 16

=7 V2=1, V3=2)[ c=5,q=441%

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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14

Consistency Relaxation

(v=1:v,=1)[ c=3,q=T7]

A

(v=2: v,=1,v,=2)[ c=5, q=4.4] (v=D[c=3.1,9=8.2]

(v,=2)[ =29, q=8]

(v4=2: v,=2)[ c=3, q=6]

2

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
24/27



14

Consistency Restoration

10— > forward solution propagation

(v,=1) [a=3.6]

()

(=1 [a= g=82]
(v,=2) [a=2] @ (V=2 [a=  g=8]
v=3)[a= g=79]

@ D(viyVp) | Va=1 |V,4=2

V,=3

V=1 (12 |3

2.2

(vi=2) [a=3.6] =NE

2.2

24/27

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34,
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Consistency Restoration

10— > forward solution propagation

(v,=1) [a=3.6]

()

(v,=1) [a=6.6 ,q=8.2]
(v,=2) [2=2] @ (v,=2) [a=6.6 q=8]
(v,=3) [a=5.8 ,q=7.9]
@ N\

D(v,v) [ Va=1\ |Ve=2 [V,=3

v=1 (12 | [3 2.2

(v;=2) [a=3.6] vi=2 {3 /]2 2.2

N 19

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34,
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14

Consistency Restoration

10— > forward solution propagation

(v,=1) [a=3.6]

()

(v,=1) [a=6.6 q=8.2]
(v,=2) [=2] @ (v,=2) [=6.6 .g=]
(v,=3) [a=5.8 .q=7.9]
@ N\
D(v,vy) | Vu=1 [V,=2\ |V,=3
V=t |12 [[3 ][22
(v;=2) [a=3.6] V,=2 |3 NAER
N

20

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34,
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Consistency Restoration

10— > forward solution propagation

(v,=1) [a=3.6]

()

(v,=1) [a=6.6 q=8.2]
(v,=2) [2=2] @ (v,=2) [a=6.6 q=8]
(v,=3) [a=5.8 q=79]

@ JARN

D(v,vy) [ Va=1 |V,=2 [V,=3)

V=1 [12 |3 22 |

(v3=2) [a=3.6] V;=2 |3 2 22 /

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34,
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14

Consistency Restoration

(v,=1) [a=3.6]

/ (v;=1) [2=6.6 q=8.2]
(V1=2) [a=2] @ Q (v_2 1=6.6 =8]
G2 ot 4zt

(v5=2) [a=3.6]

22

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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14

Iterative Refinement

Circuit in consideration

A P P S
-

24

2

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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Iterative Refinement

After relaxation

-—%

X

25

2

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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Iterative Refinement

After Phase I restoration

-—%

X

26

2

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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Iterative Refinement

Phase II begins

<—m solution propagation direction

1x 5x

7X

-» > DEX

-—%

X

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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Iterative Refinement

10— > solution propagation direction
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14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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Iterative Refinement

<—m solution propagation direction
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14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27-34.
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Iterative Refinement

10— > solution propagation direction
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Iterative Refinement

e Monotonic improvement of solution by
iterative refinement

1400 -

1300 -
1200 -
s
2 1100 -
a
1000 -
900 {
800 .
0 2 4 6 8 10

Iteration

31
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Overview

ICCAD’07: Voltage Assignment on Slicing Floorplanning
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ICCAD’07: Voltage Assignment on Slicing Floorplanning®

Same operator

" Subtrees
\ L ’ along the
left tree branches

A, B and C, not in one subtree, can form one voltage island.

Fig. 3. One resultant floorplan of 7100 with four voltage islands. Fig. 2. An example of forming island across subtrees.

15Qir:mg Ma and Evangeline FY Young (2007). “Voltage island-driven floorplanning”. In: Proc. ICCAD, pp. 644-649. ] =3 = =
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Normalized Polish Expression (NPE)

® Slicing floorplan representation

® A sequence of operands and operators
® An operand denotes a block

® An operator denotes a cut direction
o “+’denotes a horizontal cut
o " denotes a vertical cut

(] - () ’
4

b,

NPE oo b,

Slicing tree Slicing Floorplan




Optimal Island Partitioning

® Given a candidate floorplan represented by NPE,
we can perform optimal island partitioning and
voltage assignment on the slicing tree

® Procedure TreePart(TreeNode u, Num_island k)
® Optimally partition a tree rooted at u into k islands
® Solved by dynamic programming

® When k=1
® Case 1 : Island in left subtree
® Case 2 : Island in right subtree
® Case 3 : The whole tree rooted
at u form an island
® Case 4 : Island is formed across
the left and right subtrees
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Optimal Island Partitioning

® Case 4 : Island is formed across subtrees

® A set of contiguous right subtrees may also form an
island when operators along the left tree branches are

the same
Operator
Same
Operator




26/27

Optimal Island Partitioning

® The procedure NonSubtree() deals with case 4

TreePart(,

()
L R R 2

m|oO|O|w|>

min_cost = «©

e NonSubtree (TreeNode u, num_island k)
| N

S = right_child(u)

op= operator(u)

While operator(left_child(u)) is op

® y=left_child(u)

® S =S Uright_child(u)

® C=
TreePart(left_child(u),k-17)+cost(S)

® If min_cost> C, min_cost=C

Return(min_cost)
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Optimal Island Partitioning

® When k is more than 1, exhaust all different ways of
distributing the k islands by dynamic programming

TreePart (TreeNode u, num_island k)
€ min_cost = NonSubtree(u, k)

® Fori=0tok
o  C = TreePart(left_child(u), /) + TreePart(right_child(u),k-i)
e If min_cost> C, min_cost=C

@ Return(min_cost)

Partltlon into e
llslands

Across Subtree
islands

Partltlon into
k- l islands

i=0,1,...,k
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Optimal Island Partitioning

® Use the Cost Table to speed up Procedure TreePart (u, k)
® Store the best partitioning solution of each node
o Minimize the number of recusive calls - a dynamic programming
technique

® After each move, on é/tth(ta) nod((ajs J:ylng on the path from the perturbed
o be updated

node to the root nee

Cost Table:

Node No. of Islands

1 2 |3 o | KA1

(%)

2
(+)

3(*)

4(*)

5
(+)

6(*)

NN N3Ny ™" N5 Ng N7 Ng ™+ + (7+)




Takeaway

» NP completeness and NP hardness
» Dynamic Programming: when and how

»> How to evaluate previous work
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