
CENG5030
Part 1-2: Voltage Scaling

—- A Dynamic Programming Approach

Bei Yu

(Latest update: January 14, 2019)

Spring 2019

1 / 27

Overview

Introduction

Background: NP problem

Background: Dynamic Programming

DAC’07: Voltage Partitioning

ICCAD’06: Voltage Assignment on Netlist

ICCAD’07: Voltage Assignment on Slicing Floorplanning

2 / 27

Overview

Introduction

Background: NP problem

Background: Dynamic Programming

DAC’07: Voltage Partitioning

ICCAD’06: Voltage Assignment on Netlist

ICCAD’07: Voltage Assignment on Slicing Floorplanning

3 / 27

Multi-Voltage Design @IBM1

1Ruchir Puri et al. (2003). “Pushing ASIC performance in a power envelope”. In: Proc. DAC, pp. 788–793.

3 / 27

Level-Converter2

Level-converter is used to avoid excessive static power consumption between the low and
high voltage regions.

2Ruchir Puri et al. (2003). “Pushing ASIC performance in a power envelope”. In: Proc. DAC, pp. 788–793.

4 / 27

Placement Level Multi-Voltage3

3Huaizhi Wu and Martin DF Wong (2009). “Incremental improvement of voltage assignment”. In: IEEE TCAD 28.2, pp. 217–230.

5 / 27

4

4Kristof Blutman et al. (2017). “Floorplan and placement methodology for improved energy reduction in stacked power-domain design”. In: Proc. ASPDAC,
pp. 444–449.

6 / 27

Floorplanning Level Multi-Voltage

1

7

3

5

4

8

6

2

High voltage

Low voltage

Delay

P
o
w
e
r

(d1,p1)

(d2,p2)

I Modules are assigned high-voltage or
low-voltage.

I Low voltage→ high delay.
I Trade off between the power saving and

performance.

I Consider Power Network Resource
I High voltage modules should pack close
I Generate Voltage Island

7 / 27

Floorplanning Level Multi-Voltage

1

7

3

5

4

8

6

2

High voltage

Low voltage

Power Network Resource

I Modules are assigned high-voltage or
low-voltage.

I Low voltage→ high delay.
I Trade off between the power saving and

performance.
I Consider Power Network Resource

I High voltage modules should pack close
I Generate Voltage Island

7 / 27

What’s Netlist?

1 2 3 4 5

6 N-1 N

1

2

3

5

4

Tcycle

N

N-1

8 / 27

What’s Floorplanning?

1 2 3 4 5 6

7 8

1

7

3

5

4

8

6

2

After floorplanning

9 / 27

B*-Tree5

5Yun-Chih Chang et al. (2000). “B*-Trees: A New Representation for Non-Slicing Floorplans”. In: Proc. DAC, pp. 458–463.

10 / 27

Classic Design Flow7

I Integer linear programming (ILP) based
I More complicated ILP formulation is develped in ICCAD’076.
6Wan-Ping Lee, Hung-Yi Liu, and Yao-Wen Chang (2007). “An ILP algorithm for post-floorplanning voltage-island generation considering power-network planning”.

In: Proc. ICCAD, pp. 650–655.
7Wai-Kei Mak and Jr-Wei Chen (2007). “Voltage island generation under performance requirement for SoC designs”. In: Proc. ASPDAC, pp. 798–803.

11 / 27

12 / 27

12 / 27

Overview

Introduction

Background: NP problem

Background: Dynamic Programming

DAC’07: Voltage Partitioning

ICCAD’06: Voltage Assignment on Netlist

ICCAD’07: Voltage Assignment on Slicing Floorplanning

13 / 27

NP-Completeness [Garey & Johnson,1979]8

I Decision Problem (Yes/No Problem)
I NP : Set of problems w. Nondeterministic Polynomial time algorithm
I P : Set of problems w. (Deterministic) Polynomial time algorithm
I NP-Complete: hardest problems in NP

I Conjecture: P 6= NP

If a problem in NP-Complete solved in polynomial time→ any problem in NP solved in
polynomial time

8Some contents & figures on this part come from Prof. Takahashi

13 / 27

NP-Completeness [Garey & Johnson,1979]8

I Decision Problem (Yes/No Problem)
I NP : Set of problems w. Nondeterministic Polynomial time algorithm
I P : Set of problems w. (Deterministic) Polynomial time algorithm
I NP-Complete: hardest problems in NP
I Conjecture: P 6= NP

If a problem in NP-Complete solved in polynomial time→ any problem in NP solved in
polynomial time

8Some contents & figures on this part come from Prof. Takahashi

13 / 27

Polynomial Time Reduction

I Provides difficulty relation between problems

I SAT is NP-Complete→ 3SAT, Hamilton, TSP, Coloring...

14 / 27

NP-Hardness [Garey & Johnson,1979]

I Optimization problem
I Is neither in NP nor in NP-Complete
I NP-hard if a related decision problem is NP-complete
I E.g. Travelling Salesman Problem (TSP)
I No polynomial time algorithm

15 / 27

Strategies of Algorithm Design

1. Check whether problem is easy or not?
2. If possible, prove is NP-hard or NP-complete
3. For easy problem (in P):

4. For not easy problem (in NP-hard):

16 / 27

Overview

Introduction

Background: NP problem

Background: Dynamic Programming

DAC’07: Voltage Partitioning

ICCAD’06: Voltage Assignment on Netlist

ICCAD’07: Voltage Assignment on Slicing Floorplanning

17 / 27

Case 1: Calculating Binomial Coefficient

Question
Can we have a better Algorithm?

17 / 27

Case 1: Calculating Binomial Coefficient

Question
Can we have a better Algorithm?

17 / 27

Case 2: Knapsack Problem

max

n∑
i=1

xivi

s.t.
n∑

i=1
xiwi ≤ W

I vi: value of object i
I wi: weight of object i
I xi ∈ {0, 1}

Question

I Design a Dynamic Programming Algorithm to Solve it.
I What is xi can be floating value?

18 / 27

Principle of Optimality

In an optimal sequence of decisions or choices, each subsequence must also be optimal.

19 / 27

Overview

Introduction

Background: NP problem

Background: Dynamic Programming

DAC’07: Voltage Partitioning

ICCAD’06: Voltage Assignment on Netlist

ICCAD’07: Voltage Assignment on Slicing Floorplanning

20 / 27

9

9Hung-Yi Liu, Wan-Ping Lee, and Yao-Wen Chang (2007). “A provably good approximation algorithm for power optimization using multiple supply voltages”. In:
Proc. DAC, pp. 887–890.

20 / 27

I On perfect-number partition: https://en.wikipedia.org/wiki/Partition_problem

I Correction:10
10Tao Lin et al. (2010). “A revisit to voltage partitioning problem”. In: Proc. GLSVLSI, pp. 115–118.

21 / 27

https://en.wikipedia.org/wiki/Partition_problem

Overview

Introduction

Background: NP problem

Background: Dynamic Programming

DAC’07: Voltage Partitioning

ICCAD’06: Voltage Assignment on Netlist

ICCAD’07: Voltage Assignment on Slicing Floorplanning

22 / 27

ICCAD’06: Voltage Assignment on Netlist11

(a) Algorithm Flow (b) Notations

Question:

I How to define a slack for each vertex vi?
I Please provide a mathematical formulation minizing total power consumption.

11Wan-Ping Lee, Hung-Yi Liu, and Yao-Wen Chang (2006). “Voltage island aware floorplanning for power and timing optimization”. In: Proc. ICCAD, pp. 389–394.

22 / 27

23 / 27

23 / 27

I Further speed-up: dual to min-cost flow12

I Overcome reconverge issue:13

12Qiang Ma and Evangeline FY Young (2008). “Network flow-based power optimization under timing constraints in MSV-driven floorplanning”. In: Proc. ICCAD,
pp. 1–8.
13Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.

23 / 27

14

15

Consistency Relaxation

backward solution propagation

(v4=1)[c=3.1, q=8.2]
(v4=2)[c=2.9, q=8]
(v4=3)[c=2.7, q=7.9]

v1 v4

v2

v3

(v2=1: v4=1)[c=3, q=7]
(v2=2: v4=2)[c=2, q=5]

(v3=1: v4=1)[c=4, q=7]
(v3=2: v4=2)[c=3, q=6]

(v1=1: v2=2, v3=2)[c=5, q=3.5]
(v1=2: v2=1, v3=2)[c=5, q=4.4]

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

16

Consistency Relaxation

(v4=1)[c=3.1, q=8.2]
(v4=2)[c=2.9, q=8]
(v4=3)[c=2.7, q=7.9]

v1 v4

v2

v3

(v2=1: v4=1)[c=3, q=7]
(v2=2: v4=2)[c=2, q=5]

(v3=1: v4=1)[c=4, q=7]
(v3=2: v4=2)[c=3, q=6]

(v1=1: v2=2, v3=2)[c=5, q=3.5]
(v1=2: v2=1, v3=2)[c=5, q=4.4]

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

17

Consistency Relaxation

(v4=1)[c=3.1, q=8.2]
(v4=2)[c=2.9, q=8]

v1 v4

v2

v3

(v2=1: v4=1)[c=3, q=7]

(v3=2: v4=2)[c=3, q=6]

(v1=2: v2=1, v3=2)[c=5, q=4.4]

v4
1 or v4

2 ?

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

18

Consistency Restoration

(v1=2) [a=2]

(v2=1) [a=3.6]

(v3=2) [a=3.6]

(v4=1) [a= ,q=8.2]
(v4=2) [a= ,q=8]
(v4=3) [a= ,q=7.9]

forward solution propagation

v1 v4

v2

v3

2.223V3=2

2.231.2V2=1

V4=3V4=2V4=1D(vi,vj)

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

19

Consistency Restoration

forward solution propagation

(v1=2) [a=2]

(v2=1) [a=3.6]

(v3=2) [a=3.6]

(v4=1) [a=6.6 ,q=8.2]
(v4=2) [a=6.6 ,q=8]
(v4=3) [a=5.8 ,q=7.9]

v1 v4

v2

v3

2.223V3=2

2.231.2V2=1

V4=3V4=2V4=1D(vi,vj)

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

20

Consistency Restoration

forward solution propagation

(v1=2) [a=2]

(v2=1) [a=3.6]

(v3=2) [a=3.6]

(v4=1) [a=6.6 ,q=8.2]
(v4=2) [a=6.6 ,q=8]
(v4=3) [a=5.8 ,q=7.9]

v1 v4

v2

v3

2.223V3=2

2.231.2V2=1

V4=3V4=2V4=1D(vi,vj)

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

21

Consistency Restoration

forward solution propagation

(v1=2) [a=2]

(v2=1) [a=3.6]

(v3=2) [a=3.6]

(v4=1) [a=6.6 ,q=8.2]
(v4=2) [a=6.6 ,q=8]
(v4=3) [a=5.8 ,q=7.9]

v1 v4

v2

v3

2.223V3=2

2.231.2V2=1

V4=3V4=2V4=1D(vi,vj)

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

22

Consistency Restoration

(v1=2) [a=2]

(v2=1) [a=3.6]

(v3=2) [a=3.6]

(v4=1) [a=6.6 ,q=8.2]
(v4=2) [a=6.6 ,q=8]
(v4=3) [a=5.8 ,q=7.9]

v1 v4

v2

v3

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

24

Iterative Refinement

Circuit in consideration

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

25

Iterative Refinement

After relaxation

3x

5x

6x1x 3x 8x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

26

Iterative Refinement

After Phase I restoration

6x1x 3x 7x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

27

Iterative Refinement

Phase II begins

solution propagation direction

5x1x 2x 7x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

28

Iterative Refinement

solution propagation direction

5x1x 2x 6x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

29

Iterative Refinement

solution propagation direction

4x1x 2x 6x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

30

Iterative Refinement

solution propagation direction

4x1x 2x 5x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

14

31

Iterative Refinement

• Monotonic improvement of solution by
iterative refinement

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
24 / 27

Overview

Introduction

Background: NP problem

Background: Dynamic Programming

DAC’07: Voltage Partitioning

ICCAD’06: Voltage Assignment on Netlist

ICCAD’07: Voltage Assignment on Slicing Floorplanning

25 / 27

ICCAD’07: Voltage Assignment on Slicing Floorplanning15

15Qiang Ma and Evangeline FY Young (2007). “Voltage island-driven floorplanning”. In: Proc. ICCAD, pp. 644–649.

25 / 27

Normalized Polish Expression (NPE)
!  Slicing floorplan representation

!  A sequence of operands and operators
"  An operand denotes a block
"  An operator denotes a cut direction

#  ‘+’ denotes a horizontal cut
#  ‘*’ denotes a vertical cut

n1 n2 n3+* n4+

NPE

+

n1

* n4

n2

Slicing tree

+

n3

b4

b1

b3

b2

Slicing Floorplan

26 / 27

Optimal Island Partitioning�

!  Given a candidate floorplan represented by NPE,
we can perform optimal island partitioning and
voltage assignment on the slicing tree

!  Procedure TreePart(TreeNode u, Num_island k)
"  Optimally partition a tree rooted at u into k islands
"  Solved by dynamic programming

!  When k = 1
"  Case 1 : Island in left subtree
"  Case 2 : Island in right subtree
"  Case 3 : The whole tree rooted

 at u form an island
"  Case 4 : Island is formed across

 the left and right subtrees

+

L R

26 / 27

Optimal Island Partitioning�
!  Case 4 : Island is formed across subtrees

"  A set of contiguous right subtrees may also form an
island when operators along the left tree branches are
the same

A

B

C

D

+

+

+

D C

B

A

Same
Operator

+

n1

*

n2

n3

b3

b1 b2

Not same
Operator

26 / 27

Optimal Island Partitioning
!  The procedure NonSubtree() deals with case 4

+

+

+
A

NonSubtree (TreeNode u, num_island k)
$  min_cost = ∞

$  S = right_child(u)

$  op= operator(u)

$  While operator(left_child(u)) is op
!  u = left_child(u)
!  S = S ∪ right_child(u)
!  C =

TreePart(left_child(u),k-1)+cost(S)
!  If min_cost > C, min_cost = C

$  Return(min_cost)

+

E D

C

B

A

D
E

C
B

TreePart()

26 / 27

Optimal Island Partitioning�

!  When k is more than 1, exhaust all different ways of
distributing the k islands by dynamic programming
 TreePart (TreeNode u, num_island k)

$  min_cost = NonSubtree(u, k)

$  For i = 0 to k
!  C = TreePart(left_child(u), i) + TreePart(right_child(u),k-i)
!  If min_cost > C, min_cost = C

$  Return(min_cost) �

+

L R

Partition into
i islands

Partition into
k-i islands

Across Subtree
islands�

i = 0, 1, … , k

26 / 27

Optimal Island Partitioning
!  Use the Cost Table to speed up Procedure TreePart (u, k)

"  Store the best partitioning solution of each node
#  Minimize the number of recusive calls - a dynamic programming

technique
"  After each move, only the nodes lying on the path from the perturbed

node to the root need to be updated

+

*

+ n1

n2

n3

*

n4

*

+ n5

n6

n7

*

n8

n1 n2 n3 n4 * +* n5 n6 n7 n8 * +* +

Node No. of Islands
1 2 3 … K-1 K

1 (*)

2
(+)

3 (*)

4 (*)

5
(+)

6 (*)

7
(+)

Cost Table:

1

2

4

5

6

7

3

26 / 27

Takeaway

I NP completeness and NP hardness
I Dynamic Programming: when and how
I How to evaluate previous work

27 / 27

	Main Talk
	Introduction
	Background: NP problem
	Background: Dynamic Programming
	DAC'07: Voltage Partitioning
	ICCAD'06: Voltage Assignment on Netlist
	ICCAD'07: Voltage Assignment on Slicing Floorplanning

