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Multi-Voltage Design @IBM1

1Ruchir Puri et al. (2003). “Pushing ASIC performance in a power envelope”. In: Proc. DAC, pp. 788–793.
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Level-Converter2

Level-converter is used to avoid excessive static power consumption between the low and
high voltage regions.

2Ruchir Puri et al. (2003). “Pushing ASIC performance in a power envelope”. In: Proc. DAC, pp. 788–793.
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Placement Level Multi-Voltage3

3Huaizhi Wu and Martin DF Wong (2009). “Incremental improvement of voltage assignment”. In: IEEE TCAD 28.2, pp. 217–230.
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4

4Kristof Blutman et al. (2017). “Floorplan and placement methodology for improved energy reduction in stacked power-domain design”. In: Proc. ASPDAC,
pp. 444–449.
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Floorplanning Level Multi-Voltage
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I Modules are assigned high-voltage or
low-voltage.

I Low voltage→ high delay.
I Trade off between the power saving and

performance.

I Consider Power Network Resource
I High voltage modules should pack close
I Generate Voltage Island
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What’s Netlist?
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What’s Floorplanning?
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B*-Tree5

5Yun-Chih Chang et al. (2000). “B*-Trees: A New Representation for Non-Slicing Floorplans”. In: Proc. DAC, pp. 458–463.

10 / 27



Classic Design Flow7

I Integer linear programming (ILP) based
I More complicated ILP formulation is develped in ICCAD’076.
6Wan-Ping Lee, Hung-Yi Liu, and Yao-Wen Chang (2007). “An ILP algorithm for post-floorplanning voltage-island generation considering power-network planning”.

In: Proc. ICCAD, pp. 650–655.
7Wai-Kei Mak and Jr-Wei Chen (2007). “Voltage island generation under performance requirement for SoC designs”. In: Proc. ASPDAC, pp. 798–803.
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NP-Completeness [Garey & Johnson,1979]8

I Decision Problem (Yes/No Problem)
I NP : Set of problems w. Nondeterministic Polynomial time algorithm
I P : Set of problems w. (Deterministic) Polynomial time algorithm
I NP-Complete: hardest problems in NP

I Conjecture: P 6= NP

If a problem in NP-Complete solved in polynomial time→ any problem in NP solved in
polynomial time

8Some contents & figures on this part come from Prof. Takahashi
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Polynomial Time Reduction

I Provides difficulty relation between problems

I SAT is NP-Complete→ 3SAT, Hamilton, TSP, Coloring...
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NP-Hardness [Garey & Johnson,1979]

I Optimization problem
I Is neither in NP nor in NP-Complete
I NP-hard if a related decision problem is NP-complete
I E.g. Travelling Salesman Problem (TSP)
I No polynomial time algorithm
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Strategies of Algorithm Design

1. Check whether problem is easy or not?
2. If possible, prove is NP-hard or NP-complete
3. For easy problem (in P):

4. For not easy problem (in NP-hard):
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Case 1: Calculating Binomial Coefficient

Question
Can we have a better Algorithm?
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Case 2: Knapsack Problem

max

n∑
i=1

xivi

s.t.
n∑

i=1
xiwi ≤ W

I vi: value of object i
I wi: weight of object i
I xi ∈ {0, 1}

Question

I Design a Dynamic Programming Algorithm to Solve it.
I What is xi can be floating value?
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Principle of Optimality

In an optimal sequence of decisions or choices, each subsequence must also be optimal.
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9

9Hung-Yi Liu, Wan-Ping Lee, and Yao-Wen Chang (2007). “A provably good approximation algorithm for power optimization using multiple supply voltages”. In:
Proc. DAC, pp. 887–890.
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I On perfect-number partition: https://en.wikipedia.org/wiki/Partition_problem

I Correction:10
10Tao Lin et al. (2010). “A revisit to voltage partitioning problem”. In: Proc. GLSVLSI, pp. 115–118.
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ICCAD’06: Voltage Assignment on Netlist11

(a) Algorithm Flow (b) Notations

Question:

I How to define a slack for each vertex vi?
I Please provide a mathematical formulation minizing total power consumption.

11Wan-Ping Lee, Hung-Yi Liu, and Yao-Wen Chang (2006). “Voltage island aware floorplanning for power and timing optimization”. In: Proc. ICCAD, pp. 389–394.
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I Further speed-up: dual to min-cost flow12

I Overcome reconverge issue:13

12Qiang Ma and Evangeline FY Young (2008). “Network flow-based power optimization under timing constraints in MSV-driven floorplanning”. In: Proc. ICCAD,
pp. 1–8.
13Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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15

Consistency Relaxation

backward solution propagation
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(v4=2)[ c=2.9, q=8] 
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(v3=2: v4=2)[ c=3, q=6]

(v1=1: v2=2, v3=2)[ c=5, q=3.5]
(v1=2: v2=1, v3=2)[ c=5, q=4.4]

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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Consistency Relaxation
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Consistency Restoration
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Consistency Restoration
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Iterative Refinement

Circuit in consideration

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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Iterative Refinement

After relaxation

3x

5x

6x1x 3x 8x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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Iterative Refinement

After Phase I restoration

6x1x 3x 7x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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Iterative Refinement

Phase II begins

solution propagation direction

5x1x 2x 7x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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Iterative Refinement

solution propagation direction
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Iterative Refinement

solution propagation direction

4x1x 2x 6x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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Iterative Refinement

solution propagation direction

4x1x 2x 5x

3x

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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Iterative Refinement

• Monotonic improvement of solution by 
iterative refinement

14Yifang Liu and Jiang Hu (2009). “A New Algorithm for Simultaneous Gate Sizing and Threshold Voltage Assignment”. In: Proc. ISPD, pp. 27–34.
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ICCAD’07: Voltage Assignment on Slicing Floorplanning15

15Qiang Ma and Evangeline FY Young (2007). “Voltage island-driven floorplanning”. In: Proc. ICCAD, pp. 644–649.
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Normalized Polish Expression (NPE) 
!  Slicing floorplan representation 

!  A sequence of operands and operators 
"  An operand denotes a block 
"  An operator denotes a cut direction  

#  ‘+’ denotes a horizontal cut 
#  ‘*’ denotes a vertical cut 

n1 n2 n3+* n4+ 

NPE 

+ 

n1 

* n4 

n2 

Slicing tree 

+ 

n3 

b4 

b1 

b3 

b2 

Slicing Floorplan 
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Optimal Island Partitioning�

!  Given a candidate floorplan represented by NPE, 
we can perform optimal island partitioning and 
voltage assignment on the slicing tree 

!  Procedure TreePart(TreeNode u, Num_island k) 
"  Optimally partition a tree rooted at u into k islands  
"  Solved by dynamic programming 

!  When k = 1 
"  Case 1 : Island in left subtree 
"  Case 2 : Island in right subtree 
"  Case 3 : The whole tree rooted 

               at u form an island 
"  Case 4 : Island is formed across 

      the left and right subtrees 

+ 

L R 
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Optimal Island Partitioning�
!  Case 4 : Island is formed across subtrees 

"  A set of contiguous right subtrees may also form an 
island when operators along the left tree branches are 
the same 

A 

B 

C 

D 

+ 

+ 

+ 

D C 

B 

A 

Same 
Operator 

+ 

n1 

* 

n2 

n3 

b3 

b1 b2 

Not same 
Operator 
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Optimal Island Partitioning 
!  The procedure NonSubtree() deals with case 4 

+ 

+ 

+ 
A 

NonSubtree (TreeNode u, num_island k) 
$  min_cost = ∞  

$  S = right_child(u) 

$  op= operator(u) 

$  While operator(left_child(u)) is op 
!  u = left_child(u) 
!  S = S ∪ right_child(u) 
!  C = 

TreePart(left_child(u),k-1)+cost(S) 
!  If min_cost > C, min_cost = C 

$  Return(min_cost) 

+ 

E D 

C 

B 

A 

D 
E 

C 
B 

TreePart() 
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Optimal Island Partitioning�

!  When k is more than 1, exhaust all different ways of 
distributing the k islands by dynamic programming 
  TreePart (TreeNode u, num_island k) 

$  min_cost = NonSubtree(u, k) 

$  For i = 0 to k 
!   C = TreePart(left_child(u), i) + TreePart(right_child(u),k-i) 
!   If min_cost > C, min_cost = C 

$  Return(min_cost) �

+ 

L R 

Partition into 
i islands 

Partition into 
k-i islands 

Across Subtree 
islands�

i = 0, 1, … , k 
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Optimal Island Partitioning 
!  Use the Cost Table to speed up Procedure TreePart (u, k) 

"  Store the best partitioning solution of each node 
#  Minimize the number of recusive calls - a dynamic programming 

technique 
"  After each move, only the nodes lying on the path from the perturbed 

node to the root need to be updated 

      

+ 

* 

+ n1 

n2 

n3 

* 

n4 

* 

+ n5 

n6 

n7 

* 

n8 

n1 n2 n3 n4 * +* n5 n6 n7 n8 * +* + 

Node No. of Islands 
1 2 3 … K-1 K 

1 ( * ) 

2 
( + ) 

3 ( * ) 

4 ( * ) 

5 
( + ) 

6 ( * ) 

7 
( + ) 

Cost Table: 
 

1

2

4

5

6

7

3
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Takeaway

I NP completeness and NP hardness
I Dynamic Programming: when and how
I How to evaluate previous work
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